

Code: The Hidden Language of
Computer Hardware and

Software
Charles Petzold

Copyright © 2009

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office or contact
Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at
mspress.microsoft.com. Send comments to mspinput@microsoft.com.

Macintosh is a registered trademark of Apple Computer, Inc. Microsoft, MS-DOS, and Windows are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their
respective owners.

Images of Charles Babbage, George Boole, Louis Braille, Herman Hollerith, Samuel Morse, and
John von Neumann appear courtesy of Corbis Images and were modified for this book by Joel
Panchot. The January 1975 cover of Popular Electronics is reprinted by permission of Ziff-Davis and
the Ziff family. All other illustrations in the book were produced by Joel Panchot.

Unless otherwise noted, the example companies, organizations, products, people, and events depicted
herein are fictitious. No association with any real company, organization, product, person, or event is
intended or should be inferred.

http://mspress.microsoft.com/
mailto:mspinput@microsoft.com

Preface to the Paperback Edition
Code rattled around in my head for about a decade before I started writing

it. As I was contemplating Code and then writing it, and even after the book

was published, people would ask me, "What's the book about?"

I was always reluctant to answer this question. I'd mumble something about

"a unique journey through the evolution of the digital technologies that

define the modern age" and hope that would be sufficient.

But finally I had to admit it: "Code is a book about how computers work."

As I feared, the reactions weren't favorable. "Oh, I have a book like that,"

some people would say, to which my immediate response was, "No, no, no,

you don't have a book like this one." I still think that's true. Code is not like

other how-computers-work books. It doesn't have big color illustrations of

disk drives with arrows showing how the data sweeps into the computer.

Code has no drawings of trains carrying a cargo of zeros and ones.

Metaphors and similes are wonderful literary devices but they do nothing

but obscure the beauty of technology.

The other comment I heard was, "People don't want to know how

computers work." And this I'm sure is true. I personally happen to enjoy

learning how things work. But I also like to choose which things I learn

about and which I do not. I'd be hard pressed to explain how my refrigerator

works, for example.

Yet I often hear people ask questions that reveal a need to know something

about the inner workings of personal computers. One such common

question is, "What's the difference between storage and memory?"

That's certainly a critical question. The marketing of personal computers is

based on such concepts. Even novice users are expected to know how many

megas of the one thing and gigas of the other thing will be necessary for

their particular applications. Novice users are also expected to master the

concept of the computer "file" and to visualize how files are loaded from

storage into memory and saved from memory back to storage.

The storage-and-memory question is usually answered with an analogy:

"Memory is like the surface of your desk and storage is like the filing

cabinet." That's not a bad answer as far as it goes. But I find it quite

unsatisfactory. It makes it sound as if computer architecture were patterned

after an office. The truth is that the distinction between memory and storage

is an artificial one and exists solely because we don't have a single storage

medium that is both fast and vast as well as nonvolatile. What we know

today as "von Neumann architecture"—the dominant computer architecture

for over 50 years—is a direct result of this technical deficiency.

Here's another question that someone once asked me: "Why can't you run

Macintosh programs under Windows?" My mouth opened to begin an

answer when I realized that it involved many more technical issues than I'm

sure my questioner was prepared to deal with in one sitting.

I want Code to be a book that makes you understand these things, not in

some abstract way, but with a depth that just might even rival that of

electrical engineers and programmers. I also hope that you might recognize

the computer to be one of the crowning achievements of twentieth century

technology and appreciate it as a beautiful thing in itself without metaphors

and similes getting in the way.

Computers are constructed in a hierarchy, from transistors down at the

bottom to the information displayed on our computer screens at the top.

Moving up each level in the hierarchy—which is how Code is structured—

is probably not as hard as most people might think. There is certainly a lot

going on inside the modern computer, but it is a lot of very common and

simple operations.

Although computers today are more complex than the computers of 25

years or 50 years ago, they are still fundamentally the same. That's what's

so great about studying the history of technology: The further back in time

you go, the simpler the technologies become. Thus it's possible to reach a

point where it all makes relatively easy sense.

In Code, I went as far back as I could go. Astonishingly, I found that I could

go back into the nineteenth century and use early telegraph equipment to

show how computers are built. In theory at least, everything in the first 17

chapters of Code can be built entirely using simple electrical devices that

have been around for over a century.

This use of antique technology gives Code a fairly nostalgic feel, I think.

Code is a book that could never be titled The Faster New Faster Thing or

Business @ the Speed of a Digital Nervous System. The "bit" isn't defined

until page 68; "byte" isn't defined until page 180. I don't mention transistors

until page 142, and that's only in passing.

So, while Code goes fairly deep into the workings of the computer (few

other books show how computer processors actually work, for example),

the pace is fairly relaxed. Despite the depth, I tried to make the trip as

comfortable as possible.

But without little drawings of trains carrying a cargo of zeros and ones.

Charles Petzold

August 16, 2000

Chapter 1. Best Friends
code (kōd) …

3.a. A system of signals used to represent letters or numbers in transmitting messages.

b. A system of symbols, letters, or words given certain arbitrary meanings, used for transmitting
messages requiring secrecy or brevity.

4. A system of symbols and rules used to represent instructions to a computer…

—The American Heritage Dictionary of the English Language

You're 10 years old. Your best friend lives across the street. In fact, the

windows of your bedrooms face each other. Every night, after your parents

have declared bedtime at the usual indecently early hour, you still need to

exchange thoughts, observations, secrets, gossip, jokes, and dreams. No one

can blame you. After all, the impulse to communicate is one of the most

human of traits.

While the lights are still on in your bedrooms, you and your best friend can

wave to each other from the windows and, using broad gestures and

rudimentary body language, convey a thought or two. But sophisticated

transactions seem difficult. And once the parents have decreed "Lights out!"

the situation seems hopeless.

How to communicate? The telephone perhaps? Do you have a telephone in

your room at the age of 10? Even so, wherever the phone is you'll be

overheard. If your family personal computer is hooked into a phone line, it

might offer soundless help, but again, it's not in your room.

What you and your best friend do own, however, are flashlights. Everyone

knows that flashlights were invented to let kids read books under the bed

covers; flashlights also seem perfect for the job of communicating after

dark. They're certainly quiet enough, and the light is highly directional and

probably won't seep out under the bedroom door to alert your suspicious

folks.

Can flashlights be made to speak? It's certainly worth a try. You learned

how to write letters and words on paper in first grade, so transferring that

knowledge to the flashlight seems reasonable. All you have to do is stand at

your window and draw the letters with light. For an O, you turn on the

flashlight, sweep a circle in the air, and turn off the switch. For an I, you

make a vertical stroke. But, as you discover quickly, this method simply

doesn't work. As you watch your friend's flashlight making swoops and

lines in the air, you find that it's too hard to assemble the multiple strokes

together in your head. These swirls and slashes of light are not precise
enough.

You once saw a movie in which a couple of sailors signaled to each other

across the sea with blinking lights. In another movie, a spy wiggled a mirror

to reflect the sunlight into a room where another spy lay captive. Maybe

that's the solution. So you first devise a simple technique. Each letter of the

alphabet corresponds to a series of flashlight blinks. An A is 1 blink, a B is

2 blinks, a C is 3 blinks, and so on to 26 blinks for Z. The word BAD is 2

blinks, 1 blink, and 4 blinks with little pauses between the letters so you

won't mistake the 7 blinks for a G. You'll pause a bit longer between words.

This seems promising. The good news is that you no longer have to wave

the flashlight in the air; all you have to do is point and click. The bad news

is that one of the first messages you try to send ("How are you?") turns out

to require a grand total of 131 blinks of light! Moreover, you forgot about

punctuation, so you don't know how many blinks correspond to a question

mark.

But you're close. Surely, you think, somebody must have faced this problem

before, and you're absolutely right. With daylight and a trip to the library

for research, you discover a marvelous invention known as Morse code. It's

exactly what you've been looking for, even though you must now relearn

how to "write" all the letters of the alphabet.

Here's the difference: In the system you invented, every letter of the

alphabet is a certain number of blinks, from 1 blink for A to 26 blinks for Z.

In Morse code, you have two kinds of blinks—short blinks and long blinks.

This makes Morse code more complicated, of course, but in actual use it

turns out to be much more efficient. The sentence "How are you?" now

requires only 32 blinks (some short, some long) rather than 131, and that's

including a code for the question mark.

When discussing how Morse code works, people don't talk about "short

blinks" and "long blinks." Instead, they refer to "dots" and "dashes" because

that's a convenient way of showing the codes on the printed page. In Morse

code, every letter of the alphabet corresponds to a short series of dots and

dashes, as you can see in the following table.

Although Morse code has absolutely nothing to do with computers,

becoming familiar with the nature of codes is an essential preliminary to

achieving a deep understanding of the hidden languages and inner

structures of computer hardware and software.

In this book, the word code usually means a system for transferring

information among people and machines. In other words, a code lets you

communicate. Sometimes we think of codes as secret. But most codes are

not. Indeed, most codes must be well understood because they're the basis

of human communication.

In the beginning of One Hundred Years of Solitude, Gabriel Garcia

Marquez recalls a time when "the world was so recent that many things

lacked names, and in order to indicate them it was necessary to point." The

names that we assign to things usually seem arbitrary. There seems to be no

reason why cats aren't called "dogs" and dogs aren't called "cats." You could

say English vocabulary is a type of code.

The sounds we make with our mouths to form words are a code intelligible

to anyone who can hear our voices and understands the language that we

speak. We call this code "the spoken word," or "speech." We have other

code for words on paper (or on stone, on wood, or in the air, say, via

skywriting). This code appears as handwritten characters or printed in

newspapers, magazines, and books. We call it "the written word," or "text."

In many languages, a strong correspondence exists between speech and

text. In English, for example, letters and groups of letters correspond (more

or less) to spoken sounds.

For people who can't hear or speak, another code has been devised to help

in face-to-face communication. This is sign language, in which the hands

and arms form movements and gestures that convey individual letters of

words or whole words and concepts. For those who can't see, the written

word can be replaced with Braille, which uses a system of raised dots that

correspond to letters, groups of letters, and whole words. When spoken

words must be transcribed into text very quickly, stenography or shorthand

is useful.

We use a variety of different codes for communicating among ourselves

because some codes are more convenient than others. For example, the code

of the spoken word can't be stored on paper, so the code of the written word

is used instead. Silently exchanging information across a distance in the

dark isn't possible with speech or paper. Hence, Morse code is a convenient

alternative. A code is useful if it serves a purpose that no other code can.

As we shall see, various types of codes are also used in computers to store

and communicate numbers, sounds, music, pictures, and movies.

Computers can't deal with human codes directly because computers can't

duplicate the ways in which human beings use their eyes, ears, mouths, and

fingers. Yet one of the recent trends in computer technology has been to

enable our desktop personal computers to capture, store, manipulate, and

render all types of information used in human communication, be it visual

(text and pictures), aural (spoken words, sounds, and music), or a

combination of both (animations and movies). All of these types of

information require their own codes, just as speech requires one set of

human organs (mouths and ears) while writing and reading require others

(hands and eyes).

Even the table of Morse code shown on page 4 is itself a code of sorts. The

table shows that each letter is represented by a series of dots and dashes. Yet

we can't actually send dots and dashes. Instead, the dots and dashes

correspond to blinks.

When sending Morse code with a flashlight, you turn the flashlight switch

on and off very quickly (a fast blink) for a dot. You leave the flashlight

turned on somewhat longer (a slower on-off blink) for a dash. To send an A,

for example, you turn the flashlight on and off very quickly and then on and

off at a lesser speed. You pause before sending the next character. By

convention, the length of a dash should be about three times that of a dot.

For example, if a dot is one second long, a dash is three seconds long. (In

reality, Morse code is transmitted much faster than that.) The receiver sees

the short blink and the long blink and knows it's an A.

Pauses between the dots and dashes of Morse code are crucial. When you

send an A, for example, the flashlight should be off between the dot and the

dash for a period of time equal to about one dot. (If the dot is one second

long, the gap between dots and dashes is also a second.) Letters in the same

word are separated by longer pauses equal to about the length of one dash

(or three seconds if that's the length of a dash). For example, here's the

Morse code for "hello," illustrating the pauses between the letters:

Words are separated by an off period of about two dashes (six seconds if a

dash is three seconds long). Here's the code for "hi there":

The lengths of time that the flashlight remains on and off aren't fixed.

They're all relative to the length of a dot, which depends on how fast the

flashlight switch can be triggered and also how quickly a Morse code

sender can remember the code for a particular letter. A fast sender's dash

may be the same length as a slow sender's dot. This little problem could

make reading a Morse code message tough, but after a letter or two, the

receiver can usually figure out what's a dot and what's a dash.

At first, the definition of Morse code—and by definition I mean the

correspondence of various sequences of dots and dashes to the letters of the

alphabet—appears as random as the layout of a typewriter. On closer

inspection, however, this is not entirely so. The simpler and shorter codes

are assigned to the more frequently used letters of the alphabet, such as E

and T. Scrabble players and Wheel of Fortune fans might notice this right

away. The less common letters, such as Q and Z (which get you 10 points in

Scrabble), have longer codes.

Almost everyone knows a little Morse code. Three dots, three dashes, and

three dots represent SOS, the international distress signal. SOS isn't an

abbreviation for anything—it's simply an easy-to-remember Morse code

sequence. During the Second World War, the British Broadcasting

Corporation prefaced some radio broadcasts with the beginning of

Beethoven's Fifth Symphony—BAH, BAH, BAH, BAHMMMMM—which

Ludwig didn't know at the time he composed the music is the Morse code

V, for Victory.

One drawback of Morse code is that it makes no differentiation between

uppercase and lowercase letters. But in addition to representing letters,

Morse code also includes codes for numbers by using a series of five dots

and dashes:

These codes, at least, are a little more orderly than the letter codes. Most

punctuation marks use five, six, or seven dots and dashes:

Additional codes are defined for accented letters of some European

languages and as shorthand sequences for special purposes. The SOS code

is one such shorthand sequence: It's supposed to be sent continuously with

only a one-dot pause between the three letters.

You'll find that it's much easier for you and your friend to send Morse code

if you have a flashlight made specifically for this purpose. In addition to the

normal on-off slider switch, these flashlights also include a pushbutton

switch that you simply press and release to turn the flashlight on and off.

With some practice, you might be able to achieve a sending and receiving

speed of 5 or 10 words per minute—still much slower than speech (which is

somewhere in the 100-words-per-minute range), but surely adequate.

When finally you and your best friend memorize Morse code (for that's the

only way you can become proficient at sending and receiving it), you can

also use it vocally as a substitute for normal speech. For maximum speed,

you pronounce a dot as dih (or dit for the last dot of a letter) and a dash as

dah. In the same way that Morse code reduces written language to dots and

dashes, the spoken version of the code reduces speech to just two vowel

sounds.

The key word here is two. Two types of blinks, two vowel sounds, two

different anything, really, can with suitable combinations convey all types

of information.

Chapter 2. Codes and Combinations
Morse code was invented by Samuel Finley Breese Morse (1791–1872),

whom we shall meet more properly later in this book. The invention of

Morse code goes hand in hand with the invention of the telegraph, which

we'll also examine in more detail. Just as Morse code provides a good

introduction to the nature of codes, the telegraph provides a good

introduction to the hardware of the computer.

Most people find Morse code easier to send than to receive. Even if you

don't have Morse code memorized, you can simply use this table,

conveniently arranged in alphabetical order:

Receiving Morse code and translating it back into words is considerably

harder and more time consuming than sending because you must work

backward to figure out the letter that corresponds to a particular coded

sequence of dots and dashes. For example, if you receive a dash-dot-dash-

dash, you have to scan through the table letter by letter before you finally

discover that the code is the letter Y.

The problem is that we have a table that provides this translation:

Alphabetical letter → Morse code dots and dashes

But we don't have a table that lets us go backward:

Morse code dots and dashes → Alphabetical letter

In the early stages of learning Morse code, such a table would certainly be

convenient. But it's not at all obvious how we could construct it. There's

nothing in those dots and dashes that we can put into alphabetical order.

So let's forget about alphabetical order. Perhaps a better approach to

organizing the codes might be to group them depending on how many dots

and dashes they have. For example, a Morse code sequence that contains

either one dot or one dash can represent only two letters, which are E and T:

A combination of exactly two dots or dashes gives us four more letters—I,

A, N, and M:

A pattern of three dots or dashes gives us eight more letters:

And finally (if we want to stop this exercise before dealing with numbers

and punctuation marks), sequences of four dots and dashes give us 16 more

characters:

Taken together, these four tables contain 2 plus 4 plus 8 plus 16 codes for a

total of 30 letters, 4 more than are needed for the 26 letters of the Latin

alphabet. For this reason, you'll notice that 4 of the codes in the last table

are for accented letters.

These four tables might help you translate with greater ease when someone

is sending you Morse code. After you receive a code for a particular letter,

you know how many dots and dashes it has, and you can at least go to the

right table to look it up. Each table is organized so that you find the all-dots

code in the upper left and the all-dashes code in the lower right.

Can you see a pattern in the size of the four tables? Notice that each table

has twice as many codes as the table before it. This makes sense: Each table

has all the codes in the previous table followed by a dot, and all the codes in

the previous table followed by a dash.

We can summarize this interesting trend this way:

Number of Dots and Dashes Number of Codes

1 2

2 4

3 8

4 16

Each of the four tables has twice as many codes as the table before it, so if

the first table has 2 codes, the second table has 2 x 2 codes, and the third

table has 2 x 2 x 2 codes. Here's another way to show that:

Number of Dots and Dashes Number of Codes

1 2

2 2 x 2

3 2 x 2 x 2

4 2 x 2 x 2 x 2

Of course, once we have a number multiplied by itself, we can start using

exponents to show powers. For example, 2 x 2 x 2 x 2 can be written as 24

(2 to the 4th power). The numbers 2, 4, 8, and 16 are all powers of 2

because you can calculate them by multiplying 2 by itself. So our summary

can also be shown like this:

Number of Dots and Dashes Number of Codes

1 21

2 22

3 23

4 24

This table has become very simple. The number of codes is simply 2 to the

power of the number of dots and dashes. We might summarize the table

data in this simple formula:

number of codes = 2number of dots and dashes

Powers of 2 tend to show up a lot in codes, and we'll see another example in

the next chapter.

To make the process of decoding Morse code even easier, we might want to

draw something like the big treelike table shown here.

This table shows the letters that result from each particular consecutive

sequence of dots and dashes. To decode a particular sequence, follow the

arrows from left to right. For example, suppose you want to know which

letter corresponds to the code dot-dash-dot. Begin at the left and choose the

dot; then continue moving right along the arrows and choose the dash and

then another dot. The letter is R, shown next to the last dot.

If you think about it, constructing such a table was probably necessary for

defining Morse code in the first place. First, it ensures that you don't make

the dumb mistake of using the same code for two different letters! Second,

you're assured of using all the possible codes without making the sequences

of dots and dashes unnecessarily long.

At the risk of extending this table beyond the limits of the printed page, we

could continue it for codes of five dots and dashes and more. A sequence of

exactly five dots and dashes gives us 32 (2x2x2x2x2, or 25) additional

codes. Normally that would be enough for the 10 numbers and the 16

punctuation symbols defined in Morse code, and indeed the numbers are

encoded with five dots and dashes. But many of the other codes that use a

sequence of five dots and dashes represent accented letters rather than

punctuation marks.

To include all the punctuation marks, the system must be expanded to six

dots and dashes, which gives us 64 (2x2x2x2x2x2, or 26) additional codes

for a grand total of 2+4+8+16+32+64, or 126, characters. That's overkill for

Morse code, which leaves many of these longer codes "undefined." The

word undefined used in this context refers to a code that doesn't stand for

anything. If you were receiving Morse code and you got an undefined code,

you could be pretty sure that somebody made a mistake.

Because we were clever enough to develop this little formula,

number of codes = 2number of dots and dashes

we could continue figuring out how many codes we get from using longer

sequences of dots and dashes:

Number of Dots and Dashes Number of Codes

1 21 = 2

2 22 = 4

3 23 = 8

4 24 = 16

5 25 = 32

6 26 = 64

7 27 = 128

8 28 = 256

9 29 = 512

10 210 = 1024

Fortunately, we don't have to actually write out all the possible codes to

determine how many there would be. All we have to do is multiply 2 by

itself over and over again.

Morse code is said to be a binary (literally meaning two by two) code

because the components of the code consist of only two things—a dot and a

dash. That's similar to a coin, which can land only on the head side or the

tail side. Binary objects (such as coins) and binary codes (such as Morse

code) are always described by powers of two.

What we're doing by analyzing binary codes is a simple exercise in the

branch of mathematics known as combinatorics or combinatorial analysis.

Traditionally, combinatorial analysis is used most often in the fields of

probability and statistics because it involves determining the number of

ways that things, like coins and dice, can be combined. But it also helps us

understand how codes can be put together and taken apart.

Chapter 3. Braille and Binary Codes
Samuel Morse wasn't the first person to successfully translate the letters of

written language to an interpretable code. Nor was he the first person to be

remembered more as the name of his code than as himself. That honor must

go to a blind French teenager born some 18 years after Samuel Morse but

who made his mark much more precociously. Little is known of his life, but

what is known makes a compelling story.

Louis Braille was born in 1809 in Coupvray, France, just 25 miles east of

Paris. His father was a harness maker. At the age of three—an age when

young boys shouldn't be playing in their fathers' workshops—he

accidentally stuck a pointed tool in his eye. The wound became infected,

and the infection spread to his other eye, leaving him totally blind.

Normally he would have been doomed to a life of ignorance and poverty (as

most blind people were in those days), but young Louis's intelligence and

desire to learn were soon recognized. Through the intervention of the

village priest and a schoolteacher, he first attended school in the village

with the other children and at the age of 10 was sent to the Royal Institution

for Blind Youth in Paris.

One major obstacle in the education of the blind is, of course, their inability

to read printed books. Valentin Haüy (1745–1822), the founder of the Paris

school, had invented a system of raised letters on paper that could be read

by touch. But this system was very difficult to use, and only a few books

had been produced using this method.

The sighted Haüy was stuck in a paradigm. To him, an A was an A was an

A, and the letter A must look (or feel) like an A. (If given a flashlight to

communicate, he might have tried drawing letters in the air as we did before

we discovered it didn't work very well.) Haüy probably didn't realize that a

type of code quite different from the printed alphabet might be more

appropriate for sightless people.

The origins of an alternative type of code came from an unexpected source.

Charles Barbier, a captain of the French army, had by 1819 devised a

system of writing he called écriture nocturne, or "night writing." This

system used a pattern of raised dots and dashes on heavy paper and was

intended for use by soldiers in passing notes to each other in the dark when

quiet was necessary. The soldiers were able to poke these dots and dashes

into the back of the paper using an awl-like stylus. The raised dots could

then be read with the fingers.

The problem with Barbier's system is that it was quite complex. Rather than

using patterns of dots and dashes that corresponded to letters of the

alphabet, Barbier devised patterns that corresponded to sounds, often

requiring many codes for a single word. The system worked fine for short

messages in the field but was distinctly inadequate for longer texts, let alone

entire books.

Louis Braille became familiar with Barbier's system at the age of 12. He

liked the use of raised dots, not only because it proved easy to read with the

fingers but also because it was easy to write. A student in the classroom

equipped with paper and a stylus could actually take notes and read them

back. Louis Braille diligently tried to improve the system and within three

years (at the age of 15) had come up with his own, the basics of which are

still used today. For many years, the system was known only within the

school, but it gradually made its way to the rest of the world. In 1835, Louis

Braille contracted tuberculosis, which would eventually kill him shortly

after his 43rd birthday in 1852.

Today, enhanced versions of the Braille system compete with tape-recorded

books for providing the blind with access to the written word, but Braille

still remains an invaluable system and the only way to read for people who

are both blind and deaf. In recent years, Braille has become more familiar in

the public arena as elevators and automatic teller machines are made more

accessible to the blind.

What we're going to do in this chapter is dissect Braille code and see how it

works. We don't have to actually learn Braille or memorize anything. We

just want some insight into the nature of codes.

In Braille, every symbol used in normal written language—specifically,

letters, numbers, and punctuation marks—is encoded as one or more raised

dots within a two-by-three cell. The dots of the cell are commonly

numbered 1 through 6:

In modern-day use, special typewriters or embossers punch the Braille dots

into the paper.

Because embossing just a couple pages of this book in Braille would be

prohibitively expensive, I've used a notation common for showing Braille

on the printed page. In this notation, all six dots in the cell are shown. Large

dots indicate the parts of the cell where the paper is raised. Small dots

indicate the parts of the cell that are flat. For example, in the Braille

character dots 1, 3, and 5 are raised and dots 2, 4, and 6 are not.

What should be interesting to us at this point is that the dots are binary. A

particular dot is either flat or raised. That means we can apply what we've

learned about Morse code and combinatorial analysis to Braille. We know

that there are 6 dots and that each dot can be either flat or raised, so the total

number of combinations of 6 flat and raised dots is 2 x 2 x 2 x 2 x 2 x 2, or

26, or 64.

Thus, the system of Braille is capable of representing 64 unique codes. Here

they are—all 64 possible Braille codes:

If we find fewer than 64 codes used in Braille, we should question why

some of the 64 possible codes aren't being used. If we find more than 64

codes used in Braille, we should question either our sanity or fundamental

truths of mathematics, such as 2 plus 2 equaling 4.

To begin dissecting the code of Braille, let's look at the basic lowercase

alphabet:

For example, the phrase "you and me" in Braille looks like this:

Notice that the cells for each letter within a word are separated by a little bit

of space; a larger space (essentially a cell with no raised dots) is used

between words.

This is the basis of Braille as Louis Braille devised it, or at least as it applies

to the letters of the Latin alphabet. Louis Braille also devised codes for

letters with accent marks, common in French. Notice that there's no code

for w, which isn't used in classical French. (Don't worry. The letter will

show up eventually.) At this point, only 25 of the 64 possible codes have

been accounted for.

Upon close examination, you'll discover that the three rows of Braille

illustrated above show a pattern. The first row (letters a through j) uses only

the top four spots in the cell—dots 1, 2, 4, and 5. The second row duplicates

the first row except that dot 3 is also raised. The third row is the same

except that dots 3 and 6 are raised.

Since the days of Louis Braille, the Braille code has been expanded in

various ways. Currently the system used most often in published material in

English is called Grade 2 Braille. Grade 2 Braille uses many contractions in

order to save trees and to speed reading. For example, if letter codes appear

by themselves, they stand for common words. The following three rows

(including a "completed" third row) show these word codes:

Thus, the phrase "you and me" can be written in Grade 2 Braille as this:

So far, I've described 31 codes—the no-raised-dots space between words

and the 3 rows of 10 codes for letters and words. We're still not close to the

64 codes that are theoretically available. In Grade 2 Braille, as we shall see,

nothing is wasted.

First, we can use the codes for letters a through j combined with a raised dot

6. These are used mostly for contractions of letters within words and also

include w and another word abbreviation:

For example, the word "about" can be written in Grade 2 Braille this way:

Second, we can take the codes for letters a through j and "lower" them to

use only dots 2, 3, 5, and 6. These codes are used for some punctuation

marks and contractions, depending on context:

The first four of these codes are the comma, semicolon, colon, and period.

Notice that the same code is used for both left and right parentheses but that

two different codes are used for open and closed quotation marks.

We're up to 51 codes so far. The following 6 codes use various unused

combinations of dots 3, 4, 5, and 6 to represent contractions and some

additional punctuation:

The code for "ble" is very important because when it's not part of a word, it

means that the codes that follow should be interpreted as numbers. These

number codes are the same as those for letters a through j:

Thus, this sequence of codes means the number 256.

If you've been keeping track, we need 7 more codes to reach the maximum

of 64. Here they are:

The first (a raised dot 4) is used as an accent indicator. The others are used

as prefixes for some contractions and also for some other purposes: When

dots 4 and 6 are raised (the fifth code in this row), the code is a decimal

point in numbers or an emphasis indicator, depending on context. When

dots 5 and 6 are raised, the code is a letter indicator that counterbalances a

number indicator.

And finally (if you've been wondering how Braille encodes capital letters)

we have dot 6—the capital indicator. This signals that the letter that follows

is uppercase. For example, we can write the name of the original creator of

this system as

This is a capital indicator, the letter l, the contraction ou, the letters i and s,

a space, another capital indicator, and the letters b, r, a, i, l, l, and e. (In

actual use, the name might be abbreviated even more by eliminating the last

two letters, which aren't pronounced.)

In summary, we've seen how six binary elements (the dots) yield 64

possible codes and no more. It just so happens that many of these 64 codes

perform double duty depending on their context. Of particular interest is the

number indicator and the letter indicator that undoes the number indicator.

These codes alter the meaning of the codes that follow them—from letters

to numbers and from numbers back to letters. Codes such as these are often

called precedence, or shift, codes. They alter the meaning of all subsequent

codes until the shift is undone.

The capital indicator means that the following letter (and only the following

letter) should be uppercase rather than lowercase. A code such as this is

known as an escape code. Escape codes let you "escape" from the

humdrum, routine interpretation of a sequence of codes and move to a new

interpretation. As we'll see in later chapters, shift codes and escape codes

are common when written languages are represented by binary codes.

Chapter 4. Anatomy of a Flashlight
Flashlights are useful for numerous tasks, of which reading under the

covers and sending coded messages are only the two most obvious. The

common household flashlight can also take center stage in an educational

show-and-tell of the magical stuff known as electricity.

Electricity is an amazing phenomenon, managing to be pervasively useful

while remaining largely mysterious, even to people who pretend to know

how it works. But I'm afraid we must wrestle with electricity anyway.

Fortunately, we need to understand only a few basic concepts to

comprehend how it's used inside computers.

The flashlight is certainly one of the simpler electrical appliances found in

most homes. Disassemble a typical flashlight, and you'll find it consists of a

couple of batteries, a bulb, a switch, some metal pieces, and a plastic case to

hold everything together.

You can make your own no-frills flashlight by disposing of everything

except the batteries and the lightbulb. You'll also need some short pieces of

insulated wire (with the insulation stripped from the ends) and enough

hands to hold everything together.

Notice the two loose ends of the wires at the right of the diagram. That's our

switch. Assuming that the batteries are good and the bulb isn't burned out,

touching these loose ends together will turn on the light.

What we've constructed here is a simple electrical circuit, and the first thing

to notice is that a circuit is a circle. The lightbulb will be lit only if the path

from the batteries to the wire to the bulb to the switch and back to the

batteries is continuous. Any break in this circuit will cause the bulb to go

out. The purpose of the switch is to control this process.

The circular nature of the electrical circuit suggests that something is

moving around the circuit, perhaps like water flowing through pipes. The

"water and pipes" analogy is quite common in explanations of how

electricity works, but eventually it breaks down, as all analogies must.

Electricity is like nothing else in this universe, and we must confront it on

its own terms.

The prevailing scientific wisdom regarding the workings of electricity is

called the electron theory, which says that electricity derives from the

movement of electrons.

As we know, all matter—the stuff that we can see and feel (usually)—is

made up of extremely small things called atoms. Every atom is composed

of three types of particles; these are called neutrons, protons, and electrons.

You can picture an atom as a little solar system, with the neutrons and

protons bound into a nucleus and the electrons spinning around the nucleus

like planets around a sun:

I should mention that this isn't exactly what you'd see if you were able to

get a microscope powerful enough to see actual atoms, but it works as a

convenient model.

The atom shown on the preceding page has 3 electrons, 3 protons, and 4

neutrons, which means that it's an atom of lithium. Lithium is one of 112

known elements, each of which has a particular atomic number ranging

from 1 to 112. The atomic number of an element indicates the number of

protons in the nucleus of each of the element's atoms and also (usually) the

number of electrons in each atom. The atomic number of lithium is 3.

Atoms can chemically combine with other atoms to form molecules.

Molecules usually have very different properties from the atoms they

comprise. For example, water is composed of molecules that consist of two

atoms of hydrogen and one atom of oxygen (hence, H2O). Obviously water

is appreciably different from either hydrogen or oxygen. Likewise, the

molecules of table salt consist of an atom of sodium and an atom of

chlorine, neither of which would be particularly appetizing on French fries.

Hydrogen, oxygen, sodium, and chlorine are all elements. Water and salt

are called compounds. Salt water, however, is a mixture rather than a

compound because the water and the salt maintain their own properties.

The number of electrons in an atom is usually the same as the number of

protons. But in certain circumstances, electrons can be dislodged from

atoms. That's how electricity happens.

The words electron and electricity both derive from the ancient Greek word

ηλεκτρον (elektron), which you might expect means something like "little

tiny invisible thing." But no—ηλεκτρον is actually the Greek word for

"amber," which is the glasslike hardened sap of trees. The reason for this

unlikely derivation is that the ancient Greeks experimented with rubbing

amber with wool, which produces something we now call static electricity.

Rubbing wool on amber causes the wool to pick up electrons from the

amber. The wool winds up with more electrons than protons, and the amber

ends up with fewer electrons than protons. In more modern experiments,

carpeting picks up electrons from the soles of our shoes.

Protons and electrons have a characteristic called charge. Protons are said to

have a positive (+) charge and electrons are said to have a negative (–)

charge. Neutrons are neutral and have no charge. But even though we use

plus and minus signs to denote protons and electrons, the symbols don't

really mean plus and minus in the arithmetical sense or that protons have

something that electrons don't. The use of these symbols just means that

protons and electrons are opposite in some way. This opposite characteristic

manifests itself in how protons and electrons relate to each other.

Protons and electrons are happiest and most stable when they exist together

in equal numbers. An imbalance of protons and electrons will attempt to

correct itself. When the carpet picks up electrons from your shoes,

eventually everything gets evened out when you touch something and feel a

spark. That spark of static electricity is the movement of electrons by a

rather circuitous route from the carpet through your body back to your

shoes.

Another way to describe the relationship between protons and electrons is

to note that opposite charges attract and like charges repel. But this isn't

what we might assume by looking at the diagram of the atom. It looks like

the protons huddled together in the nucleus are attracting each other. The

protons are held together by something stronger than the repulsion of like

charges, and that something is called the strong force. Messing around with

the strong force involves splitting the nucleus, which produces nuclear

energy. In this chapter, we're merely fooling around with the electrons to get

electricity.

Static electricity isn't limited to the little sparks produced by fingers

touching doorknobs. During storms, the bottoms of clouds accumulate

electrons while the tops of clouds lose electrons; eventually, the imbalance

is evened out with a stroke of lightning. Lightning is a lot of electrons

moving very quickly from one spot to another.

The electricity in the flashlight circuit is obviously much better mannered

than a spark or a lightning bolt. The light burns steadily and continuously

because the electrons aren't just jumping from one place to another. As one

atom in the circuit loses an electron to another atom nearby, it grabs another

electron from an adjacent atom, which grabs an electron from another

adjacent atom, and so on. The electricity in the circuit is the passage of

electrons from atom to atom.

This doesn't happen all by itself. We can't just wire up any old bunch of

stuff and expect some electricity to happen. We need something to

precipitate the movement of electrons around the circuit. Looking back at

our diagram of the no-frills flashlight, we can safely assume that the thing

that begins the movement of electricity is not the wires and not the

lightbulb, so it's probably the batteries.

Almost everybody knows a few things about the types of batteries used in

flashlights:

They're tubular in shape and come in different sizes, such as D, C, A,

AA, and AAA.

Regardless of the battery's size, they're all labeled "1.5 volts."

One end of the battery is flat and is labeled with a minus sign (–); the

other end has a little protrusion and is labeled with a plus sign (+).

If you want your appliance to work right, it's a good idea to install the

batteries correctly with the plus signs facing the right way.

Batteries wear out eventually. Sometimes they can be recharged,

sometimes not.

And finally, we suspect that in some weird way, batteries produce

electricity.

In all batteries, chemical reactions take place, which means that some

molecules break down into other molecules, or molecules combine to form

new molecules. The chemicals in batteries are chosen so that the reactions

between them generate spare electrons on the side of the battery marked

with a minus sign (called the negative terminal, or anode) and demand extra

electrons on the other side of the battery (the positive terminal, or cathode).

In this way, chemical energy is converted to electrical energy.

The chemical reaction can't proceed unless there's some way that the extra

electrons can be taken away from the negative terminal of the battery and

delivered back to the positive terminal. So if the battery isn't connected to

anything, nothing much happens. (Actually the chemical reactions still take

place, but very slowly.) The reactions take place only if an electrical circuit

is present to take electrons away from the negative side and supply

electrons to the positive side. The electrons travel around this circuit in a

counterclockwise direction:

In this book, the color red is used to indicate that electricity is flowing

through the wires.

Electrons from the chemicals in the batteries might not so freely mingle

with the electrons in the copper wires if not for a simple fact: All electrons,

wherever they're found, are identical. There's nothing that distinguishes a

copper electron from any other electron.

Notice that both batteries are facing the same direction. The positive end of

the bottom battery takes electrons from the negative end of the top battery.

It's as if the two batteries have been combined into one bigger battery with a

positive terminal at one end and a negative terminal at the other end. The

combined battery is 3 volts rather than 1.5 volts.

If we turn one of the batteries upside down, the circuit won't work:

The two positive ends of the battery need electrons for the chemical

reactions, but there's no way electrons can get to them because they're

attached to each other. If the two positive ends of the battery are connected,

the two negative ends should be also:

This works. The batteries are said to be connected in parallel rather than in
series as shown earlier. The combined voltage is 1.5 volts, which is the

same as the voltage of each of the batteries. The light will probably still

glow, but not as brightly as with two batteries in series. But the batteries

will last twice as long.

We normally like to think of a battery as providing electricity to a circuit.

But we've seen that we can also think of a circuit as providing a way for a

battery's chemical reactions to take place. The circuit takes electrons away

from the negative end of the battery and delivers them to the positive end of

the battery. The reactions in the battery proceed until all the chemicals are

exhausted, at which time you throw away the battery or recharge it.

From the negative end of the battery to the positive end of the battery, the

electrons flow through the wires and the lightbulb. But why do we need the

wires? Can't the electricity just flow through the air? Well, yes and no. Yes,

electricity can flow through air (particularly wet air), or else we wouldn't

see lightning. But electricity doesn't flow through air very readily.

Some substances are significantly better than others for carrying electricity.

The ability of an element to carry electricity is related to its subatomic

structure. Electrons orbit the nucleus in various levels, called shells. An

atom that has just one electron in its outer shell can readily give up that

electron, which is what's necessary to carry electricity. These substances are

conducive to carrying electricity and thus are said to be conductors. The

best conductors are copper, silver, and gold. It's no coincidence that these

three elements are found in the same column of the periodic table. Copper

is the most common substance for making wires.

The opposite of conductance is resistance. Some substances are more

resistant to the passage of electricity than others, and these are known as

resistors. If a substance has a very high resistance—meaning that it doesn't

conduct electricity much at all—it's known as an insulator. Rubber and

plastic are good insulators, which is why these substances are often used to

coat wires. Cloth and wood are also good insulators as is dry air. Just about

anything will conduct electricity, however, if the voltage is high enough.

Copper has a very low resistance, but it still has some resistance. The longer

a wire, the higher the resistance it has. If you tried wiring a flashlight with

wires that were miles long, the resistance in the wires would be so high that

the flashlight wouldn't work.

The thicker a wire, the lower the resistance it has. This may be somewhat

counterintuitive. You might imagine that a thick wire requires much more

electricity to "fill it up." But actually the thickness of the wire makes

available many more electrons to move through the wire.

I've mentioned voltage but haven't defined it. What does it mean when a

battery has 1.5 volts? Actually, voltage—named after Count Alessandro

Volta (1745–1827), who invented the first battery in 1800—is one of the

more difficult concepts of elementary electricity. Voltage refers to a

potential for doing work. Voltage exists whether or not something is hooked

up to a battery.

Consider a brick. Sitting on the floor, the brick has very little potential.

Held in your hand four feet above the floor, the brick has more potential.

All you need do to realize this potential is drop the brick. Held in your hand

at the top of a tall building, the brick has much more potential. In all three

cases, you're holding the brick and it's not doing anything, but the potential
is different.

A much easier concept in electricity is the notion of current. Current is

related to the number of electrons actually zipping around the circuit.

Current is measured in amperes, named after André Marie Ampère (1775–

1836), but everybody calls them amps, as in "a 10-amp fuse." To get one

amp of current, you need 6,240,000,000,000,000,000 electrons flowing past

a particular point per second.

The water-and-pipes analogy helps out here: Current is similar to the

amount of water flowing through a pipe. Voltage is similar to the water

pressure. Resistance is similar to the width of a pipe—the smaller the pipe,

the larger the resistance. So the more water pressure you have, the more

water that flows through the pipe. The smaller the pipe, the less water that

flows through it. The amount of water flowing through a pipe (the current)

is directly proportional to the water pressure (the voltage) and inversely

proportional to the skinniness of the pipe (the resistance).

In electricity, you can calculate how much current is flowing through a

circuit if you know the voltage and the resistance. Resistance—the tendency

of a substance to impede the flow of electrons—is measured in ohms,

named after Georg Simon Ohm (1789–1854), who also proposed the

famous Ohm's Law. The law states

I = E / R

where I is traditionally used to represent current in amperes, E is used to

represent voltage (it stands for electromotive force), and R is resistance.

For example, let's look at a battery that's just sitting around not connected to

anything:

The voltage E is 1.5. That's a potential for doing work. But because the

positive and negative terminals are connected solely by air, the resistance

(the symbol R) is very, very, very high, which means the current (I) equals

1.5 volts divided by a large number. This means that the current is just

about zero.

Now let's connect the positive and negative terminals with a short piece of

copper wire (and from here on, the insulation on the wires won't be shown):

This is known as a short circuit. The voltage is still 1.5, but the resistance is

now very, very low. The current is 1.5 volts divided by a very small number.

This means that the current will be very, very high. Lots and lots of

electrons will be flowing through the wire. In reality, the actual current will

be limited by the physical size of the battery. The battery will probably not

be able to deliver such a high current, and the voltage will drop below 1.5

volts. If the battery is big enough, the wire will get hot because the

electrical energy is being converted to heat. If the wire gets very hot, it will

actually glow and might even melt.

Most circuits are somewhere between these two extremes. We can

symbolize them like so:

The squiggly line is recognizable to electrical engineers as the symbol for a

resistor. Here it means that the circuit has a resistance that is neither very

low nor very high.

If a wire has a low resistance, it can get hot and start to glow. This is how

an incandescent lightbulb works. The lightbulb is commonly credited to

America's most famous inventor, Thomas Alva Edison (1847–1931), but

the concepts were well known at the time he patented the lightbulb (1879)

and many other inventors also worked on the problem.

Inside a lightbulb is a thin wire called a filament, which is commonly made

of tungsten. One end of the filament is connected to the tip at the bottom of

the base; the other end of the filament is connected to the side of the metal

base, separated from the tip by an insulator. The resistance of the wire

causes it to heat up. In open air, the tungsten would get hot enough to burn,

but in the vacuum of the lightbulb, the tungsten glows and gives off light.

Most common flashlights have two batteries connected in series. The total

voltage is 3.0 volts. A lightbulb of the type commonly used in a flashlight

has a resistance of about 4 ohms. Thus, the current is 3 volts divided by 4

ohms, or 0.75 ampere, which can also be expressed as 750 milliamperes.

This means that 4,680,000,000,000,000,000 electrons are flowing through

the lightbulb every second.

(A brief reality check: If you actually try to measure the resistance of a

flashlight lightbulb with an ohmmeter, you'll get a reading much lower than

4 ohms. The resistance of tungsten is dependent upon its temperature, and

the resistance gets higher as the bulb heats up.)

As you may know, lightbulbs you buy for your home are labeled with a

certain wattage. The watt is named after James Watt (1736–1819), who is

best known for his work on the steam engine. The watt is a measurement of

power (P) and can be calculated as

P = E x I

The 3 volts and 0.75 amp of our flashlight indicate that we're dealing with a

2.25-watt lightbulb.

Your home might be lit by 100-watt lightbulbs. These are designed for the

120 volts of your home. Thus, the current that flows through them is equal

to 100 watts divided by 120 volts, or about 0.83 ampere. Hence, the

resistance of a 100-watt lightbulb is 120 volts divided by 0.83 ampere, or

144 ohms.

So we've seemingly analyzed everything about the flashlight—the batteries,

the wires, and the lightbulb. But we've forgotten the most important part!

Yes, the switch. The switch controls whether electricity is flowing in the

circuit or not. When a switch allows electricity to flow, it is said to be on, or

closed. An off, or open, switch doesn't allow electricity to flow. (The way

we use the words closed and open for switches is opposite to the way we

use them for a door. A closed door prevents anything from passing through

it; a closed switch allows electricity to flow.)

Either the switched is closed or it's open. Either current flows or it doesn't.

Either the lightbulb lights up or it doesn't. Like the binary codes invented by

Morse and Braille, this simple flashlight is either on or off. There's no in-

between. This similarity between binary codes and simple electrical circuits

is going to prove very useful in the chapters ahead.

Chapter 5. Seeing Around Corners
You're twelve years old. One horrible day your best friend's family moves
to another town. You speak to your friend on the telephone now and then,
but telephone conversations just aren't the same as those late-night sessions
with the flashlights blinking out Morse code. Your second-best friend, who
lives in the house next door to yours, eventually becomes your new best
friend. It's time to teach your new best friend some Morse code and get the
late-night flashlights blinking again.

The problem is, your new best friend's bedroom window doesn't face your
bedroom window. The houses are side by side, but the bedroom windows
face the same direction. Unless you figure out a way to rig up a few mirrors
outside, the flashlights are now inadequate for after-dark communication.

Or are they?

Maybe you have learned something about electricity by this time, so you
decide to make your own flashlights out of batteries, lightbulbs, switches,
and wires. In the first experiment, you wire up the batteries and switch in
your bedroom. Two wires go out your window, across a fence, and into your
friend's bedroom, where they're connected to a lightbulb:

Although I'm showing only one battery, you might actually be using two. In
this and future diagrams, this will be an off (or open) switch:

and this will be the switch when it's on (or closed):

The flashlight in this chapter works the same way as the one illustrated in
the previous chapter, although the wires connecting the components for this
chapter's flashlight are a bit longer. When you close the switch at your end,
the light goes on at your friend's end:

Now you can send messages using Morse code.

Once you have one flashlight working, you can wire another long-distance
flashlight so that your friend can send messages to you:

Congratulations! You have just rigged up a bidirectional telegraph system.
You'll notice that these are two identical circuits that are entirely
independent of and unconnected to each other. In theory, you can be
sending a message to your friend while your friend is sending a message to
you (although it might be hard for your brain to read and send messages at
the same time).

You also might be clever enough to discover that you can reduce your wire
requirements by 25 percent by wiring the configuration this way:

Notice that the negative terminals of the two batteries are now connected.
The two circular circuits (battery to switch to bulb to battery) still operate
independently, even though they're now joined like Siamese twins.

This connection is called a common. In this circuit the common extends
from the point where the leftmost lightbulb and battery are connected to the
point where the rightmost lightbulb and battery are connected. These
connections are indicated by dots.

Let's take a closer look to assure ourselves that nothing funny is going on.
First, when you depress the switch on your side, the bulb in your friend's
house lights up. The red wires show the flow of electricity in the circuit:

No electricity flows in the other part of the circuit because there's no place
for the electrons to go to complete a circuit.

When you're not sending but your friend is sending, the switch in your
friend's house controls the lightbulb in your house. Once again, the red
wires show how electricity flows in the circuit:

When you and your friend both try to send at the same time, sometimes
both switches are open, sometimes one switch is closed but the other is
open, and sometimes both switches are depressed. In that case, the flow of
electricity in the circuit looks like this:

No current flows through the common part of the circuit.

By using a common to join two separate circuits into one circuit, we've
reduced the electrical connection between the two houses from four wires to
three wires and reduced our wire expenses by 25 percent.

If we had to string the wires for a very long distance, we might be tempted
to reduce our expenses even more by eliminating another wire.
Unfortunately, this isn't feasible with 1.5-volt D cells and small lightbulbs.
But if we were dealing with 100-volt batteries and much larger lightbulbs, it
could certainly be done.

Here's the trick: Once you have established a common part of the circuit,
you don't have to use wire for it. You can replace the wire with something
else. And what you can replace it with is a giant sphere approximately 7900

miles in diameter made up of metal, rock, water, and organic material, most
of which is dead. The giant sphere is known to us as Earth.

When I described good conductors in the last chapter, I mentioned silver,
copper, and gold, but not gravel and mulch. In truth, the earth isn't such a
hot conductor, although some kinds of earth (damp soil, for example) are
better than others (such as dry sand). But one thing we learned about
conductors is this: The larger the better. A very thick wire conducts much
better than a very thin wire. That's where the earth excels. It's really, really,
really big.

To use the earth as a conductor, you can't merely stick a little wire into the
ground next to the tomato plants. You have to use something that maintains
a substantial contact with the earth, and by that I mean a conductor with a
large surface area. One good solution is a copper pole at least 8 feet long
and ½ inch in diameter. That provides 150 square inches of contact with the
earth. You can bury the pole into the ground with a sledgehammer and then
connect a wire to it. Or, if the cold-water pipes in your home are made of
copper and originate in the ground outside the house, you can connect a
wire to the pipe.

An electrical contact with the earth is called an earth in Great Britain and a
ground in America. A bit of confusion surrounds the word ground because
it's also often used to refer to a part of a circuit we've been calling the
common. In this chapter, and until I indicate otherwise, a ground is a
physical connection with the earth.

When people draw electrical circuits, they use this symbol to represent a
ground:

Electricians use this symbol because they don't like to take the time to draw
an 8-foot copper pole buried in the ground.

Let's see how this works. We began this chapter by looking at a one-way
configuration like this:

If you were using high-voltage batteries and lightbulbs, you would need
only one wire between your house and your friend's house because you
could use the earth as one of the connectors:

When you turn the switch on, electricity flows like this:

The electrons come out of the earth at your friend's house, go through the
lightbulb and wire, the switch at your house, and then go into the positive
terminal of the battery. Electrons from the negative terminal of the battery
go into the earth.

You might also want to visualize electrons leaping from the 8-foot copper
pole buried in the backyard of your house into the earth, then scurrying
through the earth to get to the 8-foot copper pole buried in the backyard of
your friend's house.

But if you consider that the earth is performing this same function for many
thousands of electrical circuits around the world, you might ask: How do
the electrons know where to go? Well, obviously they don't. A different
image of the earth seems much more appropriate.

Yes, the earth is a massive conductor of electricity, but it can also be viewed
as both a source of and a repository for electrons. The earth is to electrons
as an ocean is to drops of water. The earth is a virtually limitless source of
electrons and also a giant sink for electrons.

The earth, however, does have some resistance. That's why we can't use the
earth ground to reduce our wiring needs if we're playing around with 1.5-
volt D cells and flashlight bulbs. The earth simply has too much resistance
for low-voltage batteries.

You'll notice that the previous two diagrams include a battery with the
negative terminal connected to the ground:

I'm not going to draw this battery connected to the ground anymore.
Instead, I'm going to use the capital letter V, which stands for voltage. The
one-way lightbulb telegraph now looks like this:

The V stands for voltage, but it could also stand for vacuum. Think of the V
as an electron vacuum and think of the ground as an ocean of electrons. The

electron vacuum pulls the electrons from the earth through the circuit, doing
work along the way (such as lighting a lightbulb).

The ground is sometimes also known as the point of zero potential. This
means that no voltage is present. A voltage—as I explained earlier—is a
potential for doing work, much as a brick suspended in the air is a potential
source of energy. Zero potential is like a brick sitting on the ground—there's
no place left for it to fall.

In Chapter 4, one of the first things we noticed was that circuits were
circles. Our new circuit doesn't look like a circle at all. It still is one,
however. You could replace the V with a battery with the negative terminal
connected to ground, and then you could draw a wire connecting all the
places you see a ground symbol. You'd end up with the same diagram that
we started with in this chapter.

So with the help of a couple of copper poles (or cold-water pipes), we can
construct a two-way Morse code system with just two wires crossing the
fence between your house and your friend's:

This circuit is functionally the same as the configuration shown previously,
in which three wires crossed the fence between the houses.

In this chapter, we've taken an important step in the evolution of
communications. Previously we had been able to communicate with Morse
code but only in a straight line of sight and only as far as the beam from a
flash-light would travel.

By using wires, not only have we constructed a system to communicate
around corners beyond the line of sight, but we've freed ourselves of the

limitation of distance. We can communicate over hundreds and thousands
of miles just by stringing longer and longer wires.

Well, not exactly. Although copper is a very good conductor of electricity,
it's not perfect. The longer the wires, the more resistance they have. The
more resistance, the less current that flows. The less current, the dimmer the
lightbulbs.

So how long exactly can we make the wires? That depends. Let's suppose
you're using the original four-wire, bidirectional hookup without grounds
and commons, and you're using flashlight batteries and lightbulbs. To keep
your costs down, you may have initially purchased some 20-gauge speaker
wire from Radio Shack at $9.99 per 100 feet. Speaker wire is normally used
to connect your speakers to your stereo system. It has two conductors, so it's
also a good choice for our telegraph system. If your bedroom and your
friend's bedroom are less than 50 feet apart, this one roll of wire is all you
need.

The thickness of wire is measured in American Wire Gauge, or AWG. The
smaller the AWG number, the thicker the wire and also the less resistance it
has. The 20-gauge speaker wire you bought has a diameter of about 0.032
inches and a resistance of about 10 ohms per 1000 feet, or 1 ohm for the
100-foot round-trip distance between the bedrooms.

That's not bad at all, but what if we strung the wire out for a mile? The total
resistance of the wire would be more than 100 ohms. Recall from the last
chapter that our lightbulb was only 4 ohms. From Ohm's Law, we can easily
calculate that the current through the circuit will no longer be 0.75 amp (3
volts divided by 4 ohms) as before, but will now be less than 0.03 amp (3
volts divided by more than 100 ohms). Almost certainly, that won't be
enough current to light the bulb.

Using thicker wire is a good solution, but that can be expensive. Ten-gauge
wire (which Radio Shack sells as Automotive Hookup Wire at $11.99 for
35 feet, and you'd need twice as much because it has only one conductor
rather than two) is about 0.1 inch thick but has a resistance of only 1 ohm
per 1000 feet, or 5 ohms per mile.

Another solution is to increase the voltage and use lightbulbs with a much
higher resistance. For example, a 100-watt lightbulb that lights a room in
your house is designed to be used with 120 volts and has a resistance of

about 144 ohms. The resistance of the wires will then affect the overall
circuitry much less.

These are problems faced 150 years ago by the people who strung up the
first telegraph systems across America and Europe. Regardless of the
thickness of the wires and the high levels of voltage, telegraph wires simply
couldn't be continued indefinitely. At most, the limit for a working system
according to this scheme was a couple hundred miles. That's nowhere close
to spanning the thousands of miles between New York and California.

The solution to this problem—not for flashlights but for the clicking and
clacking telegraphs of yesteryear—turns out to be a simple and humble
device, but one from which entire computers can be built.

Chapter 6. Telegraphs and Relays
Samuel Finley Breese Morse was born in 1791 in Charleston,

Massachusetts, the town where the Battle of Bunker Hill was fought and

which is now the northeast part of Boston. In the year of Morse's birth, the

United States Constitution had been ratified just two years before and

George Washington was serving his first term as president. Catherine the

Great ruled Russia. Louis XVI and Marie Antoinette would lose their heads

two years later in the French Revolution. And in 1791, Mozart completed

The Magic Flute, his last opera, and died later that year at the age of 35.

Morse was educated at Yale and studied art in London. He became a

successful portrait artist. His painting General Lafayette (1825) hangs in

New York's City Hall. In 1836, he ran for mayor of New York City on an

independent ticket and received 5.7 percent of the vote. He was also an

early photography buff. Morse learned how to make daguerreotype

photographs from Louis Daguerre himself and made some of the first

daguerreotypes in America. In 1840, he taught the process to the 17-year-

old Mathew Brady, who with his colleagues would be responsible for

creating the most memorable photographs of the Civil War, Abraham

Lincoln, and Samuel Morse himself.

But these are just footnotes to an eclectic career. Samuel F. B. Morse is best

known these days for his invention of the telegraph and the code that bears

his name.

The instantaneous worldwide communication we've become accustomed to

is a relatively recent development. In the early 1800s, you could

communicate instantly and you could communicate over long distances, but

you couldn't do both at the same time. Instantaneous communication was

limited to as far as your voice could carry (no amplification available) or as

far as the eye could see (aided perhaps by a telescope). Communication

over longer distances by letter took time and involved horses, trains, or

ships.

For decades prior to Morse's invention, many attempts were made to speed

long-distance communication. Technically simple methods employed a

relay system of men standing on hills waving flags in semaphore codes.

Technically more complex solutions used large structures with movable

arms that did basically the same thing as men waving flags.

The idea of the telegraph (literally meaning "far writing") was certainly in

the air in the early 1800s, and other inventors had taken a stab at it before

Samuel Morse began experimenting in 1832. In principle, the idea behind

an electrical telegraph was simple: You do something at one end of a wire

that causes something to happen at the other end of the wire. This is exactly

what we did in the last chapter when we made a long-distance flashlight.

However, Morse couldn't use a lightbulb as his signaling device because a

practical one wouldn't be invented until 1879. Instead, Morse relied upon

the phenomenon of electromagnetism.

If you take an iron bar, wrap it with a couple hundred turns of thin wire, and

then run a current through the wire, the iron bar becomes a magnet. It then

attracts other pieces of iron and steel. (There's enough thin wire in the

electromagnet to create a resistance great enough to prevent the

electromagnet from constituting a short circuit.) Remove the current, and

the iron bar loses its magnetism:

The electromagnet is the foundation of the telegraph. Turning the switch on

and off at one end causes the electromagnet to do something at the other

end.

Morse's first telegraphs were actually more complex than the ones that later

evolved. Morse felt that a telegraph system should actually write something

on paper, or as computer users would later phrase it, "produce a hard copy."

This wouldn't necessarily be words, of course, because that would be too

complex. But something should be written on paper, whether it be squiggles

or dots and dashes. Notice that Morse was stuck in a paradigm that required

paper and reading, much like Valentin Haüy's notion that books for the

blind should use raised letters of the alphabet.

Although Samuel Morse notified the patent office in 1836 that he had

invented a successful telegraph, it wasn't until 1843 that he was able to

persuade Congress to fund a public demonstration of the device. The

historic day was May 24, 1844, when a telegraph line rigged between

Washington, D.C., and Baltimore, Maryland, successfully carried the

biblical message: "What hath God wrought!"

The traditional telegraph "key" used for sending messages looked

something like this:

Despite the fancy appearance, this was just a switch designed for maximum

speed. The most comfortable way to use the key for long periods of time

was to hold the handle between thumb, forefinger, and middle finger, and

tap it up and down. Holding the key down for a short period of time

produced a Morse code dot. Holding it down longer produced a Morse code

dash.

At the other end of the wire was a receiver that was basically an

electromagnet pulling a metal lever. Originally, the electromagnet

controlled a pen. While a mechanism using a wound-up spring slowly

pulled a roll of paper through the gadget, an attached pen bounced up and

down and drew dots and dashes on the paper. A person who could read

Morse code would then transcribe the dots and dashes into letters and

words.

Of course, we humans are a lazy species, and telegraph operators soon

discovered that they could transcribe the code simply by listening to the pen

bounce up and down. The pen mechanism was eventually eliminated in

favor of the traditional telegraph "sounder," which looked something like

this:

When the telegraph key was pressed, the electromagnet in the sounder

pulled the movable bar down and it made a "click" noise. When the key was

released, the bar sprang back to its normal position, making a "clack" noise.

A fast "click-clack" was a dot; a slower "click…clack" was a dash.

The key, the sounder, a battery, and some wires can be connected just like

the lightbulb telegraph in the preceding chapter:

As we discovered, you don't need two wires connecting the two telegraph

stations. One wire will suffice if the earth provides the other half of the

circuit.

As we did in the previous chapter, we can replace the battery connected to

the ground with a capital V. So the complete one-way setup looks

something like this:

Two-way communication simply requires another key and sender. This is

similar to what we did in the preceding chapter.

The invention of the telegraph truly marks the beginning of modern

communication. For the first time, people were able to communicate further

than the eye could see or the ear could hear and faster than a horse could

gallop. That this invention used a binary code is all the more intriguing. In

later forms of electrical and wireless communication, including the

telephone, radio, and television, binary codes were abandoned, only to later

make an appearance in computers, compact discs, digital videodiscs, digital

satellite television broadcasting, and high-definition TV.

Morse's telegraph triumphed over other designs in part because it was

tolerant of bad line conditions. If you strung a wire between a key and a

sounder, it usually worked. Other telegraph systems were not quite as

forgiving. But as I mentioned in the last chapter, a big problem with the

telegraph lay in the resistance of long lengths of wire. Although some

telegraph lines used up to 300 volts and could work over a 300-mile length,

wires couldn't be extended indefinitely.

One obvious solution is to have a relay system. Every couple hundred miles

or so, a person equipped with a sounder and a key could receive a message

and resend it.

Now imagine that you have been hired by the telegraph company to be part

of this relay system. They have put you out in the middle of nowhere

between New York and California in a little hut with a table and a chair. A

wire coming through the east window is connected to a sounder. Your

telegraph key is connected to a battery and wire going out the west window.

Your job is to receive messages originating in New York and to resend

them, eventually to reach California.

At first, you prefer to receive an entire message before resending it. You

write down the letters that correspond to the clicks of the sounder, and when

the message is finished, you start sending it using your key. Eventually you

get the knack of sending the message as you're hearing it without having to

write the whole thing down. This saves time.

One day while resending a message, you look at the bar on the sounder

bouncing up and down, and you look at your fingers bouncing the key up

and down. You look at the sounder again and you look at the key again, and

you realize that the sounder is bouncing up and down the same way the key

is bouncing up and down. So you go outside and pick up a little piece of

wood and you use the wood and some string to physically connect the

sounder and the key:

Now it works by itself, and you can take the rest of the afternoon off and go

fishing.

It's an interesting fantasy, but in reality Samuel Morse had understood the

concept of this device early on. The device we've invented is called a

repeater, or a relay. A relay is like a sounder in that an incoming current is

used to power an electromagnet that pulls down a metal lever. The lever,

however, is used as part of a switch connecting a battery to an outgoing

wire. In this way, a weak incoming current is "amplified" to make a

stronger outgoing current.

Drawn rather schematically, the relay looks like this:

When an incoming current triggers the electromagnet, the electromagnet

pulls down a flexible strip of metal that acts like a switch to turn on an

outgoing current:

So a telegraph key, a relay, and a sounder are connected more or less like

this:

The relay is a remarkable device. It's a switch, surely, but a switch that's

turned on and off not by human hands but by a current. You could do

amazing things with such devices. You could actually assemble much of a

computer with them.

Yes, this relay thing is much too sweet an invention to leave sitting around

the telegraphy museum. Let's grab one and stash it inside our jacket and

walk quickly past the guards. This relay will come in very handy. But

before we can use it, we're going to have to learn to count.

Chapter 7. Our Ten Digits
The idea that language is merely a code seems readily acceptable. Many of

us at least attempted to learn a foreign language in high school, so we're

willing to acknowledge that the animal we call a cat in English can also be a

gato, chat, Katze, KOIIIKa, or Kάττα.

Numbers, however, seem less culturally malleable. Regardless of the

language we speak and the way we pronounce the numbers, just about

everybody we're likely to come in contact with on this planet writes them

the same way:

Isn't mathematics called "the universal language" for a reason?

Numbers are certainly the most abstract codes we deal with on a regular

basis. When we see the number

we don't immediately need to relate it to anything. We might visualize 3

apples or 3 of something else, but we'd be just as comfortable learning from

context that the number refers to a child's birthday, a television channel, a

hockey score, or the number of cups of flour in a cake recipe. Because our

numbers are so abstract to begin with, it's more difficult for us to

understand that this number of apples

doesn't necessarily have to be denoted by the symbol

Much of this chapter and the next will be devoted to persuading ourselves

that this many apples

can also be indicated by writing

Let's first dispense with the idea that there's something inherently special

about the number ten. That most civilizations have based their number

systems around ten (or sometimes five) isn't surprising. From the very

beginning, people have used their fingers to count. Had our species

developed possessing eight or twelve fingers, our ways of counting would

be a little different. It's no coincidence that the word digit can refer to

fingers or toes as well as numbers or that the words five and fist have

similar roots.

So in that sense, using a base-ten, or decimal (from the Latin for ten),

number system is completely arbitrary. Yet we endow numbers based on ten

with an almost magical significance and give them special names. Ten years

is a decade; ten decades is a century; ten centuries is a millennium. A

thousand thousands is a million; a thousand millions is a billion. These

numbers are all powers of ten:

101 =10

102 =100

103 =1000 (thousand)

104 =10,000

105 =100,000

106 =1,000,000 (million)

107 =10,000,000

108 =100,000,000

109 =1,000,000,000 (billion)

Most historians believe that numbers were originally invented to count

things, such as people, possessions, and transactions in commerce. For

example, if someone owned four ducks, that might be recorded with

drawings of four ducks:

Eventually the person whose job it was to draw the ducks thought, "Why do

I have to draw four ducks? Why can't I draw one duck and indicate that

there are four of them with, I don't know, a scratch mark or something?"

And then there came the day when someone had 27 ducks, and the scratch

marks got ridiculous:

Someone said, "There's got to be a better way," and a number system was

born.

Of all the early number systems, only Roman numerals are still in common

use. You find them on the faces of clocks and watches, used for dates on

monuments and statues, for some page numbering in books, for some items

in an outline, and—most annoyingly—for the copyright notice in movies.

(The question "What year was this picture made?" can often be answered

only if one is quick enough to decipher MCMLIII as the tail end of the

credits goes by.)

Twenty-seven ducks in Roman numerals is

The concept here is easy enough: The X stands for 10 scratch marks and the

V stands for 5 scratch marks.

The symbols of Roman numerals that survive today are

The I is a one. This could be derived from a scratch mark or a single raised

finger. The V, which is probably a symbol for a hand, stands for five. Two

V's make an X, which stands for ten. The L is a fifty. The letter C comes

from the word centum, which is Latin for a hundred. D is five hundred.

Finally, M comes from the Latin word mille, or a thousand.

Although we might not agree, for a long time Roman numerals were

considered easy to add and subtract, and that's why they survived so long in

Europe for bookkeeping. Indeed, when adding two Roman numerals, you

simply combine all the symbols from both numbers and then simplify the

result using just a few rules: Five I's make a V, two V's make an X, five X's

make an L, and so forth.

But multiplying and dividing Roman numerals is difficult. Many other early

number systems (such as that of the ancient Greeks) are similarly in-

adequate for working with numbers in a sophisticated manner. While the

Greeks developed an extraordinary geometry still taught virtually

unchanged in high schools today, the ancient Greeks aren't known for their

algebra.

The number system we use today is known as the Hindu-Arabic or Indo-

Arabic. It's of Indian origin but was brought to Europe by Arab

mathematicians. Of particular renown is the Persian mathematician

Muhammed ibn-Musa al-Khwarizmi (from whose name we have derived

the word algorithm) who wrote a book on algebra around A.D. 825 that

used the Hindu system of counting. A Latin translation dates from A.D.

1120 and was influential in hastening the transition throughout Europe from

Roman numerals to our present Hindu-Arabic system.

The Hindu-Arabic number system was different from previous number

systems in three ways:

The Hindu-Arabic number system is said to be positional, which means

that a particular digit represents a different quantity depending on where

it is found in the number. Where digits appear in a number is just as

significant (actually, more significant) than what the digits actually are.

Both 100 and 1,000,000 have only a single 1 in them, yet we all know

that a million is much larger than a hundred.

Virtually all early number systems have something that the Hindu-

Arabic system does not have, and that's a special symbol for the number

ten. In our number system, there's no special symbol for ten.

On the other hand, virtually all of the early number systems are missing

something that the Hindu-Arabic system has, and which turns out to be

much more important than a symbol for ten. And that's the zero.

Yes, the zero. The lowly zero is without a doubt one of the most important

inventions in the history of numbers and mathematics. It supports positional

notation because it allows differentiation of 25 from 205 and 250. The zero

also eases many mathematical operations that are awkward in nonpositional

systems, particularly multiplication and division.

The whole structure of Hindu-Arabic numbers is revealed in the way we

pronounce them. Take 4825, for instance. We say "four thousand, eight

hundred, twenty-five." That means

four thousands

eight hundreds

two tens and

five.

Or we can write the components like this:

4825 = 4000 + 800 + 20 + 5

Or breaking it down even further, we can write the number this way:

4825 = 4 x 1000 +

8 x 100 +

2 x 10 +

5 x 1

Or, using powers of ten, the number can be rewritten like this:

4825 = 4 x 103 +

8 x 102 +

2 x 101 +

5 x 100

Remember that any number to the 0 power equals 1.

Each position in a multidigit number has a particular meaning, as shown in

the following diagram. The seven boxes shown here let us represent any

number from 0 through 9,999,999:

Each position corresponds to a power of ten. We don't need a special

symbol for ten because we set the 1 in a different position and we use the 0

as a placeholder.

What's also really nice is that fractional quantities shown as digits to the

right of a decimal point follow this same pattern. The number 42,705.684 is

4 x 10,000 +

2 x 1000 +

7 x 100 +

0 x 10 +

5 x 1 +

6 ÷ 10 +

8 ÷ 100 +

4 ÷ 1000

This number can also be written without any division, like this:

4 x 10,000 +

2 x 1000 +

7 x 100 +

0 x 10 +

5 x 1 +

6 x 0.1 +

8 x 0.01 +

4 x 0.001

Or, using powers of ten, the number is

4 x 104 +

2 x 103 +

7 x 102 +

0 x 101 +

5 x 100 +

6 x 10-1 +

8 x 10-2 +

4 x 10-3

Notice how the exponents go down to zero and then become negative

numbers.

We know that 3 plus 4 equals 7. Similarly, 30 plus 40 equals 70, 300 plus

400 equals 700, and 3000 plus 4000 equals 7000. This is the beauty of the

Hindu-Arabic system. When you add decimal numbers of any length, you

follow a procedure that breaks down the problem into steps. Each step

involves nothing more complicated than adding pairs of single-digit

numbers. That's why someone a long time ago forced you to memorize an

addition table:

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18

Find the two numbers you wish to add in the top row and the left column.

Follow down and across to get the sum. For example, 4 plus 6 equals 10.

Similarly, when you need to multiply two decimal numbers, you follow a

somewhat more complicated procedure but still one that breaks down the

problem so that you need do nothing more complex than adding or

multiplying single-digit decimal numbers. Your early schooling probably

also entailed memorizing a multiplication table:

x 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 32 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

What's best about the positional system of notation isn't how well it works,

but how well it works for counting systems not based on ten. Our number

system isn't necessarily appropriate for everyone. One big problem with our

base-ten system of numbers is that it doesn't have any relevance for cartoon

characters. Most cartoon characters have only four fingers on each hand (or

paw), so they prefer a number system that's based on eight. Interestingly

enough, much of what we know about decimal numbering can be applied to

a numbering system more appropriate for our friends in cartoons.

Chapter 8. Alternatives to Ten
Ten is an exceptionally important number to us humans. Ten is the number

of fingers and toes most of us have, and we certainly prefer to have all ten

of each. Because our fingers are convenient for counting, we humans have

adapted an entire number system that's based on the number 10.

As I mentioned in the previous chapter, the number system that we use is

called base ten, or decimal. The number system seems so natural to us that

it's difficult at first to conceive of alternatives. Indeed, when we see the

number 10 we can't help but think that this number refers to this many

ducks:

But the only reason that the number 10 refers to this many ducks is that this

many ducks is the same as the number of fingers we have. If human beings

had a different number of fingers, the way we counted would be different,

and 10 would mean something else. That same number 10 could refer to

this many ducks:

or this many ducks:

or even this many ducks:

When we get to the point where 10 means just two ducks, we'll be ready to

examine how switches, wires, lightbulbs, and relays (and by extension,

computers) can represent numbers.

What if human beings had only four fingers on each hand, like cartoon

characters? We probably never would have thought to develop a number

system based on ten. Instead, we would have considered it normal and

natural and sensible and inevitable and incontrovertible and undeniably

proper to base our number system on eight. We wouldn't call this a decimal
number system. We'd call it an octal number system, or base eight.

If our number system were organized around eight rather than ten, we

wouldn't need the symbol that looks like this:

Show this symbol to any cartoon character and you'll get the response,

"What's that? What's it for?" And if you think about it a moment, we also

wouldn't need the symbol that looks like this:

In the decimal number system, there's no special symbol for ten, so in the

octal number system there's no special symbol for eight.

The way we count in the decimal number system is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

and then 10. The way we count in the octal number system is 0, 1, 2, 3, 4, 5,

6, 7, and then what? We've run out of symbols. The only thing that makes

sense is 10, and that's correct. In octal, the next number after 7 is 10. But

this 10 doesn't mean the number of fingers that humans have. In octal, 10

refers to the number of fingers that cartoon characters have.

We can continue counting on our four-toed feet:

When you're working with number systems other than decimal, you can

avoid some confusion if you pronounce a number like 10 as one zero.

Similarly, 13 is pronounced one three and 20 is pronounced two zero. To

really avoid confusion, we can say two zero base eight or two zero octal.

Even though we've run out of fingers and toes, we can still continue

counting in octal. It's basically the same as counting in decimal except that

we skip every number that has an 8 or a 9 in it. And of course, the actual

numbers refer to different quantities:

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22,

23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43,

44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64,

65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 100…

That last number is pronounced one zero zero. It's the number of fingers

that cartoon characters have, multiplied by itself.

When writing decimal and octal numbers, we can avoid confusion and

denote which is which by using a subscript to indicate the numbering

system. The subscript TEN means base ten or decimal, and EIGHT means

base eight or octal.

Thus, the number of dwarfs that Snow White meets is 7TEN or 7EIGHT

The number of fingers that cartoon characters have is 8TEN or 10EIGHT

The number of symphonies that Beethoven wrote is 9TEN or 11EIGHT

The number of fingers that humans have is 10TEN or 12EIGHT

The number of months in a year is 12TEN or 14EIGHT

The number of days in a fortnight is 14TEN or 16EIGHT

The "sweet" birthday celebration is 16TEN or 20EIGHT

The number of hours in a day is 24TEN or 30EIGHT

The number of letters in the Latin alphabet is 26TEN or 32EIGHT

The number of fluid ounces in a quart is 32TEN or 40EIGHT

The number of cards in a deck is 52TEN or 64EIGHT

The number of squares on a chessboard is 64TEN or 100EIGHT

The most famous address on Sunset Strip is 77TEN or 115EIGHT

The number of yards in an American football field is 100TEN or 144EIGHT

The number of starting women singles players at Wimbledon is 128TEN or 200EIGHT

The number of square miles in Memphis is 256TEN or 400EIGHT

Notice that there are a few nice round octal numbers in this list, such as

100EIGHT and 200EIGHT and 400EIGHT. By the term nice round number we

usually mean a number that has some zeros at the end. Two zeros on the end

of a decimal number means that the number is a multiple of 100TEN, which

is 10TEN times 10TEN. With octal numbers, two zeros on the end means that

the number is a multiple of 100EIGHT, which is 10EIGHT times 10EIGHT (or

8TEN times 8TEN, which is 64TEN).

You might also notice that these nice round octal numbers 100EIGHT and

200EIGHT and 400EIGHT have the decimal equivalents 64TEN, 128TEN, and

256TEN, all of which are powers of two. This makes sense. The number

400EIGHT (for example) is 4EIGHT times 10EIGHT times 10EIGHT, all of which

are powers of two. And anytime we multiply a power of two by a power of

two, we get another power of two.

The following table shows some powers of two with the decimal and octal

representations:

Power of Two Decimal Octal

20 1 1

21 2 2

22 4 4

23 8 10

24 16 20

25 32 40

26 64 100

27 128 200

28 256 400

29 512 1000

210 1024 2000

211 2048 4000

212 4096 10000

The nice round numbers in the rightmost column are a hint that number

systems other than decimal might help in working with binary codes.

The octal system isn't different from the decimal system in any structural

way. It just differs in details. For example, each position in an octal number

is a digit that's multiplied by a power of eight:

Thus, an octal number such as 3725EIGHT can be broken down like so:

3725EIGHT = 3000EIGHT + 700EIGHT + 20EIGHT + 5EIGHT

This can be rewritten in any of several ways. Here's one way, using the

powers of eight in their decimal forms:

3725EIGHT = 3 x 512TEN +

7 x 64TEN +

2 x 8TEN +

5 x 1

This is the same thing with the powers of eight shown in their octal form:

3725EIGHT = 3 x 1000EIGHT +

7 x 100EIGHT +

2 x 10EIGHT +

5 x 1

Here's another way of doing it:

3725EIGHT = 3 x 83 +

7 x 82 +

2 x 81 +

5 x 80

If you work out this calculation in decimal, you'll get 2005TEN. This is how

you can convert octal numbers to decimal numbers.

We can add and multiply octal numbers the same way we add and multiply

decimal numbers. The only real difference is that we use different tables for

adding and multiplying the individual digits. Here's the addition table for

octal numbers:

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 10

2 2 3 4 5 6 7 10 11

3 3 4 5 6 7 10 11 12

4 4 5 6 7 10 11 12 13

5 5 6 7 10 11 12 13 14

6 6 7 10 11 12 13 14 15

7 7 10 11 12 13 14 15 16

For example, 5EIGHT + 7EIGHT = 14EIGHT. So we can add two longer octal

numbers the same way we add decimal numbers:

To begin with the right column, 5 plus 3 equals 10. Put down the 0, carry

the 1. One plus 3 plus 4 equals 10. Put down the 0, carry the 1. One plus 1

plus 6 equals 10.

Similarly, 2 times 2 is still 4 in octal. But 3 times 3 isn't 9. How could it be?

Instead 3 times 3 is 11EIGHT, which is the same amount as 9TEN. You can

see the entire octal multiplication table at the top of the following page.

x 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 10 12 14 16

3 0 3 6 11 14 17 22 25

4 0 4 10 14 20 24 30 34

5 0 5 12 17 24 31 36 43

6 0 6 14 22 30 36 44 52

7 0 7 16 25 34 43 52 61

Here we have 4 x 6 equaling 30EIGHT, but 30EIGHT is the same as 24TEN,

which is what 4 x 6 equals in decimal.

Octal is as valid a number system as decimal. But let's go further. Now that

we've developed a numbering system for cartoon characters, let's develop

something that's appropriate for lobsters. Lobsters don't have fingers

exactly, but they do have pincers at the ends of their two front legs. An

appropriate number system for lobsters is the quaternary system, or base

four:

Counting in quaternary goes like this: 0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22,

23, 30, 31, 32, 33, 100, 101, 102, 103, 110, and so forth.

I'm not going to spend much time with the quaternary system because we'll

be moving on shortly to something much more important. But we can see

how each position in a quaternary number corresponds this time to a power

of four:

The quaternary number 31232 can be written like this:

31232FOUR = 3 x 256TEN +

1 x 64TEN +

2 x 16TEN +

3 x 4TEN +

2 x 1TEN

which is the same as

31232FOUR = 3 x 10000FOUR +

1 x 1000FOUR +

2 x 100FOUR +

3 x 10FOUR +

2 x 1FOUR

And it's also the same as

31232FOUR = 3 x 44 +

1 x 43 +

2 x 42 +

3 x 41 +

2 x 40

If we do the calculations in decimal, we'll find that 31232FOUR equals

878TEN.

Now we're going to make another leap, and this one is extreme. Suppose we

were dolphins and must resort to using our two flippers for counting. This is

the number system known as base two, or binary (from the Latin for two by
two). It seems likely that we'd have only two digits, and these two digits

would be 0 and 1.

Now, 0 and 1 isn't a whole lot to work with, and it takes some practice to

get accustomed to binary numbers. The big problem is that you run out of

digits very quickly. For example, here's how a dolphin counts using its

flippers:

Yes, in binary the next number after 1 is 10. This is startling, but it shouldn't

really be a surprise. No matter what number system we use, whenever we

run out of single digits, the first two-digit number is always 10. In binary

we count like this:

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100,

1101, 1110, 1111, 10000, 10001…

These numbers might look large, but they're really not. It's more accurate to

say that binary numbers get long very quickly rather than large:

The number of heads that humans have is 1TEN or 1TWO

The number of flippers that dolphins have is 2TEN or 10TWO

The number of teaspoons in a tablespoon is 3TEN or 11TWO

The number of sides to a square is 4TEN or 100TWO

The number of fingers on one human hand is 5TEN or 101TWO

The number of legs on an insect is 6TEN or 110TWO

The number of days in a week is 7TEN or 111TWO

The number of musicians in an octet is 8TEN or 1000TWO

The number of planets in our solar system (including Pluto) is 9TEN or 1001TWO

The number of gallons in a cowboy hat is 10TEN or 1010TWO

and so forth.

In a multidigit binary number, the positions of the digits correspond to

powers of two:

So anytime we have a binary number composed of a 1 followed by all

zeros, that number is a power of two. The power is the same as the number

of zeros in the binary number. Here's our expanded table of the powers of

two demonstrating this rule:

Power of Two Decimal Octal Quaternary Binary

20 1 1 1 1

21 2 2 2 10

22 4 4 10 100

23 8 10 20 1000

24 16 20 100 10000

25 32 40 200 100000

26 64 100 1000 1000000

27 128 200 2000 10000000

28 256 400 10000 100000000

29 512 1000 20000 1000000000

210 1024 2000 100000 10000000000

211 2048 4000 200000 100000000000

212 4096 10000 1000000 1000000000000

Let's say we have the binary number 101101011010. This can be written as

101101011010TWO = 1 x 2048TEN +

0 x 1024TEN +

1 x 512TEN +

1 x 256TEN +

0 x 128TEN +

1 x 64TEN +

0 x 32TEN +

1 x 16TEN +

1 x 8TEN +

0 x 4TEN +

1 x 2TEN +

0 x 1TEN

The same number can be written this way:

101101011010TWO = 1 x 211 +

0 x 210 +

1 x 29 +

1 x 28 +

0 x 27 +

1 x 26 +

0 x 25 +

1 x 24 +

1 x 23 +

0 x 22 +

1 x 21 +

0 x 20

If we just add up the parts in decimal, we get 2048 + 512 + 256 + 64 + 16 +

8 + 2, which is 2,906TEN.

To convert binary numbers to decimal more concisely, you might prefer a

method that uses a template I've prepared:

This template allows you to convert numbers up to eight binary digits in

length, but it could easily be extended. To use it, put up to eight binary

digits in the 8 boxes at the top, one digit to a box. Do the eight

multiplications and put the products in the 8 lower boxes. Add these eight

boxes for the final result. This example shows how to find the decimal

equivalent of 10010110:

Converting from decimal to binary isn't quite as straightforward, but here's

a template that let's you convert decimal numbers from 0 through 255 to

binary:

The conversion is actually trickier than it appears, so follow the directions

carefully. Put the entire decimal number (less than or equal to 255) in the

box in the upper left corner. Divide that number (the dividend) by the first

divisor (128), as indicated. Put the quotient in the box below (the box at the

lower left corner), and the remainder in the box to the right (the second box

on the top row). That first remainder is the dividend for the next calculation,

which uses a divisor of 64. Continue in the same manner through the

template.

Keep in mind that each quotient will be either 0 or 1. If the dividend is less

than the divisor, the quotient is 0 and the remainder is simply the dividend.

If the dividend is greater than or equal to the divisor, the quotient is 1 and

the remainder is the dividend minus the divisor. Here's how it's done with

150:

If you need to add or multiply two binary numbers, it's probably easier to

do the calculation in binary rather than convert to decimal. This is the part

you're really going to like. Imagine how quickly you could have mastered

addition if the only thing you had to memorize was this:

+ 0 1

0 0 1

1 1 10

Let's use this table to add two binary numbers:

Starting at the right column: 1 plus 0 equals 1. Second column from right: 0

plus 1 equals 1. Third column: 1 plus 1 equals 0, carry the 1. Fourth

column: 1 (carried) plus 0 plus 0 equals 1. Fifth column: 0 plus 1 equals 1.

Sixth column: 1 plus 1 equals 0, carry the 1. Seventh column: 1 (carried)

plus 1 plus 0 equals 10.

The multiplication table is even simpler than the addition table because it

can be entirely derived by using two of the very basic rules of

multiplication: Multiplying anything by 0 gets you 0, and multiplying any

number by 1 has no effect on the number.

x 0 1

0 0 0

1 0 1

Here's a multiplication of 13TEN by 11TEN in binary:

The result is 143TEN.

People who work with binary numbers often write them with leading zeros

(that is, zeros to the left of the first 1)—for example, 0011 rather than just

11. This doesn't change the value of the number at all; it's just for cosmetic

purposes. For example, here are the first sixteen binary numbers with their

decimal equivalents:

Binary Decimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

Let's take a look at this list of binary numbers for a moment. Consider each

of the four vertical columns of zeros and ones, and notice how the digits

alternate going down the column:

The rightmost digit alternates between 0 and 1.

The next digit from the right alternates between two 0s and two 1s.

The next digit alternates between four 0s and four 1s.

The next digit alternates between eight 0s and eight 1s.

This is very methodical, wouldn't you say? Indeed, you can easily write the

next sixteen binary numbers by just repeating the first sixteen and putting a

1 in front:

Binary Decimal

10000 16

10001 17

10010 18

10011 19

10100 20

10101 21

10110 22

10111 23

11000 24

11001 25

11010 26

11011 27

11100 28

11101 29

11110 30

11111 31

Here's another way of looking at it: When you count in binary, the

rightmost digit (also called the least significant digit), alternates between 0

and 1. Every time it changes from a 1 to a 0, the digit second to right (that

is, the next most significant digit) also changes, either from 0 to 1 or from 1

to 0. So every time a binary digit changes from a 1 to a 0, the next most

significant digit also changes, either from a 0 to a 1 or from a 1 to a 0.

When we're writing large decimal numbers, we use commas every three

places so that we can more easily know what the number means at a glance.

For example, if you see 12000000, you probably have to count digits, but if

you see 12,000,000, you know that means twelve million.

Binary numbers can get very long very quickly. For example, twelve

million in binary is 101101110001101100000000. To make this a little more

readable, it's customary to separate every four binary digits with a dash, for

example 1011-0111-0001-1011-0000-0000 or with spaces: 1011 0111 0001

1011 0000 0000. Later on in this book, we'll look at a more concise way of

expressing binary numbers.

By reducing our number system to just the binary digits 0 and 1, we've gone

as far as we can go. We can't get any simpler. Moreover, the binary number

system bridges the gap between arithmetic and electricity. In previous

chapters, we've been looking at switches and wires and lightbulbs and

relays, and any of these objects can represent the binary digits 0 and 1:

A wire can be a binary digit. If current is flowing through the wire, the

binary digit is 1. If not, the binary digit is 0.

A switch can be a binary digit. If the switch is on, or closed, the binary digit

is 1. If the switch is off, or open, the binary digit is 0.

A lightbulb can be a binary digit. If the lightbulb is lit, the binary digit is 1.

If the lightbulb is not lit, the binary digit is 0.

A telegraph relay can be a binary digit. If the relay is closed, the binary

digit is 1. If the relay is at rest, the binary digit is 0.

Binary numbers have a whole lot to do with computers.

Sometime around 1948, the American mathematician John Wilder Tukey

(born 1915) realized that the words binary digit were likely to assume a

much greater importance in the years ahead as computers became more

prevalent. He decided to coin a new, shorter word to replace the unwieldy

five syllables of binary digit. He considered bigit and binit but settled

instead on the short, simple, elegant, and perfectly lovely word bit.

Chapter 9. Bit by Bit by Bit
When Tony Orlando requested in a 1973 song that his beloved "Tie a

Yellow Ribbon Round the Ole Oak Tree," he wasn't asking for elaborate

explanations or extended discussion. He didn't want any ifs, ands, or buts.

Despite the complex feelings and emotional histories that would have been

at play in the real-life situation the song was based on, all the man really

wanted was a simple yes or no. He wanted a yellow ribbon tied around the

tree to mean "Yes, even though you messed up big time and you've been in

prison for three years, I still want you back with me under my roof." And he

wanted the absence of a yellow ribbon to mean "Don't even think about

stopping here."

These are two clear-cut, mutually exclusive alternatives. Tony Orlando did

not sing, "Tie half of a yellow ribbon if you want to think about it for a

while" or "Tie a blue ribbon if you don't love me anymore but you'd still

like to be friends." Instead, he made it very, very simple.

Equally effective as the absence or presence of a yellow ribbon (but perhaps

more awkward to put into verse) would be a choice of traffic signs in the

front yard: Perhaps "Merge" or "Wrong Way."

Or a sign hung on the door: "Closed" or "Open."

Or a flashlight in the window, turned on or off.

You can choose from lots of ways to say yes or no if that's all you need to

say. You don't need a sentence to say yes or no; you don't need a word, and

you don't even need a letter. All you need is a bit, and by that I mean all you

need is a 0 or a 1.

As we discovered in the previous chapters, there's nothing really all that

special about the decimal number system that we normally use for counting.

It's pretty clear that we base our number system on ten because that's the

number of fingers we have. We could just as reasonably base our number

system on eight (if we were cartoon characters) or four (if we were lobsters)

or even two (if we were dolphins).

But there is something special about the binary number system. What's

special about binary is that it's the simplest number system possible. There

are only two binary digits—0 and 1. If we want something simpler than

binary, we'll have to get rid of the 1, and then we'll be left with just a 0. We

can't do much of anything with just a 0.

The word bit, coined to mean binary digit, is surely one of the loveliest

words invented in connection with computers. Of course, the word has the

normal meaning, "a small portion, degree, or amount," and that normal

meaning is perfect because a bit—one binary digit—is a very small quantity

indeed.

Sometimes when a new word is invented, it also assumes a new meaning.

That's certainly true in this case. A bit has a meaning beyond the binary
digits used by dolphins for counting. In the computer age, the bit has come

to be regarded as the basic building block of information.

Now that's a bold statement, and of course, bits aren't the only things that

convey information. Letters and words and Morse code and Braille and

decimal digits convey information as well. The thing about the bit is that it

conveys very little information. A bit of information is the tiniest amount of

information possible. Anything less than a bit is no information at all. But

because a bit represents the smallest amount of information possible, more

complex information can be conveyed with multiple bits. (By saying that a

bit conveys a "small" amount of information, I surely don't mean that the

information borders on the unimportant. Indeed, the yellow ribbon is a very
important bit to the two people concerned with it.)

"Listen, my children, and you shall hear / Of the midnight ride of Paul

Revere," wrote Henry Wadsworth Longfellow, and while he might not have

been historically accurate when describing how Paul Revere alerted the

American colonies that the British had invaded, he did provide a

thoughtprovoking example of the use of bits to communicate important

information:

He said to his friend "If the British march

By land or sea from the town to-night,

Hang a lantern aloft in the belfry arch

Of the North Church tower as a special light,—

One, if by land, and two, if by sea…"

To summarize, Paul Revere's friend has two lanterns. If the British are

invading by land, he will put just one lantern in the church tower. If the

British are coming by sea, he will put both lanterns in the church tower.

However, Longfellow isn't explicitly mentioning all the possibilities. He left

unspoken a third possibility, which is that the British aren't invading just

yet. Longfellow implies that this possibility will be conveyed by the

absence of lanterns in the church tower.

Let's assume that the two lanterns are actually permanent fixtures in the

church tower. Normally they aren't lit:

This means that the British aren't yet invading. If one of the lanterns is lit,

or

the British are coming by land. If both lanterns are lit,

the British are coming by sea.

Each lantern is a bit. A lit lantern is a 1 bit and an unlit lantern is a 0 bit.

Tony Orlando demonstrated to us that only one bit is necessary to convey

one of two possibilities. If Paul Revere needed only to be alerted that the

British were invading (and not where they were coming from), one lantern

would have been sufficient. The lantern would have been lit for an invasion

and unlit for another evening of peace.

Conveying one of three possibilities requires another lantern. Once that

second lantern is present, however, the two bits allows communicating one

of four possibilities:

00 = The British aren't invading tonight.

01 = They're coming by land.

10 = They're coming by land.

11 = They're coming by sea.

What Paul Revere did by sticking to just three possibilities was actually

quite sophisticated. In the lingo of communication theory, he used

redundancy to counteract the effect of noise. The word noise is used in

communication theory to refer to anything that interferes with

communication. Static on a telephone line is an obvious example of noise

that interferes with a telephone communication. Communication over the

telephone is usually successful, nevertheless, even in the presence of noise

because spoken language is heavily redundant. We don't need to hear every

syllable of every word in order to understand what's being said.

In the case of the lanterns in the church tower, noise can refer to the

darkness of the night and the distance of Paul Revere from the tower, both

of which might prevent him from distinguishing one lantern from the other.

Here's the crucial passage in Longfellow's poem:

And lo! As he looks, on the belfry's height

A glimmer, and then a gleam of light!

He springs to the saddle, the bridle he turns,

But lingers and gazes, till full on his sight

A second lamp in the belfry burns!

It certainly doesn't sound as if Paul Revere was in a position to figure out

exactly which one of the two lanterns was first lit.

The essential concept here is that information represents a choice among
two or more possibilities. For example, when we talk to another person,

every word we speak is a choice among all the words in the dictionary. If

we numbered all the words in the dictionary from 1 through 351,482, we

could just as accurately carry on conversations using the numbers rather

than words. (Of course, both participants would need dictionaries where the

words are numbered identically, as well as plenty of patience.)

The flip side of this is that any information that can be reduced to a choice
among two or more possibilities can be expressed using bits. Needless to

say, there are plenty of forms of human communication that do not
represent choices among discrete possibilities and that are also vital to our

existence. This is why people don't form romantic relationships with

computers. (Let's hope they don't, anyway.) If you can't express something

in words, pictures, or sounds, you're not going to be able to encode the

information in bits. Nor would you want to.

A thumb up or a thumb down is one bit of information. And two thumbs up

or down—such as the thumbs of film critics Roger Ebert and the late Gene

Siskel when they rendered their final verdicts on the latest movies—convey

two bits of information. (We'll ignore what they actually had to say about

the movies; all we care about here are their thumbs.) Here we have four

possibilities that can be represented with a pair of bits:

00 = They both hated it.

01 = Siskel hated it; Ebert loved it.

10 = Siskel loved it; Ebert hated it.

11 = They both loved it.

The first bit is the Siskel bit, which is 0 if Siskel hated the movie and 1 if he

liked it. Similarly, the second bit is the Ebert bit.

So if your friend asked you, "What was the verdict from Siskel and Ebert

about that movie Impolite Encounter?" instead of answering, "Siskel gave it

a thumbs up and Ebert gave it a thumbs down" or even "Siskel liked it;

Ebert didn't," you could have simply said, "One zero." As long as your

friend knew which was the Siskel bit and which was the Ebert bit, and that

a 1 bit meant thumbs up and a 0 bit meant thumbs down, your answer

would be perfectly understandable. But you and your friend have to know

the code.

We could have declared initially that a 1 bit meant a thumbs down and a 0

bit meant a thumbs up. That might seem counterintuitive. Naturally, we like

to think of a 1 bit as representing something affirmative and a 0 bit as the

opposite, but it's really just an arbitrary assignment. The only requirement is

that everyone who uses the code must know what the 0 and 1 bits mean.

The meaning of a particular bit or collection of bits is always understood

contextually. The meaning of a yellow ribbon around a particular oak tree is

probably known only to the person who put it there and the person who's

supposed to see it. Change the color, the tree, or the date, and it's just a

meaningless scrap of cloth. Similarly, to get some useful information out of

Siskel and Ebert's hand gestures, at the very least we need to know what

movie is under discussion.

If you maintained a list of the movies that Siskel and Ebert reviewed and

how they voted with their thumbs, you could add another bit to the mix to

include your own opinion. Adding this third bit increases the number of

different possibilities to eight:

000 = Siskel hated it; Ebert hated it; I hated it.

001 = Siskel hated it; Ebert hated it; I loved it.

010 = Siskel hated it; Ebert loved it; I hated it.

011 = Siskel hated it; Ebert loved it; I loved it.

100 = Siskel loved it; Ebert hated it; I hated it.

101 = Siskel loved it; Ebert hated it; I loved it.

110 = Siskel loved it; Ebert loved it; I hated it.

111 = Siskel loved it; Ebert loved it; I loved it.

One bonus of using bits to represent this information is that we know that

we've accounted for all the possibilities. We know there can be eight and

only eight possibilities and no more or fewer. With 3 bits, we can count

only from zero to seven. There are no more 3-digit binary numbers.

Now, during this description of the Siskel and Ebert bits, you might have

been considering a very serious and disturbing question, and that question is

this: What do we do about Leonard Maltin's Movie & Video Guide? After

all, Leonard Maltin doesn't do the thumbs up and thumbs down thing.

Leonard Maltin rates the movies using the more traditional star system.

To determine how many Maltin bits we need, we must first know a few

things about his system. Maltin gives a movie anything from 1 star to 4

stars, with half stars in between. (Just to make this interesting, he doesn't

actually award a single star; instead, the movie is rated as a BOMB.) There

are seven possibilities, which means that we can represent a particular

rating using just 3 bits:

000 = BOMB

001 = *½

010 = **

011 = **½

100 = ***

101 = ***½

110 = ****

"What about 111?" you may ask. Well, that code doesn't mean anything. It's

not defined. If the binary code 111 were used to represent a Maltin rating,

you'd know that a mistake was made. (Probably a computer made the

mistake because people never do.)

You'll recall that when we had two bits to represent the Siskel and Ebert

ratings, the leftmost bit was the Siskel bit and the rightmost bit was the

Ebert bit. Do the individual bits mean anything here? Well, sort of. If you

take the numeric value of the bit code, add 2, and then divide by 2, that will

give you the number of stars. But that's only because we defined the codes

in a reasonable and consistent manner. We could just as well have defined

the codes this way:

000 = ***

001 = *½

010 = **½

011 = ****

101 = ***½

110 = **

111 = BOMB

This code is just as legitimate as the preceding code so long as everybody

knows what it means.

If Maltin ever encountered a movie undeserving of even a single full star,

he could award a half star. He would certainly have enough codes for the

half-star option. The codes could be redefined like so:

000 = MAJOR BOMB

001 = BOMB

010 = *½

011 = **

100 = **½

101 = ***

110 = ***½

111 = ****

But if he then encountered a movie not even worthy of a half star and

decided to award no stars (ATOMIC BOMB?), he'd need another bit. No

more 3-bit codes are available.

The magazine Entertainment Weekly gives grades, not only for movies but

for television shows, CDs, books, CD-ROMs, Web sites, and much else.

The grades range from A+ straight down to F (although it seems that only

Pauly Shore movies are worthy of that honor). If you count them, you see

13 possible grades. We would need 4 bits to represent these grades:

0000 = F

0001 = D–

0010 = D

0011 = D+

0100 = C–

0101 = C

0110 = C+

0111 = B–

1000 = B

1001 = B+

1010 = A–

1011 = A

1100 = A+

We have three unused codes: 1101, 1110, and 1111, for a grand total of 16.

Whenever we talk about bits, we often talk about a certain number of bits.

The more bits we have, the greater the number of different possibilities we

can convey.

It's the same situation with decimal numbers, of course. For example, how

many telephone area codes are there? The area code is three decimal digits

long, and if all of them are used (which they aren't, but we'll ignore that),

there are 103, or 1000, codes, ranging from 000 through 999. How many 7-

digit phone numbers are possible within the 212 area code? That's 107, or

10,000,000. How many phone numbers can you have with a 212 area code

and a 260 prefix? That's 104, or 10,000.

Similarly, in binary the number of possible codes is always equal to 2 to the

power of the number of bits:

Number of Bits Number of Codes

1 21 = 2

2 22 = 4

3 23 = 8

4 24 = 16

5 25 = 32

6 26 = 64

7 27 = 128

8 28 = 256

9 29 = 512

10 210 = 1024

Every additional bit doubles the number of codes.

If you know how many codes you need, how can you calculate how many

bits you need? In other words, how do you go backward in the preceding

table?

The method you use is something called the base two logarithm. The

logarithm is the opposite of the power. We know that 2 to the 7th power

equals 128. The base two logarithm of 128 equals 7. To use more

mathematical notation, this statement

27 = 128

is equivalent to this statement:

log2128 = 7

So if the base two logarithm of 128 is 7, and the base two logarithm of 256

is 8, then what's the base two logarithm of 200? It's actually about 7.64, but

we really don't have to know that. If we needed to represent 200 different

things with bits, we'd need 8 bits.

Bits are often hidden from casual observation deep within our electronic

appliances. We can't see the bits encoded in our compact discs or in our

digital watches or inside our computers. But sometimes the bits are in clear

view.

Here's one example. If you own a camera that uses 35-millimeter film, take

a look at a roll of film. Hold it this way:

You'll see a checkerboard-like grid of silver and black squares that I've

numbered 1 through 12 in the diagram. This is called DX-encoding. These

12 squares are actually 12 bits. A silver square means a 1 bit and a black

square means a 0 bit. Square 1 and square 7 are always silver (1).

What do the bits mean? You might be aware that some films are more

sensitive to light than others. This sensitivity to light is often called the film

speed. A film that's very sensitive to light is said to be fast because it can be

exposed very quickly. The speed of the film is indicated by the film's ASA

(American Standards Association) rating, the most popular being 100, 200,

and 400. This ASA rating isn't only printed on the box and the film's

cassette but is also encoded in bits.

There are 24 standard ASA ratings for photographic film. Here they are:

25 32 40

50 64 80

100 125 160

200 250 320

400 500 640

800 1000 1250

1600 2000 2500

3200 4000 5000

How many bits are required to encode the ASA rating? The answer is 5. We

know that 24 equals 16, so that's too few. But 25 equals 32, which is more

than sufficient.

The bits that correspond to the film speed are shown in the following table:

Square 2 Square 3 Square 4 Square 5 Square 6 Film Speed

0 0 0 1 0 25

0 0 0 0 1 32

0 0 0 1 1 40

1 0 0 1 0 50

1 0 0 0 1 64

1 0 0 1 1 80

0 1 0 1 0 100

0 1 0 0 1 125

0 1 0 1 1 160

1 1 0 1 0 200

1 1 0 0 1 250

1 1 0 1 1 320

0 0 1 1 0 400

0 0 1 0 1 500

0 0 1 1 1 640

1 0 1 1 0 800

1 0 1 0 1 1000

1 0 1 1 1 1250

0 1 1 1 0 1600

0 1 1 0 1 2000

0 1 1 1 1 2500

1 1 1 1 0 3200

1 1 1 0 1 4000

1 1 1 1 1 5000

Most modern 35-millimeter cameras use these codes. (Exceptions are

cameras on which you must set the exposure manually and cameras that

have built-in light meters but require you to set the film speed manually.) If

you take a look inside the camera where you put the film, you should see

six metal contacts that correspond to squares 1 through 6 on the film

canister. The silver squares are actually the metal of the film cassette, which

is a conductor. The black squares are paint, which is an insulator.

The electronic circuitry of the camera runs a current into square 1, which is

always silver. This current will be picked up (or not picked up) by the five

contacts on squares 2 through 6, depending on whether the squares are bare

silver or are painted over. Thus, if the camera senses a current on contacts 4

and 5 but not on contacts 2, 3, and 6, the film speed is 400 ASA. The

camera can then adjust film exposure accordingly.

Inexpensive cameras need read only squares 2 and 3 and assume that the

film speed is 50, 100, 200, or 400 ASA.

Most cameras don't read or use squares 8 through 12. Squares 8, 9, and 10

encode the number of exposures on the roll of film, and squares 11 and 12

refer to the exposure latitude, which depends on whether the film is for

black-and-white prints, for color prints, or for color slides.

Perhaps the most common visual display of binary digits is the ubiquitous

Universal Product Code (UPC), that little bar code symbol that appears on

virtually every packaged item that we purchase these days. The UPC has

come to symbolize one of the ways computers have crept into our lives.

Although the UPC often inspires fits of paranoia, it's really an innocent little

thing, invented for the purpose of automating retail checkout and inventory,

which it does fairly successfully. When it's used with a well-designed

checkout system, the consumer can have an itemized sales receipt, which

isn't possible with conventional cash registers.

Of interest to us here is that the UPC is a binary code, although it might not

seem like one at first. So it will be instructive to decode the UPC and

examine how it works.

In its most common form, the UPC is a collection of 30 vertical black bars

of various widths, divided by gaps of various widths, along with some

digits. For example, this is the UPC that appears on the 10 ¾-ounce can of

Campbell's Chicken Noodle Soup:

We're tempted to try to visually interpret the UPC in terms of thin bars and

black bars, narrow gaps and wide gaps, and indeed, that's one way to look at

it. The black bars in the UPC can have four different widths, with the

thicker bars being two, three, and four times the width of the thinnest bar.

Similarly, the wider gaps between the bars are two, three, and four times the

width of the thinnest gap.

But another way to look at the UPC is as a series of bits. Keep in mind that

the whole bar code symbol isn't exactly what the scanning wand "sees" at

the checkout counter. The wand doesn't try to interpret the numbers at the

bottom, for example, because that would require a more sophisticated

computing technique known as optical character recognition, or OCR.

Instead, the scanner sees just a thin slice of this whole block. The UPC is as

large as it is to give the checkout person something to aim the scanner at.

The slice that the scanner sees can be represented like this:

This looks almost like Morse code, doesn't it?

As the computer scans this information from left to right, it assigns a 1 bit

to the first black bar it encounters, a 0 bit to the next white gap. The

subsequent gaps and bars are read as series of bits 1, 2, 3, or 4 bits in a row,

depending on the width of the gap or the bar. The correspondence of the

scanned bar code to bits is simply:

So the entire UPC is simply a series of 95 bits. In this particular example,

the bits can be grouped as follows:

The first 3 bits are always 101. This is known as the left-hand guard pattern,

and it allows the computer-scanning device to get oriented. From the guard

pattern, the scanner can determine the width of the bars and gaps that

correspond to single bits. Otherwise, the UPC would have to be a specific

size on all packages.

The left-hand guard pattern is followed by six groups of 7 bits each. Each of

these is a code for a numeric digit 0 through 9, as I'll demonstrate shortly. A

5-bit center guard pattern follows. The presence of this fixed pattern

(always 01010) is a form of built-in error checking. If the computer scanner

doesn't find the center guard pattern where it's supposed to be, it won't

acknowledge that it has interpreted the UPC. This center guard pattern is

one of several precautions against a code that has been tampered with or

badly printed.

The center guard pattern is followed by another six groups of 7 bits each,

which are then followed by a right-hand guard pattern, which is always 101.

As I'll explain later, the presence of a guard pattern at the end allows the

UPC code to be scanned backward (that is, right to left) as well as forward.

So the entire UPC encodes 12 numeric digits. The left side of the UPC

encodes 6 digits, each requiring 7 bits. You can use the following table to

decode these bits:

Table 9-1. Left-Side Codes

0001101 = 0 0110001 = 5

0011001 = 1 0101111 = 6

0010011 = 2 0111011 = 7

0111101 = 3 0110111 = 8

0100011 = 4 0001011 = 9

Notice that each 7-bit code begins with a 0 and ends with a 1. If the scanner

encounters a 7-bit code on the left side that begins with a 1 or ends with a 0,

it knows either that it hasn't correctly read the UPC code or that the code

has been tampered with. Notice also that each code has only two groups of

consecutive 1 bits. This implies that each digit corresponds to two vertical

bars in the UPC code.

You'll see that each code in this table has an odd number of 1 bits. This is

another form of error and consistency checking known as parity. A group of

bits has even parity if it has an even number of 1 bits and odd parity if it has

an odd number of 1 bits. Thus, all of these codes have odd parity.

To interpret the six 7-bit codes on the right side of the UPC, use the

following table:

Table 9-2. Right-Side Codes

1110010 = 0 1001110 = 5

1100110 = 1 1010000 = 6

1101100 = 2 1000100 = 7

1000010 = 3 1001000 = 8

1011100 = 4 1110100 = 9

These codes are the complements of the earlier codes: Wherever a 0

appeared is now a 1, and vice versa. These codes always begin with a 1 and

end with a 0. In addition, they have an even number of 1 bits, which is even

parity.

So now we're equipped to decipher the UPC. Using the two preceding

tables, we can determine that the 12 digits encoded in the 10 ¾-ounce can

of Campbell's Chicken Noodle Soup are

0 51000 01251 7

This is very disappointing. As you can see, these are precisely the same

numbers that are conveniently printed at the bottom of the UPC. (This

makes a lot of sense because if the scanner can't read the code for some

reason, the person at the register can manually enter the numbers. Indeed,

you've undoubtedly seen this happen.) We didn't have to go through all that

work to decode them, and moreover, we haven't come close to decoding any

secret information. Yet there isn't anything left in the UPC to decode. Those

30 vertical lines resolve to just 12 digits.

The first digit (a 0 in this case) is known as the number system character. A
0 means that this is a regular UPC code. If the UPC appeared on variable-

weight grocery items such as meat or produce, the code would be a 2.

Coupons are coded with a 5.

The next five digits make up the manufacturer code. In this case, 51000 is

the code for the Campbell Soup Company. All Campbell products have this

code. The five digits that follow (01251) are the code for a particular

product of that company, in this case, the code for a 10 ¾-ounce can of

chicken noodle soup. This product code has meaning only when combined

with the manufacturer's code. Another company's chicken noodle soup

might have a different product code, and a product code of 01251 might

mean something totally different from another manufacturer.

Contrary to popular belief, the UPC doesn't include the price of the item.

That information has to be retrieved from the computer that the store uses in

conjunction with the checkout scanners.

The final digit (a 7 in this case) is called the modulo check character. This

character enables yet another form of error checking. To examine how this

works, let's assign each of the first 11 digits (0 51000 01251 in our

example) a letter:

A BCDEF GHIJK

Now calculate the following:

3 x (A + C + E + G + I + K) + (B + D + F + H + J)

and subtract that from the next highest multiple of 10. That's called the

modulo check character. In the case of Campbell's Chicken Noodle Soup,

we have

3 x (0 + 1 + 0 + 0 + 2 + 1) + (5 + 0 + 0 + 1 + 5) = 3 x 4 + 11 = 23

The next highest multiple of 10 is 30, so

30 – 23 = 7

and that's the modulo check character printed and encoded in the UPC. This

is a form of redundancy. If the computer controlling the scanner doesn't

calculate the same modulo check character as the one encoded in the UPC,

the computer won't accept the UPC as valid.

Normally, only 4 bits would be required to specify a decimal digit from 0

through 9. The UPC uses 7 bits per digit. Overall, the UPC uses 95 bits to

encode only 11 useful decimal digits. Actually, the UPC includes blank

space (equivalent to nine 0 bits) at both the left and the right side of the

guard pattern. That means the entire UPC requires 113 bits to encode 11

decimal digits, or over 10 bits per decimal digit!

Part of this overkill is necessary for error checking, as we've seen. A

product code such as this wouldn't be very useful if it could be easily

altered by a customer wielding a felt-tip pen.

The UPC also benefits by being readable in both directions. If the first

digits that the scanning device decodes have even parity (that is, an even

number of 1 bits in each 7-bit code), the scanner knows that it's interpreting

the UPC code from right to left. The computer system then uses this table to

decode the right-side digits:

Table 9-3. Right-Side Codes in Reverse

0100111 = 0 0111001 = 5

0110011 = 1 0000101 = 6

0011011 = 2 0010001 = 7

0100001 = 3 0001001 = 8

0011101 = 4 0010111 = 9

and this table for the left-side digits:

Table 9-4. Left-Side Codes in Reverse

1011000 = 0 1000110 = 5

1001100 = 1 1111010 = 6

1100100 = 2 1101110 = 7

1011110 = 3 1110110 = 8

1100010 = 4 1101000 = 9

These 7-bit codes are all different from the codes read when the UPC is

scanned from left to right. There's no ambiguity.

We began looking at codes in this book with Morse code, composed of dots,

dashes, and pauses between the dots and dashes. Morse code doesn't

immediately seem like it's equivalent to zeros and ones, yet it is.

Recall the rules of Morse code: A dash is three times as long as a dot. The

dots and dashes of a single letter are separated by a pause the length of a

dot. Letters within a word are separated by pauses equal in length to a dash.

Words are separated by pauses equal in length to two dashes.

Just to simplify this analysis a bit, let's assume that a dash is twice the

length of a dot rather than three times. That means that a dot can be a 1 bit

and a dash can be two 1 bits. Pauses are 0 bits.

Here's the basic table of Morse code from Chapter 2:

Here's the table converted to bits:

A 101100 J 101101101100 S 1010100

B 1101010100 K 110101100 T 1100

C 11010110100 L 1011010100 U 10101100

D 11010100 M 1101100 V 1010101100

E 100 N 110100 W 101101100

F 1010110100 O 1101101100 X 11010101100

G 110110100 P 10110110100 Y 110101101100

H 101010100 Q 110110101100 Z 11011010100

I 10100 R 10110100

Notice that all the codes begin with a 1 bit and end with a pair of 0 bits. The

pair of 0 bits represents the pause between letters in the same word. The

code for the space between words is another pair of 0 bits. So the Morse

code for "hi there" is normally given as

but Morse code using bits can look like the cross section of the UPC code:

In terms of bits, Braille is much simpler than Morse code. Braille is a 6-bit

code. Each character is represented by an array of six dots, and each of the

six dots can be either raised or not raised. As I explained in Chapter 3, the

dots are commonly numbered 1 through 6:

The word "code" (for example) is represented by the Braille symbols:

If a raised dot is 1 and a flat dot is 0, each of the characters in Braille can be

represented by a 6-bit binary number. The four Braille symbols for the

letters in the word "code" are then simply:

100100 101010 100110 100010

where the leftmost bit corresponds to the 1 position in the grid, and the

rightmost bit corresponds to the 6 position.

As we shall see later in this book, bits can represent words, pictures,

sounds, music, and movies as well as product codes, film speeds, movie

ratings, an invasion of the British army, and the intentions of one's beloved.

But most fundamentally, bits are numbers. All that needs to be done when

bits represent other information is to count the number of possibilities. This

determines the number of bits that are needed so that each possibility can be

assigned a number.

Bits also play a part in logic, that strange blend of philosophy and

mathematics for which a primary goal is to determine whether certain

statements are true or false. True and false can also be 1 and 0.

Chapter 10. Logic and Switches
What is truth? Aristotle thought that logic had something to do with it. The

collection of his teachings known as the Organon (which dates from the

fourth century B.C.E.) is the earliest extensive writing on the subject of

logic. To the ancient Greeks, logic was a means of analyzing language in

the search for truth and thus was considered a form of philosophy. The basis

of Aristotle's logic was the syllogism. The most famous syllogism (which

isn't actually found in the works of Aristotle) is

All men are mortal;

Socrates is a man;

Hence, Socrates is mortal.

In a syllogism, two premises are assumed to be correct, and from these a

conclusion is deduced.

The mortality of Socrates might seem straightforward enough, but there are

many varieties of syllogisms. For example, consider the following two

premises, proposed by the nineteenth-century mathematician Charles

Dodgson (also known as Lewis Carroll):

All philosophers are logical;

An illogical man is always obstinate.

The conclusion isn't obvious at all. (It's "Some obstinate persons are not

philosophers." Notice the unexpected and disturbing appearance of the

word "some.")

For over two thousand years, mathematicians wrestled with Aristotle's

logic, attempting to corral it using mathematical symbols and operators.

Prior to the nineteenth century, the only person to come close was Gottfried

Wilhelm von Leibniz (1648–1716), who dabbled with logic early in life but

then went on to other interests (such as independently inventing calculus at

the same time as Isaac Newton).

And then came George Boole.

George Boole was born in England in 1815 to a world where the odds were

certainly stacked against him. Because he was the son of a shoe-maker and

a former maid, Britain's rigid class structure would normally have prevented

Boole from achieving anything much different from his ancestors. But

aided by an inquisitive mind and his helpful father (who had strong interests

in science, mathematics, and literature), young George gave himself the

type of education normally the privilege of upper-class boys; his studies

included Latin, Greek, and mathematics. As a result of his early papers on

mathematics, in 1849 Boole was appointed the first Professor of

Mathematics at Queen's College, Cork, in Ireland.

Several mathematicians in the mid-1800s had been working on a

mathematical definition of logic (most notably Augustus De Morgan), but it

was Boole who had the real conceptual breakthrough, first in the short book

The Mathematical Analysis of Logic, Being an Essay Towards a Calculus
of Deductive Reasoning (1847) and then in a much longer and more

ambitious text, An Investigation of the Laws of Thought on Which Are
Founded the Mathematical Theories of Logic and Probabilities (1854),

more conveniently referred to as The Laws of Thought. Boole died in 1864

at the age of 49 after hurrying to class in the rain and contracting

pneumonia.

The title of Boole's 1854 book suggests an ambitious motivation: Because

the rational human brain uses logic to think, if we were to find a way in

which logic can be represented by mathematics, we would also have a

mathematical description of how the brain works. Of course, nowadays this

view of the mind seems to us quite naive. (Either that or it's way ahead of

its time.)

Boole invented a kind of algebra that looks and acts very much like

conventional algebra. In conventional algebra, the operands (which are

usually letters) stand for numbers, and the operators (most often + and x)

indicate how these numbers are to be combined. Often we use conventional

algebra to solve problems such as this: Anya has 3 pounds of tofu. Betty has

twice as much tofu as Anya. Carmen has 5 pounds more tofu than Betty.

Deirdre has three times the tofu that Carmen has. How much tofu does

Deirdre have?

To solve this problem, we first convert the English to arithmetical

statements, using four letters to stand for the pounds of tofu that each of the

four women has:

A = 3

B = 2 x A

C = B + 5

D = 3 x C

We can combine these four statements into one statement by substitution

and then finally perform the additions and multiplications:

D = 3 x C

D = 3 x (B + 5)

D = 3 x ((2 x A) + 5)

D = 3 x ((2 x 3) + 5)

D = 33

When we do conventional algebra, we follow certain rules. These rules

have probably become so ingrained in our practice that we no longer think

of them as rules and might even forget their names. But rules indeed

underlie all the workings of any form of mathematics.

The first rule is that addition and multiplication are commutative. That

means we can switch around the symbols on each side of the operations:

A + B = B + A

A x B = B x A

By contrast, subtraction and division are not commutative.

Addition and multiplication are also associative, that is

A + (B + C) = (A + B) + C

A x (B x C) = (A x B) x C

And finally, multiplication is said to be distributive over addition:

A x (B + C) = (A x B) + (A x C)

Another characteristic of conventional algebra is that it always deals with

numbers, such as pounds of tofu or numbers of ducks or distances that a

train travels or the ages of family members. It was Boole's genius to make

algebra more abstract by divorcing it from concepts of number. In Boolean

algebra (as Boole's algebra was eventually called), the operands refer not to

numbers but instead to classes. A class is simply a group of things, what in

later times came to be known as a set.

Let's talk about cats. Cats can be either male or female. For convenience,

we can use the letter M to refer to the class of male cats and F to refer to the

class of female cats. Keep in mind that these two symbols do not represent

numbers of cats. The number of male and female cats can change by the

minute as new cats are born and old cats (regrettably) pass away. The letters

stand for classes of cats—cats with specific characteristics. Instead of

referring to male cats, we can just say "M."

We can also use other letters to represent the color of the cats: For example,

T can refer to the class of tan cats, B can be the class of black cats, W the

class of white cats, and O the class of cats of all "other" colors—all cats not

in the class T, B, or W.

Finally (at least as far as this example goes), cats can be either neutered or

unneutered. Let's use the letter N to refer to the class of neutered cats and U

for the class of unneutered cats.

In conventional (numeric) algebra, the operators + and x are used to

indicate addition and multiplication. In Boolean algebra, the same + and x

symbols are used, and here's where things might get confusing. Everybody

knows how to add and multiply numbers in conventional algebra, but how

do we add and multiply classes?

Well, we don't actually add and multiply in Boolean algebra. Instead, the +

and x symbols mean something else entirely.

The + symbol in Boolean algebra means a union of two classes. A union of

two classes is everything in the first class combined with everything in the

second class. For example, B + W represents the class of all cats that are

either black or white.

The x symbol in Boolean algebra means an intersection of two classes. An

intersection of two classes is everything that is in both the first class and the

second class. For example, F x T represents the class of all cats that are both

female and tan. As in conventional algebra, we can write F x T as F·T or

simply FT (which is what Boole preferred). You can think of the two letters

as two adjectives strung together: "female tan" cats.

To avoid confusion between conventional algebra and Boolean algebra,

sometimes the symbols U and ∩ are used for union and intersection instead

of + and x. But part of Boole's liberating influence on mathematics was to

make the use of familiar operators more abstract, so I've decided to stick

with his decision not to introduce new symbols into his algebra.

The commutative, associative, and distributive rules all hold for Boolean

algebra. What's more, in Boolean algebra the + operator is distributive over

the x operator. This isn't true of conventional algebra:

W + (B x F) = (W + B) x (W + F)

The union of white cats and black female cats is the same as the intersection

of two unions: the union of white cats and black cats, and the union of

white cats and female cats. This is somewhat difficult to grasp, but it works.

Two more symbols are necessary to complete Boolean algebra. These two

symbols might look like numbers, but they're really not because they're

sometimes treated a little differently than numbers. The symbol 1 in

Boolean algebra means "the universe"—that is, everything we're talking

about. In this example, the symbol 1 means "the class of all cats." Thus,

M + F = 1

This means that the union of male cats and female cats is the class of all

cats. Similarly, the union of tan cats and black cats and white cats and other

colored cats is also the class of all cats:

T + B + W + O = 1

And you achieve the class of all cats this way, too:

N + U = 1

The 1 symbol can be used with a minus sign to indicate the universe

excluding something. For example,

1 – M

is the class of all cats except the male cats. The universe excluding all male

cats is the same as the class of female cats:

1 – M = F

The other symbol that we need is the 0, and in Boolean algebra the 0 means

an empty class—a class of nothing. The empty class results when we take

an intersection of two mutually exclusive classes, for example, cats that are

both male and female:

F x M = 0

Notice that the 1 and 0 symbols sometimes work the same way in Boolean

algebra as in conventional algebra. For example, the intersection of all cats

and female cats is the class of female cats:

1 x F = F

The intersection of no cats and female cats is the class of no cats:

0 x F = 0

The union of no cats and all female cats is the class of female cats:

0 + F = F

But sometimes the result doesn't look the same as in conventional algebra.

For example, the union of all cats and female cats is the class of all cats:

1 + F = 1

This doesn't make much sense in conventional algebra.

Because F is the class of all female cats, and (1 – F) is the class of all cats

that aren't female, the union of these two classes is 1:

F + (1 – F) = 1

and the intersection of the two classes is 0:

F x (1 – F) = 0

Historically, this formulation represents an important concept in logic: It's

called the Law of Contradiction and indicates that something can't be both

itself and the opposite of itself.

Where Boolean algebra really looks different from conventional algebra is

in a statement like this:

F x F = F

The statement makes perfect sense in Boolean algebra: The intersection of

female cats and female cats is still the class of female cats. But it sure

wouldn't look quite right if F referred to a number. Boole considered

X2 = X

to be the single statement that differentiates his algebra from conventional

algebra. Another Boolean statement that looks funny in terms of

conventional algebra is this:

F + F = F

The union of female cats and female cats is still the class of female cats.

Boolean algebra provides a mathematical method for solving the syllogisms

of Aristotle. Let's look at the first two-thirds of that famous syllogism again,

but now using gender-neutral language:

All persons are mortal;

Socrates is a person.

We'll use P to represent the class of all persons, M to represent the class of

mortal things, and S to represent the class of Socrates. What does it mean to

say that "all persons are mortal"? It means that the intersection of the class

of all persons and the class of all mortal things is the class of all persons:

P x M = P

It would be wrong to say that P x M = M, because the class of all mortal

things includes cats, dogs, and elm trees.

To say, "Socrates is a person," means that the intersection of the class

containing Socrates (a very small class) and the class of all persons (a much

larger class) is the class containing Socrates:

S x P = S

Because we know from the first equation that P equals (P x M) we can

substitute that into the second equation:

S x (P x M) = S

By the associative law, this is the same as

(S x P) x M = S

But we already know that (S x P) equals S, so we can simplify by using this

substitution:

S x M = S

And now we're finished. This formula tells us that the intersection of

Socrates and the class of all mortal things is S, which means that Socrates is

mortal. If we found instead that (S x M) equaled 0, we'd conclude that

Socrates wasn't mortal. If we found that (S x M) equaled M, the conclusion

would have to be that Socrates was the only mortal thing and everything

else was immortal!

Using Boolean algebra might seem like overkill for proving the obvious

fact (particularly considering that Socrates proved himself mortal 2400

years ago), but Boolean algebra can also be used to determine whether

something satisfies a certain set of criteria. Perhaps one day you walk into a

pet shop and say to the salesperson, "I want a male cat, neutered, either

white or tan; or a female cat, neutered, any color but white; or I'll take any

cat you have as long as it's black." And the salesperson says to you, "So you

want a cat from the class of cats represented by the following expression:

(M x N x (W + T)) + (F x N x (1 – W)) + B

Right?" And you say, "Yes! Exactly!"

In verifying that the salesperson is correct, you might want to forgo the

concepts of union and intersection and instead switch to the words OR and

AND. I'm capitalizing these words because the words normally represent

concepts in English, but they can also represent operations in Boolean

algebra. When you form a union of two classes, you're actually accepting

things from the first class OR the second class. And when you form an

intersection, you're accepting only those things in both the first class AND

the second class. In addition, you can use the word NOT wherever you see

a 1 followed by a minus sign. In summary,

The + (previously known as a union) now means OR.

The x (previously known as an intersection) now means AND.

The 1 – (previously the universe without something) now means NOT.

So the expression can also be written like this:

(M AND N AND (W OR T)) OR (F AND N AND (NOT W)) OR B

This is very nearly what you said. Notice how the parentheses clarify your

intentions. You want a cat from one of three classes:

(M AND N AND (W OR T))

OR

(F AND N AND (NOT W))

OR

B

With this formula written down, the salesperson can perform something

called a Boolean test. Without making a big fuss about it, I've subtly shifted

to a somewhat different form of Boolean algebra. In this form of Boolean

algebra, letters no longer refer to classes. Instead, the letters can now be

assigned numbers. The catch is that they can be assigned only the number 0

or 1. The numeral 1 means Yes, True, this particular cat satisfies these

criteria. The numeral 0 means No, False, this cat doesn't satisfy these

criteria.

First the salesperson brings out an unneutered tan male. Here's the

expression of acceptable cats:

(M x N x (W + T)) + (F x N x (1 – W)) + B

and here's how it looks with 0s and 1s substituted:

(1 x 0 x (0 + 1)) + (0 x 0 x (1 – 0)) + 0

Notice that the only symbols assigned 1s are M and T because the cat is

male and tan.

What we must do now is simplify this expression. If it simplifies to 1, the

cat satisfies your criteria; if it simplifies to 0, the cat doesn't. While we're

simplifying the expression, keep in mind that we're not really adding and

multiplying, although generally we can pretend that we are. Most of the

same rules apply when + means OR and x means AND. (Sometimes in

modern texts the symbols ^ and ν are used for AND and OR instead of x

and +. But here's where the + and x signs perhaps make the most sense.)

When the x sign means AND, the possible results are

0 x 0 = 0

0 x 1 = 0

1 x 0 = 0

1 x 1 = 1

In other words, the result is 1 only if both the left operand AND the right

operand are 1. This operation works exactly the same way as regular

multiplication, and it can be summarized in a little table, similar to the way

the addition and multiplication tables were shown in Chapter 8:

AND 0 1

0 0 0

1 0 1

When the + sign means OR, the possible results are

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

The result is 1 if either the left operand OR the right operand is 1. This

operation produces results very similar to those of regular addition, except

that in this case 1 + 1 equals 1. The OR operation can be summarized in

another little table:

OR 0 1

0 0 1

1 1 1

We're ready to use these tables to calculate the result of the expression

(1 x 0 x 1) + (0 x 0 x 1) + 0 = 0 + 0 + 0 = 0

The result 0 means No, False, this kitty won't do.

Next the salesperson brings out a neutered white female. The original

expression was

(M x N x (W + T)) + (F x N x (1 – W)) + B

Substitute the 0s and 1s again:

(0 x 1 x (1 + 0)) + (1 x 1 x (1 – 1)) + 0

And simplify it:

(0 x 1 x 1) + (1 x 1 x 0) + 0 = 0 + 0 + 0 = 0

And another poor kitten must be rejected.

Next the salesperson brings out a neutered gray female. (Gray qualifies as

an "other" color—not white or black or tan.) Here's the expression:

(0 x 1 x (0 + 0)) + (1 x 1 x (1 – 0)) + 0

Now simplify it:

(0 x 1 x 0) + (1 x 1 x 1) + 0 = 0 + 1 + 0 = 1

The final result 1 means Yes, True, a kitten has found a home. (And it was

the cutest one too!)

Later that evening, when the kitten is curled up sleeping in your lap, you

wonder whether you could have wired some switches and a lightbulb to

help you determine whether particular kittens satisfied your criteria. (Yes,

you are a strange kid.) Little do you realize that you're about to make a

crucial conceptual breakthrough. You're about to perform some experiments

that will unite the algebra of George Boole with electrical circuitry and thus

make possible the design and construction of computers that work with

binary numbers. But don't let that intimidate you.

To begin your experiment, you connect a lightbulb and battery as you

would normally, but you use two switches instead of one:

Switches connected in this way—one right after the other—are said to be

wired in series. If you close the left switch, nothing happens:

Similarly, if you leave the left switch open and close the right switch,

nothing happens. The lightbulb lights up only if both the left switch and the

right switch are closed, as shown on the next page.

The key word here is and. Both the left switch and the right switch must be

closed for the current to flow through the circuit.

This circuit is performing a little exercise in logic. In effect, the lightbulb is

answering the question "Are both switches closed?" We can summarize the

workings of this circuit in the following table:

Left Switch Right Switch Lightbulb

Open Open Not lit

Open Closed Not lit

Closed Open Not lit

Closed Closed Lit

In the preceding chapter, we saw how binary digits, or bits, can represent

information—everything from numbers to the direction of Roger Ebert's

thumb. We were able to say that a 0 bit means "Ebert's thumb points down"

and a 1 bit means "Ebert's thumb points up." A switch has two positions, so

it can represent a bit. We can say that a 0 means "switch is open" and a 1

means "switch is closed." A lightbulb has two states; hence it too can

represent a bit. We can say that a 0 means "lightbulb is not lit" and a 1

means "lightbulb is lit." Now we simply rewrite the table:

Left Switch Right Switch Lightbulb

0 0 0

0 1 0

1 0 0

1 1 1

Notice that if we swap the left switch and the right switch, the results are

the same. We really don't have to identify which switch is which. So the

table can be rewritten to resemble the AND and OR tables that were shown

earlier:

Switches in Series 0 1

0 0 0

1 0 1

And indeed, this is the same as the AND table. Check it out:

AND 0 1

0 0 0

1 0 1

This simple circuit is actually performing an AND operation in Boolean

algebra.

Now try connecting the two switches a little differently:

These switches are said to be connected in parallel. The difference between

this and the preceding connection is that this lightbulb will light if you close

the top switch:

or close the bottom switch:

or close both switches:

The lightbulb lights if the top switch or the bottom switch is closed. The

key word here is or.

Again, the circuit is performing an exercise in logic. The lightbulb answers

the question, "Is either switch closed?" The following table summarizes

how this circuit works:

Left Switch Right Switch Lightbulb

Open Open Not lit

Open Closed Lit

Closed Open Lit

Closed Closed Lit

Again, using 0 to mean an open switch or an unlit lightbulb and 1 to mean a

closed switch or a lit lightbulb, this table can be rewritten this way:

Left Switch Right Switch Lightbulb

0 0 0

0 1 1

1 0 1

1 1 1

Again it doesn't matter if the two switches are swapped, so the table can

also be rewritten like this:

Switches in Parallel 0 1

0 0 1

1 1 1

And you've probably already guessed that this is the same as the Boolean

OR:

OR 0 1

0 0 1

1 1 1

which means that two switches in parallel are performing the equivalent of

a Boolean OR operation.

When you originally entered the pet shop, you told the salesperson, "I want

a male cat, neutered, either white or tan; or a female cat, neutered, any color

but white; or I'll take any cat you have as long as it's black," and the

salesperson developed this expression:

(M x N x (W + T)) + (F x N x (1 – W)) + B

Now that you know that two switches wired in series perform a logical

AND (which is represented by a x sign) and two switches in parallel

perform a logical OR (which is represented by the + sign), you can wire up

eight switches like so:

Each switch in this circuit is labeled with a letter—the same letters as in the

Boolean expression. (means NOT W and is an alternative way to write 1

– W). Indeed, if you go through the wiring diagram from left to right

starting at the top and moving from top to bottom, you'll encounter the

letters in the same order that they appear in the expression. Each x sign in

the expression corresponds to a point in the circuit where two switches (or

groups of switches) are connected in series. Each + sign in the expression

corresponds to a place in the circuit where two switches (or groups of

switches) are connected in parallel.

As you'll recall, the salesperson first brought out an unneutered tan male.

Close the appropriate switches:

Although the M, T, and NOT W switches are closed, we don't have a

complete circuit to light up the lightbulb. Next the salesperson brought out a

neutered white female:

Again, the right switches aren't closed to complete a circuit. But finally, the

salesperson brought out a neutered gray female:

And that's enough to complete the circuit, light up the lightbulb, and

indicate that the kitten satisfies all your criteria.

George Boole never wired such a circuit. He never had the thrill of seeing a

Boolean expression realized in switches, wires, and lightbulbs. One

obstacle, of course, was that the incandescent lightbulb wasn't invented

until 15 years after Boole's death. But Samuel Morse had demonstrated his

telegraph in 1844—ten years before the publication of Boole's The Laws of
Thought—and it would be simple to substitute a telegraph sounder for the

lightbulb in the circuit shown above.

But nobody in the nineteenth century made the connection between the

ANDs and ORs of Boolean algebra and the wiring of simple switches in

series and in parallel. No mathematician, no electrician, no telegraph

operator, nobody. Not even that icon of the computer revolution Charles

Babbage (1792–1871), who had corresponded with Boole and knew his

work, and who struggled for much of his life designing first a Difference

Engine and then an Analytical Engine that a century later would be

regarded as the precursors to modern computers. What might have helped

Babbage, we know now, was the realization that perhaps instead of gears

and levers to perform calculations, a computer might better be built out of

telegraph relays.

Yes, telegraph relays.

Chapter 11. Gates (Not Bill)
In some far-off distant time, when the twentieth century history of primitive
computing is just a murky memory, someone is likely to suppose that
devices known as logic gates were named after the famous co-founder of
Microsoft Corporation. Not quite. As we'll soon see, logic gates bear a
much greater resemblance to those ordinary gates through which pass water
or people. Logic gates perform simple tasks in logic by blocking or letting
through the flow of electrical current.

You'll recall how in the last chapter you went into a pet shop and
announced, "I want a male cat, neutered, either white or tan; or a female cat,
neutered, any color but white; or I'll take any cat you have as long as it's
black." This is summarized by the following Boolean expression:

(M x N x (W + T)) + (F x N x (1 – W)) + B

and also by this circuit made up of switches and a lightbulb:

Such a circuit is sometimes called a network, except that nowadays that
word is used much more often to refer to connected computers rather than
an assemblage of mere switches.

Although this circuit contains nothing that wasn't invented in the nineteenth
century, nobody in that century ever realized that Boolean expressions
could be directly realized in electrical circuits. This equivalence wasn't

discovered until the 1930s, most notably by Claude Elwood Shannon (born
1916), whose famous 1938 M.I.T. master's thesis was entitled "A Symbolic
Analysis of Relay and Switching Circuits." (Ten years later, Shannon's
article "The Mathematical Theory of Communication" was the first
publication that used the word bit to mean binary digit.)

Prior to 1938, people knew that when you wired two switches in series,
both switches had to be closed for current to flow, and when you wired two
switches in parallel, one or the other had to be closed. But nobody had
shown with Shannon's clarity and rigor that electrical engineers could use
all the tools of Boolean algebra to design circuits with switches. In
particular, if you can simplify a Boolean expression that describes a
network, you can simplify the network accordingly.

For example, the expression that indicates the characteristics you want in a
cat looks like this:

(M x N x (W + T)) + (F x N x (1 – W)) + B

Using the associative law, we can reorder the variables that are combined
with the AND (x) signs and rewrite the expression this way:

(N x M x (W + T)) + (N x F x (1 – W)) + B

In an attempt to clarify what I'm going to do here, I'll define two new
symbols named X and Y:

X = M x (W + T)

Y = F x (1 – W)

Now the expression for the cat you want can be written like this:

(N x X) + (N x Y) + B

After we're finished, we can put the X and Y expressions back in.

Notice that the N variable appears twice in the expression. Using the
distributive law, the expression can be rewritten like this, with only one N:

(N x (X + Y)) + B

Now let's put the X and Y expressions back in:

(N x ((M x (W + T)) + (F x (1 – W)))) + B

Due to the plethora of parentheses, this expression hardly looks simplified.
But there's one less variable in this expression, which means there's one less
switch in the network. Here's the revised version:

Indeed, it's probably easier to see that this network is equivalent to the
earlier one than to verify that the expressions are the same.

Actually, there are still three too many switches in this network. In theory,
you need only four switches to define your perfect cat. Why four? Each
switch is a bit. You should be able to get by with one switch for the sex (off
for male, on for female), another switch that's on for neutered, off for
unneutered, and two more switches for the color. There are four possible
colors (white, black, tan, and "other"), and we know that four choices can
be defined with 2 bits, so all you need are two color switches. For example,
both switches can be off for white, one switch on for black, the other switch
on for tan, and both switches on for other colors.

Let's make a control panel right now for choosing a cat. The control panel is
simply four switches (much like the on/off switches you have on your walls
for controlling your lights) and a lightbulb mounted in a panel:

The switches are on (closed) when they're up, and off (open) when they're
down. The two switches for the cat's color are labeled somewhat obscurely,
I'm afraid, but that's a drawback of reducing this panel to the bare
minimum: The left switch of the pair is labeled B; that means that the left
switch on by itself (as shown) indicates the color black. The right switch of
the pair is labeled T; that switch on by itself means the color tan. Both
switches up means other colors; this choice is labeled O. Both switches
down means the color white, indicated by W, the letter at the bottom.

In computer terminology, the switches are an input device. Input is
information that controls how a circuit behaves. In this case, the input
switches correspond to 4 bits of information that describe a cat. The output
device is the lightbulb. This bulb lights up if the switches describe a
satisfactory cat. The switches shown in the control panel on page 104 are
set for a female unneutered black cat. This satisfies your criteria, so the
lightbulb is lit.

Now all we have to do is design a circuit that makes this control panel
work.

You'll recall that Claude Shannon's thesis was entitled "A Symbolic
Analysis of Relay and Switching Circuits." The relays he was referring to
were quite similar to the telegraph relays that we encountered in Chapter 6.
By the time of Shannon's paper, however, relays were being used for other
purposes and, in particular, in the vast network of the telephone system.

Like switches, relays can be connected in series and in parallel to perform
simple tasks in logic. These combinations of relays are called logic gates.
When I say that these logic gates perform simple tasks in logic, I mean as
simple as possible. Relays have an advantage over switches in that relays

can be switched on and off by other relays rather than by fingers. This
means that logic gates can be combined to perform more complex tasks,
such as simple functions in arithmetic. Indeed, the next chapter will
demonstrate how to wire switches, lightbulbs, a battery, and telegraph
relays to make an adding machine (albeit one that works solely with binary
numbers).

As you recall, relays were crucial to the workings of the telegraph system.
Over long distances, the wires connecting telegraph stations had a very high
resistance. Some method was needed to receive a weak signal and send an
identical strong signal. The relay did this by using an electromagnet to
control a switch. In effect, the relay amplified a weak signal to create a
strong signal.

For our purposes, we're not interested in using the relay to amplify a weak
signal. We're interested only in the idea of a relay being a switch that can be
controlled by electricity rather than by fingers. We can wire a relay with a
switch, a lightbulb, and a couple of batteries like this:

Notice that the switch at the left is open and the lightbulb is off. When you
close the switch, the battery at the left causes current to flow through the
many turns of wire around the iron bar. The iron bar becomes magnetic and
pulls down a flexible metal contact that connects the circuit to turn on the
lightbulb:

When the electromagnet pulls the metal contact, the relay is said to be
triggered. When the switch is turned off, the iron bar stops being magnetic,
and the metal contact returns to its normal position.

This seems like a rather indirect route to light the bulb, and indeed it is. If
we were interested only in lighting the bulb, we could dispense with the
relay entirely. But we're not interested in lighting bulbs. We have a much
more ambitious goal.

We're going to be using relays a lot in this chapter (and then hardly at all
after the logic gates have been built), so I want to simplify the diagram. We
can eliminate some of the wires by using a ground. In this case, the grounds
simply represent a common connection; they don't need to be connected to
the physical earth:

I know this doesn't look like a simplification, but we're not done yet. Notice
that the negative terminals of both batteries are connected to ground. So
anywhere we see something like this:

let's replace it with the capital letter V (which stands for voltage), as we did
in Chapters Chapter 5 and Chapter 6. Now our relay looks like this:

When the switch is closed, a current flows between V and ground through
the coils of the electromagnet. This causes the electromagnet to pull the
flexible metal contact. That connects the circuit between V, the lightbulb,
and ground. The bulb lights up:

These diagrams of the relay show two voltage sources and two grounds, but
in all the diagrams in this chapter, all the V's can be connected to one
another and all the grounds can be connected to one another. All the
networks of relays and logic gates in this chapter and the next will require

only one battery, although it might need to be a big battery. For example,
the preceding diagram can be redrawn with only one battery like this:

But for what we need to do with relays, this diagram isn't very clear. It's
better to avoid the circular circuits and look at the relay—like the control
panel earlier—in terms of inputs and outputs:

If a current is flowing through the input (for example, if a switch connects
the input to V), the electromagnet is triggered and the output has a voltage.

The input of a relay need not be a switch, and the output of a relay need not
be a lightbulb. The output of one relay can be connected to the input of
another relay, for example, like this:

When you turn the switch on, the first relay is triggered, which then
provides a voltage to the second relay. The second relay is triggered and the
light goes on:

Connecting relays is the key to building logic gates.

Actually, the lightbulb can be connected to the relay in two ways. Notice
the flexible metal piece that's pulled by the electromagnet. At rest, it's
touching one contact; when the electromagnet pulls it, it hits another
contact. We've been using that lower contact as the output of the relay, but
we could just as well use the upper contact. When we use this contact, the

output of the relay is reversed and the lightbulb is on when the input switch
is open:

And when the input switch is closed, the bulb goes out:

Using the terminology of switches, this type of relay is called a double-
throw relay. It has two outputs that are electrically opposite—when one has

a voltage, the other doesn't.

By the way, if you're having a tough time visualizing what modern relays
look like, you can see a few in conveniently transparent packaging at your
local Radio Shack. Some, like the heavy-duty relays with Radio Shack part
numbers 275-206 and 275-214, are about the size of ice cubes. The insides
are encased in a clear plastic shell, so you can see the electromagnet and the
metal contacts. The circuits I'll be describing in this chapter and the next
could be built using Radio Shack part number 275-240 relays, which are
smaller (about the size of a Chiclet) and cheaper ($2.99 apiece).

Just as two switches can be connected in series, two relays can be
connected in series:

The output of the top relay supplies a voltage to the second relay. As you
can see, when both switches are open, the lightbulb isn't lit. We can try
closing the top switch:

Still the lightbulb doesn't light because the bottom switch is still open and
that relay isn't triggered. We can try opening the top switch and closing the
bottom switch:

The lightbulb is still not lit. The current can't reach the lightbulb because
the first relay isn't triggered. The only way to get the bulb to light up is to
close both switches:

Now both relays are triggered, and current can flow between V, the
lightbulb, and ground.

Like the two switches wired in series, these two relays are performing a
little exercise in logic. The bulb lights up only if both relays are triggered.
These two relays wired in series are known as an AND gate. To avoid
excessive drawing, electrical engineers have a special symbol for an AND
gate. That symbol looks like this:

This is the first of four basic logic gates. The AND gate has two inputs (at
the left in this diagram) and one output (at the right). You'll often see the
AND gate drawn as this one is with the inputs at the left and the output at
the right. That's because people who are accustomed to reading from left to

right also like to read electrical diagrams from left to right. But the AND
gate can just as well be drawn with the inputs at the top, the right, or the
bottom.

The original circuit with the two relays wired in series with two switches
and a lightbulb looked like this:

Using the symbol for the AND gate, this same circuit looks like this:

Notice that this symbol for the AND gate not only takes the place of two
relays wired in series, but it also implies that the top relay is connected to a

voltage, and both relays are connected to ground. Again, the lightbulb lights
up only if both the top switch and the bottom switch are closed. That's why
it's called an AND gate.

The inputs of the AND gate don't necessarily have to be connected to
switches, and the output doesn't necessarily have to be connected to a
lightbulb. What we're really dealing with here are voltages at the inputs and
a voltage at the output. For example, the output of one AND gate can be an
input to a second AND gate, like this:

This bulb will light up only if all three switches are closed. Only if the top
two switches are closed will the output of the first AND gate trigger the
first relay in the second AND gate. The bottom switch triggers the second
relay in the second AND gate.

If we think of the absence of a voltage as a 0, and the presence of a voltage
as a 1, the output of the AND gate is dependent on inputs like this:

As with the two switches wired in series, the AND gate can also be
described in this little table:

AND 0 1

0 0 0

1 0 1

It's also possible to make AND gates with more than two inputs. For
example, suppose you connect three relays in series:

The lightbulb lights up only if all three switches are closed. This
configuration is expressed by this symbol:

It's called a 3-input AND gate.

The next logic gate involves two relays that are wired in parallel like this:

Notice that the outputs of the two relays are connected to each other. This
connected output then provides power for the lightbulb. Either one of the
two relays is enough to light the bulb. For example, if we close the top
switch, the bulb lights up. The bulb is getting power from the left relay.

Similarly, if we leave the top switch open but close the bottom switch, the
bulb lights up:

The bulb also lights if both switches are closed:

What we have here is a situation in which the bulb lights up if the top
switch or the bottom switch is closed. The key word here is or, so this is
called the OR gate. Electrical engineers use a symbol for the OR gate that
looks like this:

It's somewhat similar to the symbol for the AND gate except that the input
side is rounded, much like the O in OR. (That might help you to keep them
straight.)

The output of the OR gate supplies a voltage if either of the two inputs has
a voltage. Again, if we say that the absence of a voltage is 0 and the
presence of a voltage is 1, the OR gate has four possible states:

In the same way that we summarized the output of the AND gate, we can
summarize the output of the OR gate:

OR 0 1

0 0 1

1 1 1

OR gates can also have more than two inputs. (The output of such a gate is
1 if any of the inputs are 1; the output is 0 only if all the outputs are 0.)

Earlier I explained how the relays that we're using are called double-throw
relays because an output can be connected two different ways. Normally,
the bulb isn't lit when the switch is open:

When the switch is closed, the bulb lights up.

Alternatively, you can use the other contact so that the bulb is lit when the
switch is open:

In this case, the lightbulb goes out when you close the switch. A single
relay wired in this way is called an inverter. An inverter isn't a logic gate

(logic gates always have two or more inputs), but it's often very useful
nonetheless. It's represented by a special symbol that looks like this:

It's called an inverter because it inverts 0 (no voltage) to 1 (voltage) and
vice versa:

With the inverter, the AND gate, and the OR gate, we can start wiring the
control panel to automate a choice of the ideal kitty. Let's begin with the
switches. The first switch is closed for female and open for male. Thus we
can generate two signals that we'll call F and M, like this:

When F is 1, M will be 0 and vice versa. Similarly, the second switch is
closed for a neutered cat and open for an unneutered cat:

The next two switches are more complicated. In various combinations,
these switches must indicate four different colors. Here are the two
switches, both wired to a voltage:

When both switches are open (as shown), they indicate the color white.
Here's how to use two inverters and one AND gate to generate a signal I'll
call W, which is a voltage (1) if you select a white cat and not a voltage (0)
if not:

When the switches are open, the inputs to both inverters are 0. The outputs
of the inverters (which are inputs to the AND gate) are thus both 1. That
means the output of the AND gate is 1. If either of the switches is closed,
the output of the AND gate will be a 0.

To indicate a black cat, we close the first switch. This can be realized using
one inverter and an AND gate:

The output of the AND gate will be 1 only if the first switch is closed and
the second switch is open.

Similarly, if the second switch is closed, we want a tan cat:

And if both switches are closed, we want a cat of an "other" color:

Now let's combine all four little circuits into one big circuit. (As usual, the
black dots indicate connections between wires in the circuit; wires that
cross without black dots are not connected.)

Yes, I know this set of connections now looks very complicated. But if you
trace through very carefully—if you look at the two inputs to each AND
gate to see where they're coming from and try to ignore where they're also
going—you'll see that the circuit works. If both switches are off, the W
output will be 1 and the rest will be 0. If the first switch is closed, the B
output will be 1 and the rest will be 0, and so forth.

Some simple rules govern how you can connect gates and inverters: The
output of one gate (or inverter) can be the input to one or more other gates
(or inverters). But the outputs of two or more gates (or inverters) are never
connected to one another.

This circuit of four AND gates and two inverters is called a 2-Line-to-4-
Line Decoder. The input is two bits that in various combinations can
represent four different values. The output is four signals, only one of which
is 1 at any time, depending on the two input values. On similar principles,
you can make a 3-Line-to-8-Line Decoder or a 4-Line-to-16-Line Decoder,
and so forth.

The simplified version of the cat-selection expression was

(N x ((M x (W + T)) + (F x (1 – W)))) + B

For every + sign in this expression, there must be an OR gate in the circuit.
For every x sign, there must be an AND gate.

The symbols down the left side of the circuit diagram are in the same order
as they appear in the expression. These signals come from the switches
wired with inverters and the 2-line-to-4-line decoder. Notice the use of the
inverter for the (1 – W) part of the expression.

Now you might say, "That's a heck of a lot of relays," and yes, that's true.
There are two relays in every AND gate and OR gate, and one relay for
each inverter. I'd say the only realistic response is, "Get used to it." We'll be
using a lot more relays in the chapters ahead. Just be thankful you don't
actually have to buy them and wire them at home.

We'll look at two more logic gates in this chapter. Both use the output of the
relay that normally has a voltage present when the relay is untriggered.
(This is the output used in the inverter.) For example, in this configuration
the output from one relay supplies power to a second relay. With both
inputs off, the lightbulb is on:

If the top switch is closed, the bulb goes off:

The light goes off because power is no longer being supplied to the second
relay. Similarly, if the bottom switch is closed, the light is also off:

And if both switches are closed, the lightbulb is off:

This behavior is precisely the opposite of what happens with the OR gate.
It's called NOT OR or, more concisely, NOR. This is the symbol for the
NOR gate:

It's the same as the symbol for the OR except with a little circle at the
output. The circle means invert. The NOR is the same as

The output of the NOR gate is shown in the following table:

NOR 0 1

0 1 0

1 0 0

This table shows results opposite those of the OR gate, which are 1 if either
of the two inputs is 1 and 0 only if both inputs are 0.

And yet another way to wire two relays is shown here:

In this case, the two outputs are connected, which is similar to the OR
configuration but using the other contacts. The lightbulb is on when both
switches are open.

The lightbulb remains on when the top switch is closed:

Similarly, the lightbulb remains on when the bottom switch is closed:

Only when both switches are closed does the lightbulb go off:

This behavior is exactly opposite that of the AND gate. This is called NOT
AND or, more concisely, NAND. The NAND gate is drawn just like the
AND gate but with a circle at the output, meaning the output is the inverse
of the AND gate:

The NAND gate has the following behavior:

NAND 0 1

0 1 1

1 1 0

Notice that the output of the NAND gate is opposite the AND gate. The
output of the AND gate is 1 only if both inputs are 1; otherwise, the output
is 0.

At this point, we've looked at four different ways of wiring relays that have
two inputs and one output. Each configuration behaves in a slightly
different way. To avoid drawing and redrawing the relays, we've called
them logic gates and decided to use the same symbols to represent them that
are used by electrical engineers. The output of the particular logic gate
depends on the input, which is summarized here:

So now we have four logic gates and the inverter. Completing this array of
tools is just a regular old relay:

This is called a buffer, and this is the symbol for it:

It's the same symbol as the inverter but without the little circle. The buffer
is remarkable for not doing much. The output of the buffer is the same as
the input:

But you can use a buffer when an input signal is weak. You'll recall that this
was the reason relays were used with the telegraph many years ago. Or a
buffer can be used to slightly delay a signal. This works because the relay
requires a little time—some fraction of a second—to be triggered.

From here on in the book, you'll see very few drawings of relays. Instead,
the circuits that follow will be built from buffers, inverters, the four basic
logic gates, and more sophisticated circuits (like the 2-Line-to-4-Line
Decoder) built from these logic gates. All these other components are made
from relays, of course, but we don't actually have to look at the relays.

Earlier, when building the 2-Line-to-4-Line Decoder, we saw a little circuit
that looked like this:

Two inputs are inverted and become inputs to an AND gate. Sometimes a
configuration like this is drawn without the inverters:

Notice the little circles at the input to the AND gate. Those little circles
mean that the signals are inverted at that point—a 0 (no voltage) becomes a
1 (voltage) and vice versa.

An AND gate with two inverted inputs does exactly the same thing as a
NOR gate:

The output is 1 only if both inputs are 0.

Similarly, an OR gate with the two inputs inverted is equivalent to a NAND
gate:

The output is 0 only if both inputs are 1.

These two pairs of equivalent circuits represent an electrical
implementation of De Morgan's Laws. Augustus De Morgan was another
Victorianera mathematician, nine years older than Boole, whose book
Formal Logic was published in 1847, the very same day (the story goes) as
Boole's The Mathematical Analysis of Logic. Indeed, Boole had been
inspired to investigate logic by a very public feud that was being waged
between De Morgan and another British mathematician involving
accusations of plagiarism. (De Morgan has been exonerated by history.)

Very early on, De Morgan recognized the importance of Boole's insights.
He unselfishly encouraged Boole and helped him along the way, and is
today sadly almost forgotten except for his famous laws.

De Morgan's Laws are most simply expressed this way:

A and B are two Boolean operands. In the first expression, they're inverted
and then combined with the Boolean AND operator. This is the same as
combining the two operands with the Boolean OR operator and then
inverting the result (which is the NOR). In the second expression, the two
operands are inverted and then combined with the Boolean OR operator.
This is the same as combining the operands with the Boolean AND operator
and then inverting (which is the NAND).

De Morgan's Laws are an important tool for simplifying Boolean
expressions and hence, for simplifying circuits. Historically, this was what
Claude Shannon's paper really meant for electrical engineers. But
obsessively simplifying circuits won't be a major concern in this book. It's
preferable to get things working rather than to get things working as simply
as possible. And what we're going to get working next is nothing less than
an adding machine.

Chapter 12. A Binary Adding Machine
Addition is the most basic of arithmetic operations, so if we want to build a

computer (and that is my hidden agenda in this book), we must first know

how to build something that adds two numbers together. When you come

right down to it, addition is just about the only thing that computers do. If

we can build something that adds, we're well on our way to building

something that uses addition to also subtract, multiply, divide, calculate

mortgage payments, guide rockets to Mars, play chess, and foul up our

phone bills.

The adding machine that we'll build in this chapter will be big, clunky,

slow, and noisy, at least compared to the calculators and computers of

modern life. What's most interesting is that we're going to build this adding

machine entirely out of simple electrical devices that we've learned about in

previous chapters—switches, lightbulbs, wires, a battery, and relays that

have been prewired into various logic gates. This adding machine will

contain nothing that wasn't invented at least 120 years ago. And what's

really nice is that we don't have to actually build anything in our living

rooms; instead, we can build this adding machine on paper and in our

minds.

This adding machine will work entirely with binary numbers and will lack

some modern amenities. You won't be able to use a keyboard to indicate the

numbers you want to add; instead you'll use a row of switches. Rather than

a numeric display to show the results, this adding machine will have a row

of lightbulbs.

But this machine will definitely add two numbers together, and it will do so

in a way that's very much like the way that computers add numbers.

Adding binary numbers is a lot like adding decimal numbers. When you

want to add two decimal numbers such as 245 and 673, you break the

problem into simpler steps. Each step requires only that you add a pair of

decimal digits. In this example, you begin with 5 plus 3. The problem goes

a lot faster if you memorized an addition table sometime during your life.

The big difference between adding decimal and binary numbers is that you

use a much simpler table for binary numbers:

+ 0 1

0 0 1

1 1 10

If you actually grew up with a community of whales and memorized this

table in school, you might have chanted aloud:

0 plus 0 equals 0.

0 plus 1 equals 1.

1 plus 0 equals 1.

1 plus 1 equals 0, carry the 1.

You can rewrite the addition table with leading zeros so that each result is a

2-bit value:

+ 0 1

0 00 01

1 01 10

Viewed like this, the result of adding a pair of binary numbers is 2 bits,

which are called the sum bit and the carry bit (as in "1 plus 1 equals 0, carry
the 1"). Now we can divide the binary addition table into two tables, the

first one for the sum bit:

+ sum 0 1

0 0 1

1 1 0

and the second one for the carry bit:

+ carry 0 1

0 0 0

1 0 1

It's convenient to look at binary addition in this way because our adding

machine will do sums and carries separately. Building a binary adding

machine requires that we design a circuit that performs these operations.

Working solely in binary simplifies the problem immensely because all the

parts of a circuit—switches, lightbulbs, and wires—can be binary digits.

As in decimal addition, we add two binary numbers column by column

beginning with the rightmost column:

Notice that when we add the third column from the right, a 1 is carried over

to the next column. This happens again in the sixth, seventh, and eighth

columns from the right.

What size binary numbers do we want to add? Since we're building our

adding machine only in our minds, we could build one to add very long

numbers. But let's be reasonable and decide to add binary numbers up to 8

bits long. That is, we want to add binary numbers that can range from 0000-

0000 through 1111-1111, or decimal 0 through 255. The sum of two 8-bit

numbers can be as high as 1-1111-1110, or 510.

The control panel for our binary adding machine can look like this:

We have on this panel two rows of eight switches. This collection of

switches is the input device, and we'll use it to "key in" the two 8-bit

numbers. In this input device, a switch is off (down) for 0 and on (up) for 1,

just like the wall switches in your home. The output device at the bottom of

the panel is a row of nine lightbulbs. These bulbs will indicate the answer.

An unlit bulb is a 0 and a lit bulb is a 1. We need nine bulbs because the

sum of the two 8-bit numbers can be a 9-bit number.

The rest of the adding machine will consist of logic gates wired together in

various ways. The switches will trigger the relays in the logic gates, which

will then turn on the correct lights. For example, if we want to add 0110-

0101 and 1011-0110 (the two numbers shown in the preceding example),

we throw the appropriate switches as shown on the following page.

The bulbs light up to indicate the answer of 1-0001-1011. (Well, let's hope

so, anyway. We haven't built it yet!)

I mentioned in the last chapter that I'll be using lots of relays in this book.

The 8-bit adding machine we're building in this chapter requires no fewer

than 144 relays—18 for each of the 8 pairs of bits we're adding together. If I

showed you the completed circuit in its entirety, you'd definitely freak.

There's no way that anyone could make sense of 144 relays wired together

in strange ways. Instead, we're going to approach this problem in stages

using logic gates.

Maybe you saw right away a connection between logic gates and binary

addition when you looked at the table of the carry bit that results from

adding two 1-bit numbers together:

+ carry 0 1

0 0 0

1 0 1

You might have realized that this was identical to the output of the AND

gate shown in the last chapter:

AND 0 1

0 0 0

1 0 1

So the AND gate calculates a carry bit for the addition of two binary digits.

Aha! We're definitely making progress. Our next step seems to be to

persuade some relays to behave like this:

+ sum 0 1

0 0 1

1 1 0

This is the other half of the problem in adding a pair of binary digits. The

sum bit turns out to be not quite as straightforward as the carry bit, but we'll

get there.

The first thing to realize is that the OR gate is close to what we want except

for the case in the lower right corner:

OR 0 1

0 0 1

1 1 1

The NAND gate is also close to what we want except for the case in the

upper left corner:

NAND 0 1

0 1 1

1 1 0

So let's connect both an OR gate and a NAND gate to the same inputs:

The following table summarizes the outputs of these OR and NAND gates

and compares that to what we want for the adding machine:

A In B In OR Out NAND Out What we want

0 0 0 1 0

0 1 1 1 1

1 0 1 1 1

1 1 1 0 0

Notice that what we want is 1 only if the output from the OR gate and the

NAND gate are both 1. This suggests that these two outputs can be an input

to an AND gate:

And that's it.

Notice that there are still only two inputs and one output to this entire

circuit. The two inputs go into both the OR gate and the NAND gate. The

outputs from the OR and NAND gates go into the AND gate, and that gives

us exactly what we want:

A In B In OR Out NAND Out AND Out

0 0 0 1 0

0 1 1 1 1

1 0 1 1 1

1 1 1 0 0

There's actually a name for what this circuit does. It's called the Exclusive
OR gate or, more briefly, the XOR gate. It's called the Exclusive OR gate

because the output is 1 if the A input is 1 or the B input is 1, but not both.

So, instead of drawing an OR gate, NAND gate, and AND gate, we can use

the symbol that electrical engineers use for the XOR gate:

It looks very much like the OR gate except that it has another curved line at

the input side. The behavior of the XOR gate is shown here:

XOR 0 1

0 0 1

1 1 0

The XOR gate is the final logic gate I describe in detail in this book. (A

sixth gate sometimes shows up in electrical engineering. It's called the

coincidence or equivalence gate because the output is 1 only if the two

inputs are the same. The coincidence gate describes an output opposite that

of the XOR gate, so this gate's symbol is the same as the XOR gate but with

a little circle at the output end.)

Let's review what we know so far. Adding two binary numbers produces a

sum bit and a carry bit:

You can use the following two logic gates to get these results:

The sum of two binary numbers is given by the output of an XOR gate, and

the carry bit is given by the output of an AND gate. So we can combine an

AND gate and an XOR gate to add two binary digits called A and B:

And instead of drawing and redrawing an AND gate and an XOR gate, you

can simply draw a box like this:

This box is labeled Half Adder for a reason. Certainly it adds two binary

digits and gives you a sum bit and a carry bit. But the vast majority of

binary numbers are longer than 1 bit. What the Half Adder fails to do is add

a possible carry bit from a previous addition. For example, suppose we're

adding two binary numbers like these:

We can use the Half Adder only for the addition of the rightmost column: 1

plus 1 equals 0, carry the 1. For the second column from the right, we really

need to add three binary numbers because of the carry. And that goes for all

subsequent columns. Each subsequent addition of two binary numbers can

include a carry bit from the previous column.

To add three binary numbers, we need two Half Adders and an OR gate,

wired this way:

To understand this, begin with the A and B inputs to the first Half Adder at

the left. The output is a sum and a carry. That sum must be added to the

carry from the previous column, so they're inputs to the second Half Adder.

The sum from the second Half Adder is the final sum. The two Carry Outs

from the Half Adders are inputs to an OR gate. You might think another

Half Adder is called for here, and that would certainly work. But if you go

through all the possibilities, you'll find that the Carry Outs from the two

Half Adders are never both equal to 1. The OR gate is sufficient for adding

them because the OR gate is the same as the XOR gate if the inputs are

never both 1.

Instead of drawing and redrawing that diagram, we can just call it a Full
Adder:

The following table summarizes all the possible combinations of inputs to

the Full Adder and the resultant outputs:

A In B In Carry In Sum Out Carry Out

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

I said early on in this chapter that we would need 144 relays for our adding

machine. Here's how I figured that out: Each AND, OR, and NAND gate

requires 2 relays. So an XOR gate comprises 6 relays. A Half Adder is an

XOR gate and an AND gate, so a Half Adder requires 8 relays. Each Full

Adder is two Half Adders and an OR gate, or 18 relays. We need 8 Full

Adders for our 8-bit adding machine. That's 144 relays.

Recall our original control panel with the switches and lightbulbs:

We can now start wiring the switches and lightbulbs to the Full Adder.

First connect the two rightmost switches and the rightmost lightbulb to a

Full Adder:

When you begin adding two binary numbers, the first column of digits that

you add is different. It's different because every subsequent column might

include a carry bit from the previous column. The first column doesn't

include a carry bit, which is why the carry input to the Full Adder is

connected to ground. That means a 0 bit. The addition of the first pair of

binary digits could, of course, result in a carry bit. That carry output is an

input to the next column.

For the next two digits and the next lightbulb, you use a Full Adder wired

this way:

The carry output from the first Full Adder is an input to this second Full

Adder. Each subsequent column of digits is wired the same way. Each carry

output from one column is a carry input to the next column.

Finally the eighth and last pair of switches are wired to the last Full Adder:

Here the final carry output goes to the ninth lightbulb.

We're done.

Here's another way to look at this assemblage of eight Full Adders, with

each Carry Out serving as input to the next Carry In:

Here's the complete 8-Bit Adder drawn as one box. The inputs are labeled

A0 through A7 and B0 through B7. The outputs are labeled S0 through S7

(for sum):

This is a common way to label the separate bits of a multibit number. The

bits A0, B0, and S0 are the least-significant, or rightmost, bits. The bits A7,

B7, and S7 are the most-significant, or leftmost, bits. For example, here's

how these subscripted letters would apply to the binary number 0110-1001:

The subscripts start at 0 and get higher for more significant digits because

they correspond to the exponents of powers of two:

If you multiply each power of two by the digit below it and add, you'll get

the decimal equivalent of 0110-1001, which is 64 + 32 + 8 + 1, or 105.

Another way an 8-Bit Adder might be drawn is like this:

The double-line arrows have an 8 inside to indicate that each represents a

group of eight separate signals. They are labeled A7…A0, B7…B0, and

S7…S0 also to indicate 8-bit numbers.

Once you build one 8-Bit Adder, you can build another. It then becomes

easy to cascade them to add two 16-bit numbers:

The Carry Out of the adder on the right is connected to the Carry In of the

adder on the left. The adder on the left has as input the most-significant

eight digits of the two numbers to be added and creates as output the most-

significant eight digits of the result.

And now you might ask, "Is this really the way that computers add numbers

together?"

Basically, yes. But not exactly.

First, adders can be made faster than this one. If you look at how this circuit

works, a carry output from the least-significant pair of numbers is required

for the next pair to be added, and a carry output from the second pair is

required for the third pair to be added, and so forth. The total speed of the

adder is equal to the number of bits times the speed of the Full Adder

component. This is called a ripple carry. Faster adders use additional

circuitry called a look-ahead carry that speeds up this process.

Second (and most important), computers don't use relays any more! They

did at one time, however. The first digital computers built beginning in the

1930s used relays and later vacuum tubes. Today's computers use

transistors. When used in computers, transistors basically function the same

way relays do, but (as we'll see) they're much faster and much smaller and

much quieter and use much less power and are much cheaper. Building an

8-Bit Adder still requires 144 transistors (more if you replace the ripple

carry with a look-ahead carry), but the circuit is microscopic.

Chapter 13. But What About Subtraction?
After you've convinced yourself that relays can indeed be wired together to
add binary numbers, you might ask, "But what about subtraction?" Rest
assured that you're not making a nuisance of yourself by asking questions
like this; you're actually being quite perceptive. Addition and subtraction
complement each other in some ways, but the mechanics of the two
operations are different. An addition marches consistently from the
rightmost column of digits to the leftmost column. Each carry from one
column is added to the next column. We don't carry in subtraction,
however; we borrow, and that involves an intrinsically different mechanism
—a messy back-and-forth kind of thing.

For example, let's look at a typical borrow-laden subtraction problem:

To do this, we start with the rightmost column. First we see that 6 is bigger
than 3, so we have to borrow 1 from the 5, and then subtract 6 from 13,
which is 7. Then we have to remember that we borrowed 1 from the 5, so
it's really a 4, and this 4 is smaller than 7, so we borrow 1 from the 2 and
subtract 7 from 14, which is 7. Then we have to remember that we
borrowed 1 from the 2, so it's really a 1, and then we subtract 1 from it to
get 0. Our answer is 77:

Now how are we ever going to persuade a bunch of logic gates to go
through such perverse logic?

Well, we're not going to try. Instead, we're going to use a little trick that lets
us subtract without borrowing. This will please Polonius ("Neither a
borrower nor a lender be") and the rest of us as well. Moreover, examining
subtraction in detail is useful because it directly relates to the way in which
binary codes are used for storing negative numbers in computers.

For this explanation, I need to refer to the two numbers being subtracted.
Their proper names are the minuend and the subtrahend. The subtrahend is
subtracted from the minuend, and the result is the difference:

To subtract without borrowing, you first subtract the subtrahend not from
the minuend but from 999:

You use 999 here because the numbers have 3 digits. If the numbers had 4
digits, you would use 9999. Subtracting a number from a string of 9s results
in a number called the nines' complement. The nines' complement of 176 is
823. And it works in reverse: The nines' complement of 823 is 176. What's
nice is this: No matter what the subtrahend is, calculating the nines'
complement never requires a borrow.

After you've calculated the nines' complement of the subtrahend, you add it
to the original minuend:

And finally you add 1 and subtract 1000:

You're finished. The result is the same as before, and never once did you
borrow.

Why does this work? The original subtraction problem is

253 – 176

If any number is both added to and subtracted from this expression, the
result will be the same. So let's add 1000 and subtract 1000:

253 – 176 + 1000 – 1000

This expression is equivalent to

253 – 176 + 999 + 1 – 1000

Now the various numbers can be regrouped, this way:

253 + (999 – 176) + 1 – 1000

And this is identical to the calculation I demonstrated using the nines'
complement. We replaced the one subtraction with two subtractions and
two additions, but in the process we got rid of all the nasty borrows.

What if the subtrahend is larger than the minuend? For example, the
subtraction problem could be

Normally, you would look at this and say, "Hmmm. I see that the
subtrahend is larger than the minuend, so I have to switch the two numbers
around, perform the subtraction, and remember that the result is really a
negative number." You might be able to switch them around in your head
and write the answer this way:

Doing this calculation without borrowing is a little different from the earlier
example. You begin as you did before by subtracting the subtrahend (253)
from 999 to get the nines' complement:

Now add the nines' complement to the original minuend:

At this point in the earlier problem, you were able to add 1 and subtract
1000 to get the final result. But in this case, that strategy isn't going to work
well. You would need to subtract 1000 from 923, and that really means
subtracting 923 from 1000, and that requires borrowing.

Instead, since we effectively added 999 earlier, let's subtract 999 now:

When we see this, we realize that our answer will be a negative number and
that we really need to switch around the two numbers by subtracting 922
from 999. This again involves no borrowing, and the answer is as we
expect:

This same technique can also be used with binary numbers and is actually
simpler than with decimal numbers. Let's see how it works.

The original subtraction problem was

When these numbers are converted to binary, the problem becomes

Step 1. Subtract the subtrahend from 11111111 (which equals 255):

When we were working with decimal numbers, the subtrahend was
subtracted from a string of nines, and the result was called the nines'
complement. With binary numbers, the subtrahend is subtracted from a
string of ones and the result is called the ones' complement. But notice that
we don't really have to do a subtraction to calculate the ones' complement.
That's because every 0 bit in the original number becomes a 1 bit in the
ones' complement, and every 1 bit becomes a 0 bit. For this reason, the
ones' complement is also sometimes called the negation, or the inverse. (At
this point, you might recall from Chapter 11 that we built something called
an inverter that changed a 0 to a 1 and a 1 to a 0.)

Step 2. Add the ones' complement of the subtrahend to the minuend:

Step 3. Add 1 to the result:

Step 4. Subtract 100000000 (which equals 256):

The result is equivalent to 77 in decimal.

Let's try it again with the two numbers reversed. In decimal, the subtraction
problem is

and in binary it looks like this:

Step 1. Subtract the subtrahend from 11111111. You get the ones'
complement:

Step 2. Add the ones' complement of the subtrahend to the minuend:

Now 11111111 must be subtracted from the result in some way. When the
original subtrahend is smaller than the minuend, you accomplish this task
by adding 1 and subtracting 100000000. But you can't subtract this way
without borrowing. So instead, we subtract this result from 11111111:

Again, this strategy really means that we're just inverting all the bits to get
the result. The answer again is 77, but really –77.

At this point, we have all the knowledge we need to modify the adding
machine developed in the last chapter so that it can perform subtraction as
well as addition. So that this doesn't become too complex, this new adding
and subtracting machine will perform subtractions only when the

subtrahend is less than the minuend, that is, when the result is a positive
number.

The core of the adding machine was an 8-Bit Adder assembled from logic
gates:

As you probably recall, the inputs A0 through A7 and B0 through B7 were
connected to switches that indicated two 8-bit values to be added. The
Carry In input was connected to ground. The S0 through S7 outputs were
connected to eight lightbulbs that displayed the result of the addition.
Because the addition could result in a 9-bit value, the Carry Out output was
also connected to a ninth lightbulb.

The control panel looked like this:

In this diagram, the switches are set to add 183 (or 10110111) and 22
(00010110), producing the result of 205, or 11001101 as shown in the row

of lightbulbs.

The new control panel for adding and subtracting two 8-bit numbers is just
slightly modified. It includes an extra switch to indicate whether we want to
add or subtract.

You turn this switch off for addition and on for subtraction, as labeled.
Also, only the rightmost eight lightbulbs are used to display results. The
ninth lightbulb is now labeled "Overflow/Underflow." This lightbulb
indicates that a number is being calculated that can't be represented by the
eight lightbulbs. This will happen if an addition produces a number greater
than 255 (that's called an overflow) or if a subtraction produces a negative
number (an underflow). A subtraction will produce a negative number if the
subtrahend is larger than the minuend.

The major addition to the adding machine is some circuitry that calculates a
ones' complement of an 8-bit number. Recall that the ones' complement is
equivalent to inverting bits, so something to calculate the ones' complement
of an 8-bit number might look as simple as eight inverters:

The problem with this circuit is that it always inverts the bits that enter into
it. We're trying to create a machine that does both addition and subtraction,
so the circuitry needs to invert the bits only if a subtraction is being
performed. A better circuit looks like this:

A single signal labeled Invert is input to each of eight XOR (exclusive OR)
gates. Recall that the XOR exhibits the following behavior:

XOR 0 1

0 0 1

1 1 0

So if the Invert signal is 0, the eight outputs of the XOR gates are the same
as the eight inputs. For example, if 01100001 is input, then 01100001 is
output. If the Invert signal is 1, the eight input signals are inverted. If
01100001 is input, 10011110 is output.

Let's package these eight XOR gates in a box labeled Ones' Complement:

The Ones' Complement box, the 8-Bit Adder box, and a final exclusive OR
gate can now be wired together like this:

Notice the three signals all labeled SUB. This is the Add/Subtract switch.
This signal is 0 if an addition is to be performed and 1 if a subtraction is to

be performed. For a subtraction, the B inputs (the second row of switches)
are all inverted by the Ones' Complement circuit before entering the adder.
Also for a subtraction, you add 1 to the result of the addition by setting the
CI (Carry In) input of the adder to 1. For an addition, the Ones'
Complement circuit has no effect and the CI input is 0.

The SUB signal and the CO (Carry Out) output of the adder also go into an
XOR gate that's used to light up the Overflow/Underflow lamp. If the SUB
signal is 0 (which means an addition is being performed), the lightbulb will
be lit if the CO output of the adder is 1. This means that the result of the
addition is greater than 255.

If a subtraction is being performed and if the subtrahend (the B switches) is
less than the minuend (the A switches), it's normal that the CO output from
the adder is 1. This represents the 100000000 that must be subtracted in the
final step. So the Overflow/Underflow lamp is lit only if the CO output
from the adder is 0. This means that the subtrahend is greater than the
minuend and the result is negative. The machine shown above isn't
designed to display negative numbers.

You must surely be glad you asked, "But what about subtraction?"

I've been talking about negative numbers in this chapter, but I haven't yet
indicated what negative binary numbers look like. You might assume that
the traditional negative sign is used with binary just as it is in decimal. For
example, –77 is written in binary as –1001101. You can certainly do that,
but one of the goals in using binary numbers is to represent everything
using 0s and 1s—even tiny symbols such as the negative sign.

Of course, you could simply use another bit for the negative sign. You could
make that extra bit 1 for a negative number and 0 for a positive number,
which would work, although it doesn't go quite far enough. There's another
solution for representing negative numbers that also provides a hassle-free
method for adding negative and positive numbers together. The drawback
of this other method is that you must decide ahead of time how many digits
are required for all the numbers you might encounter.

Let's think about this for a moment. The advantage of writing positive and
negative numbers the way we normally do is that they can go on forever.
We imagine 0 as the middle of an infinite stream of positive numbers going

off in one direction and an infinite stream of negative numbers going off in
another:

… –1,000,000 –999,999 … –3 –2 –1 0 1 2 3 … 999,999 1,000,000 …

But suppose we don't need an infinite number of numbers. Suppose we
know at the outset that every number we come across will be within a
particular range.

Let's look at a checking account, which is one place people sometimes see
negative numbers. Let's assume that we never have as much as $500 in our
checking account and that the bank has given us a no-bounce checking limit
of $500. This means that the balance in our checking account is always a
number somewhere between $499 and –$500. Let's also assume that we
never deposit as much as $500, we never write a check for more than $500,
and we deal only in dollars and don't care about cents.

This set of conditions means that the range of numbers we deal with in
using our checking account include -500 through 499. That's a total of 1000
numbers. This restriction implies that we can use just three decimal digits
and no negative sign to represent all the numbers we need. The trick is that
we really don't need positive numbers ranging from 500 through 999. That's
because we've already established that the maximum positive number we
need is 499. So the three-digit numbers from 500 through 999 can actually
represent negative numbers. Here's how it works:

To mean –500, we use 500.

To mean –499, we use 501.

To mean –498, we use 502.

(yada, yada, yada)

To mean –2, we use 998.

To mean –1, we use 999.

To mean 0, we use 000.

To mean 1, we use 001.

To mean 2, we use 002.

(yada, yada, yada)

To mean 497, we use 497.

To mean 498, we use 498.

To mean 499, we use 499.

In other words, every 3-digit number that begins with a 5, 6, 7, 8, or 9 is
actually a negative number. Instead of writing the numbers like this:

–500 –499 –498 … –4 –3 –2 –1 0 1 2 3 4 … 497 498 499

we write them this way:

500 501 502 … 996 997 998 999 000 001 002 003 004 … 497 498 499

Notice that this forms a circle of sorts. The lowest negative number (500)
looks as if it continues from the highest positive number (499). And the
number 999 (which is actually –1) is one less than zero. If we add 1 to 999,
we'd normally get 1000. But since we're only dealing with three digits, it's
actually 000.

This type of notation is called ten's complement. To convert a 3-digit
negative number to ten's complement, we subtract it from 999 and add 1. In
other words, the ten's complement is the nines' complement plus one. For
example, to write –255 in ten's complement, subtract it from 999 to get 744
and then add 1 to get 745.

You've probably heard it said that "Subtraction is merely addition using
negative numbers." To which you've probably replied, "Yeah, but you still
have to subtract them." Well, using the ten's complement, you don't subtract
numbers at all. Everything is addition.

Suppose you have a checking account balance of $143. You write a check
for $78. That means you have to add a negative $78 to $143. In ten's
complement, –78 is written as 999 –078 + 1, or 922. So, our new balance is
$143 + $922, which equals (ignoring the overflow), $65. If we then write a
check for $150 dollars, we have to add –150, which in ten's complement
equals 850. So our previous balance of 065 plus 850 equals 915, our new
balance. This is actually equivalent to –$85.

The equivalent system in binary is called two's complement. Let's assume
that we're working with 8-bit numbers. These range from 00000000 to
11111111, which normally correspond to decimal numbers 0 through 255.
But if you also want to express negative numbers, every 8-bit number that
begins with a 1 will actually represent a negative number, as shown in the
following table:

Binary Decimal

10000000 –128

10000001 –127

10000010 –126

10000011 –125

⋮

11111101 –3

11111110 –2

11111111 –1

00000000 0

00000001 1

00000010 2

⋮

01111100 124

01111101 125

01111110 126

01111111 127

The range of numbers that you can represent is now limited to –128 through
+127. The most significant (leftmost) bit is known as the sign bit. The sign
bit is 1 for negative numbers and 0 for positive numbers.

To calculate the two's complement, first calculate the ones' complement and
then add 1. This is equivalent to inverting all the digits and adding 1. For
example, the decimal number 125 is 01111101. To express –125 in two's
complement, first invert the digits of 01111101 to get 10000010, and then
add 1 to get 10000011. You can verify the result using the preceding table.
To go backward, do the same thing—invert all the bits and add 1.

This system gives us a way to express positive and negative numbers
without using negative signs. It also lets us freely add positive and negative

numbers using only the rules of addition. For example, let's add the binary
equivalents of –127 and 124. Using the preceding table as a cheat sheet, this
is simply

The result is equivalent to –3 in decimal.

What you need to watch out for here is overflow and underflow conditions.
That's when the result of an addition is greater than 127 or less than –128.
For example, suppose you add 125 to itself:

Because the high bit is set to 1, the result must be interpreted as a negative
number, specifically the binary equivalent of –6. Something similar happens
when –125 is added to itself:

We decided at the outset that we're restricting ourselves to 8-bit numbers, so
the leftmost digit of the result must be ignored. The rightmost 8 bits are
equivalent to +6.

In general, the result of an addition involving positive and negative
numbers is invalid if the sign bits of the two operands are the same but the
sign bit of the result is different.

Now we have two different ways of using binary numbers. Binary numbers
can be either signed or unsigned. Unsigned 8-bit numbers range from 0
through 255. Signed 8-bit numbers range from –128 through 127. Nothing
about the numbers themselves will tell you whether they're signed or
unsigned. For example, suppose someone says, "I have an 8-bit binary
number and the value is 10110110. What's the decimal equivalent?" You

must first inquire, "Is that a signed or an unsigned number? It could be –74
or 182."

That's the trouble with bits: They're just zeros and ones and don't tell you
anything about themselves.

Chapter 14. Feedback and Flip-Flops
Everybody knows that electricity makes things move. A brief glance around

the average home reveals electric motors in appliances as diverse as clocks,

fans, food processors, and compact disc players. Electricity also makes the

cones in loudspeakers vibrate, bringing forth sounds, speech, and music

from the stereo system and the television set. But perhaps the simplest and

most elegant way that electricity makes things move is illustrated by a class

of devices that are quickly disappearing as electronic counterparts replace

them. I refer to the marvelously retro electric buzzers and bells.

Consider a relay wired this way with a switch and battery:

If this looks a little odd to you, you're not imagining things. We haven't seen

a relay wired quite like this yet. Usually a relay is wired so that the input is

separate from the output. Here it's all one big circle. If you close the switch,

a circuit is completed:

The completed circuit causes the electromagnet to pull down the flexible

contact:

But when the contact changes position, the circuit is no longer complete, so

the electromagnet loses its magnetism and the flexible contact flips back up:

which, of course, completes the circuit again. What happens is this: As long

as the switch is closed, the metal contact goes back and forth—alternately

closing the circuit and opening it—most likely making a sound. If the

contact makes a rasping sound, it's a buzzer. If you attach a hammer to it

and provide a metal gong, you'll have the makings of an electric bell.

You can choose from a couple of ways to wire this relay to make a buzzer.

Here's another way to do it using the conventional voltage and ground

symbols:

You might recognize in this diagram the inverter from Chapter 11. The

circuit can be drawn more simply this way:

As you'll recall, the output of an inverter is 1 if the input is 0, and 0 if the

input is 1. Closing the switch on this circuit causes the relay in the inverter

to alternately open and close. You can also wire the inverter without a

switch to go continuously:

This drawing might seem to be illustrating a logical contradiction because

the output of an inverter is supposed to be opposite the input, but here the

output is the input! Keep in mind, however, that the inverter is actually just

a relay, and the relay requires a little bit of time to change from one state to

another. So even if the input is the same as the output, the output will soon

change, becoming the inverse of the input (which, of course, changes the

input, and so forth and so on).

What is the output of this circuit? Well, the output quickly alternates

between providing a voltage and not providing a voltage. Or, we can say,

the output quickly alternates between 0 and 1.

This circuit is called an oscillator. It's intrinsically different from everything

else we've looked at so far. All the previous circuits have changed their state

only with the intervention of a human being who closes or opens a switch.

The oscillator, however, doesn't require a human being; it basically runs by

itself.

Of course, the oscillator in isolation doesn't seem to be very useful. We'll

see later in this chapter and in the next few chapters that such a circuit

connected to other circuits is an essential part of automation. All computers

have some kind of oscillator that makes everything else move in

synchronicity.

The output of the oscillator alternates between 0 and 1. A common way to

symbolize that fact is with a diagram that looks like this:

This is understood to be a type of graph. The horizontal axis represents

time, and the vertical axis indicates whether the output is 0 or 1:

All this is really saying that as time passes, the output of the oscillator

alternates between 0 and 1 on a regular basis. For that reason, an oscillator

is sometimes often referred to as a clock because by counting the number of

oscillations you can tell time (kind of).

How fast will the oscillator run? That is, how quickly will the metal contact

of the relay vibrate back and forth? How many times a second? That

obviously depends on how the relay is built. One can easily imagine a big,

sturdy relay that clunks back and forth slowly and a small, light relay that

buzzes rapidly.

A cycle of an oscillator is defined as the interval during which the output of

the oscillator changes and then comes back again to where it started:

The time required for one cycle is called the period of the oscillator. Let's

assume that we're looking at a particular oscillator that has a period of 0.05

second. We can then label the horizontal axis in seconds beginning from

some arbitrary time we denote as 0:

The frequency of the oscillator is 1 divided by the period. In this example,

if the period of the oscillator is 0.05 second, the frequency of the oscillator

is 1 ÷ 0.05, or 20 cycles per second. Twenty times per second, the output of

the oscillator changes and changes back.

Cycles per second is a fairly self-explanatory term, much like miles per
hour or pounds per square inch or calories per serving. But cycles per
second isn't used much any more. In commemoration of Heinrich Rudolph

Hertz (1857–1894), who was the first person to transmit and receive radio

waves, the word hertz is now used instead. This usage started first in

Germany in the 1920s and then expanded into other countries over the

decades.

Thus, we can say that our oscillator has a frequency of 20 hertz, or (to

abbreviate) 20 Hz.

Of course, we just guessed at the actual speed of one particular oscillator.

By the end of this chapter, we'll be able to build something that lets us

actually measure the speed of an oscillator.

To begin this endeavor, let's look at a pair of NOR gates wired a particular

way. You'll recall that the output of a NOR gate is a voltage only if both

inputs aren't voltages:

NOR 0 1

0 1 0

1 0 0

Here's a circuit with two NOR gates, two switches, and a lightbulb:

Notice the oddly contorted wiring: The output of the NOR gate on the left is

an input to the NOR gate on the right, and the output of the right NOR gate

is an input to the left NOR gate. This is a type of feedback. Indeed, just as

in the oscillator, an output circles back to become an input. This

idiosyncrasy will be a characteristic of most of the circuits in this chapter.

At the outset, the only current flowing in this circuit is from the output of

the left NOR gate. That's because both inputs to that gate are 0. Now close

the upper switch. The output from the left NOR gate becomes 0, which

means the output from the right NOR gate becomes 1 and the lightbulb goes

on:

The magic occurs when you now open the upper switch. Because the output

of a NOR gate is 0 if either input is 1, the output of the left NOR gate

remains the same and the light remains lit:

Now this is odd, wouldn't you say? Both switches are open—the same as in

the first drawing—yet now the lightbulb is on. This situation is certainly

different from anything we've seen before. Usually the output of a circuit is

dependent solely upon the inputs. That doesn't seem to be the case here.

Moreover, at this point you can close and open that upper switch and the

light remains lit. That switch has no further effect on the circuit because the

output of the left NOR gate remains 0.

Now close the lower switch. Because one of the inputs to the right NOR

gate is now 1, the output becomes 0 and the lightbulb goes out. The output

of the left NOR gate becomes 1:

Now you can open the bottom switch and the lightbulb stays off:

We're back where we started. At this time, you can close and open the

bottom switch with no further effect on the lightbulb. In summary

Closing the top switch causes the lightbulb to go on, and it stays on

when the top switch is opened.

Closing the bottom switch causes the lightbulb to go off, and it stays off

when the bottom switch is opened.

The strangeness of this circuit is that sometimes when both switches are

open the light is on, and sometimes when both switches are open, the light

is off. We can say that this circuit has two stable states when both switches

are open. Such a circuit is called a flip-flop, a word also used for beach

sandals and the tactics of politicians. The flip-flop dates from 1918 with the

work of English radio physicist William Henry Eccles (1875–1966) and

F.W. Jordan (about whom not much seems to be known).

A flip-flop circuit retains information. It "remembers." In particular, the

flip-flop shown previously remembers which switch was most recently

closed. If you happen to come upon such a flip-flop in your travels and you

see that the light is on, you can surmise that it was the upper switch that was

most recently closed; if the light is off, the lower switch was most recently

closed.

A flip-flop is very much like a seesaw. A seesaw has two stable states,

never staying long in that precarious middle position. You can always tell

from looking at a seesaw which side was pushed down most recently.

Although it might not be apparent yet, flip-flops are essential tools. They

add memory to a circuit to give it a history of what's gone on before.

Imagine trying to count if you couldn't remember anything. You wouldn't

know what number you were up to and what number comes next! Similarly,

a circuit that counts (which I'll show you later in this chapter) needs flip-

flops.

There are a couple of different types of flip-flops. What I've just shown is

the simplest and is called an R-S (or Reset-Set) flip-flop. The two NOR

gates are more commonly drawn and labeled as in the diagram at the top of

the next page to give it a symmetrical look.

The output that we used for the lightbulb is traditionally called Q. In

addition, there's a second output called (pronounced Q bar) that's the

opposite of Q. If Q is 0, then is 1, and vice versa. The two inputs are

called S for set and R for reset. You can think of these verbs as meaning

"set Q to 1" and "reset Q to 0." When S is 1 (which corresponds to closing

the top switch in the earlier diagram), Q becomes 1 and becomes 0.

When R is 1 (corresponding to closing the bottom switch in the earlier

diagram), Q becomes 0 and becomes 1. When both inputs are 0, the

output indicates whether Q was last set or reset. These results are summed

up in the following table:

Inputs Outputs

S R Q

1 0 1 0

0 1 0 1

0 0 Q

1 1 Disallowd

This is called a function table or a logic table or a truth table. It shows the

outputs that result from particular combinations of inputs. Because there are

only two inputs to the R-S flip-flop, the number of combinations of inputs

is four. These correspond to the four rows of the table under the headings.

Notice the row second from the bottom when S and R are both 0: The

outputs are indicated as Q and . This means that the Q and outputs

remain what they were before both the S and R inputs became 0. The final

row of the table indicates that a situation in which the S and R inputs are

both 1 is disallowed or illegal. This doesn't mean you'll get arrested for

doing it, but if both inputs are 1 in this circuit, both outputs are 0, which

violates the notion of being the opposite of Q. So when you're designing

circuitry that uses the R-S flip-flop, avoid situations in which the S and R

inputs are both 1.

The R-S flip-flop is often drawn as a little box with the two inputs and two

outputs labeled like this:

The R-S flip-flop is certainly interesting as a first example of a circuit that

seems to "remember" which of two inputs was last a voltage. What turns

out to be much more useful, however, is a circuit that remembers whether a

particular signal was 0 or 1 at a particular point in time.

Let's think about how such a circuit should behave before we actually try to

build it. It would have two inputs. Let's call one of them Data. Like all

digital signals, the Data input can be 0 or 1. Let's call the other one Hold
That Bit, which is the digital equivalent of a person saying "Hold that

thought." Normally the Hold That Bit signal is 0, in which case the Data

signal has no effect on the circuit. When Hold That Bit is 1, the circuit

reflects the value of the Data signal. The Hold That Bit signal can then go

back to being 0, at which time the circuit remembers the last value of the

Data signal. Any changes in the Data signal have no further effect.

In other words, we want something that has the following function table:

Inputs Outputs

Data Hold That Bit Q

0 1 0

1 1 1

0 0 Q

1 0 Q

In the first two cases, when the Hold That Bit signal is 1, the output Q is the

same as the Data input. In the second two cases, when the Hold That Bit

signal is 0, the Q output is the same as it was before. Notice in the second

two cases that when Hold That Bit is 0, the Q output is the same regardless

of what the Data input is. The function table can be simplified a little, like

this:

Inputs Outputs

Data Hold That Bit Q

0 1 0

1 1 1

X 0 Q

The X means "don't care." It doesn't matter what the Data input is because if

the Hold That Bit input is 0, the output Q is the same as it was before.

Implementing a Hold That Bit signal based on our existing R-S flip-flop

requires that we add two AND gates at the input end, as in the diagram at

the top of the following page.

Recall that the output of an AND gate is 1 only if both inputs are 1. In this

diagram, the Q output is 0 and the output is 1.

As long as the Hold That Bit signal is 0, the Set signal has no effect on the

outputs:

Similarly, the Reset signal has no effect:

Only when the Hold That Bit signal is 1 will this circuit function the same

way as the normal R-S flip-flop shown earlier:

It behaves like a normal R-S flip-flop because now the output of the upper

AND gate is the same as the Reset signal, and the output of the lower AND

gate is the same as the Set signal.

But we haven't yet achieved our goal. We want only two inputs, not three.

How is this done? If you recall the original function table of the R-S flip-

flop, the case in which Set and Reset were both 1 was disallowed, so we

want to avoid that. And it doesn't make much sense for the Set and Reset

signals to now both be 0 because that's simply the case in which the output

didn't change. We can accomplish the same thing in this circuit by setting

Hold That Bit to 0.

So it makes sense that if Set is 1, Reset is 0; and if Set is 0, Reset is 1. A

signal called Data can be equivalent to a Set, and the Data signal inverted

can be the Reset signal:

In this case, both inputs are 0 and the output Q is 0 (which means that is

1). As long as Hold That Bit is 0, the Data input has no effect on the circuit:

But when Hold That Bit is 1, the circuit reflects the value of the Data input:

The Q output is now the same as the Data input, and is the opposite. Now

Hold That Bit can go back to being 0:

The circuit now remembers the value of Data when Hold That Bit was last

1, regardless of how Data changes. The Data signal could, for example, go

back to 0 with no effect on the output:

This circuit is called a level-triggered D-type flip-flop. The D stands for

Data. Level-triggered means that the flip-flop saves the value of the Data

input when the Hold That Bit input is at a particular level, in this case 1.

(We'll look at an alternative to level-triggered flip-flops shortly.)

Usually when a circuit like this appears in a book, the input isn't labeled

Hold That Bit. It's usually labeled Clock. Of course, this signal isn't a real
clock, but it might sometimes have clocklike attributes, which means that it

might tick back and forth between 0 and 1 on a regular basis. But for now,

the Clock input simply indicates when the Data input is to be saved:

And usually when the function table is shown, Data is abbreviated as D and

Clock is abbreviated as Clk:

Inputs Outputs

D Clk Q Q-bar

0 1 0 1

1 1 1 0

X 0 Q Q-bar

This circuit is also known as a level-triggered D-type latch, and that term

simply means that the circuit latches onto one bit of data and keeps it

around for further use. The circuit can also be referred to as a 1-bit memory.

I'll demonstrate in Chapter 16 how very many of these flip-flops can be

wired together to provide many bits of memory.

Saving a multibit value in latches is often useful. Suppose you want to use

the adding machine in Chapter 12 to add three 8-bit numbers together.

You'd key in the first number on the first set of switches and the second

number on the second set of switches as usual, but then you'd have to write

down the result. You'd then have to key in that result on one set of switches

and key in the third number on the other set of switches. You really

shouldn't have to key in an intermediate result. You should be able to use it

directly from the first calculation.

Let's solve this problem using latches. Let's assemble eight latches in a box.

Each of the eight latches uses two NOR gates and two AND gates and one

inverter, as shown previously. The Clock inputs are all connected. Here's

the resultant package:

This latch is capable of saving 8 bits at once. The eight inputs on the top are

labeled D0 through D7, and the eight outputs on the bottom are labeled Q0

through Q7. The input at the left is the Clock. The Clock signal is normally

0. When the Clock signal is 1, the 8-bit value on the D inputs is transferred

to the Q outputs. When the Clock signal goes back to 0, that 8-bit value

stays there until the next time the Clock signal is 1.

The 8-Bit Latch can also be drawn with the eight Data inputs and eight Q

outputs grouped together as you see on the following page.

Here's the 8-Bit Adder:

Normally (ignoring what we did with subtraction in the last chapter), the

eight A inputs and eight B inputs are connected to switches, the CI (Carry

In) input is connected to ground, and the eight S (Sum) outputs and CO

(Carry Out) are connected to lightbulbs.

In this revised version, the eight S outputs of the 8-Bit Adder can be

connected to both the lightbulbs and the D inputs of the 8-Bit Latch. A

switch labeled Save can be the Clock input of the latches to save a result

from the adder:

The box labeled 2-Line-to-1-Line Selector lets you choose with a switch

whether you want the B inputs to the adder to come from the second row of

switches or from the Q outputs of the latches. You close the switch to select

the outputs from the 8-Bit Latch. The 2-Line-to-1-Line Selector uses eight

of the following circuits:

If the Select input is 1, the output of the OR gate is the same as the B input.

That's because the output of the top AND gate is the same as the B input,

and the output of the bottom AND gate is 0. Similarly, if the Select input is

0, the output is the same as the A input. This is summed up in the following

function table:

Inputs Outputs

Select A B Q

0 0 X 0

0 1 X 1

1 x 0 0

1 x 1 1

The box shown in the revised adding machine comprises eight of these 1-bit

selectors. All the Select inputs are wired together.

This revised adding machine isn't handling the Carry Out signal very well.

If the addition of two numbers causes the Carry Out signal to be 1, the

signal is ignored when the next number is added in. One possible solution is

to make the Adder, the Latch, and the Selector all 16 bits wide, or at least

wider than the largest sum you'll encounter. I won't really be solving this

problem until Chapter 17.

A more interesting approach to the adding machine eliminates an entire row

of eight switches. But first we need to modify the D-type flip-flop slightly

by adding an OR gate and an input signal called Clear. The Clear input is

normally 0. But when it's 1, the Q output becomes 0, as shown here:

This signal forces Q to be 0 regardless of the other input signals, in effect

clearing the flip-flop.

Why do we need this, you might ask? Why can't we clear the flip-flop by

setting the Data input to 0 and the Clock input to 1? Well, maybe we can't

control exactly what's going into the Data input. Maybe we have a set of

eight of these latches wired to the outputs of an 8-Bit Adder, like so:

Notice that the switch labeled Add now controls the Clock input of the

latch.

You might find this adder easier to use than the previous one, particularly if

you need to add a long list of numbers. You begin by pressing the Clear

switch. That action causes the output of the latches to be 0, turning off all

the lights and also setting the second set of inputs to the 8-Bit Adder to all

0s. You key in the first number and press the Add button. That number

appears on the lights. You then key in the second number and again press

the Add button. The number set up by the switches is added to the previous

total, and it appears on the lights. Just continue keying in more numbers and

pressing the Add switch.

I mentioned earlier that the D-type flip-flop we designed was level-
triggered. This means that the Clock input must change its level from 0 to 1

in order for the value of the Data input to be stored in the latch. But during

the time that the Clock input is 1, the Data input can change; any changes in

the Data input while the Clock input is 1 will be reflected in the values of

the Q and outputs.

For some applications, a level-triggered Clock input is quite sufficient. But

for other applications, an edge-triggered Clock input is preferred. An edge

trigger causes the outputs to change only when the Clock makes a transition
from 0 to 1. As with the level-triggered flip-flop, when the Clock input is 0,

any changes to the Data input don't affect the outputs. The difference in an

edge-triggered flip-flop is that changes to the Data input also don't affect

the outputs when the Clock input is 1. The Data input affects the outputs

only at the instant that the Clock changes from 0 to 1.

An edge-triggered D-type flip-flop is constructed from two stages of R-S

flip-flops, wired together this way:

The idea here is that the Clock input controls both the first stage and the

second stage. But notice that the clock is inverted in the first stage. This

means that the first stage works exactly like a D-type flip-flop except that

the Data input is stored when the Clock is 0. The outputs of the second

stage are inputs to the first stage, and these are saved when the Clock is 1.

The overall result is that the Data input is saved when the Clock changes

from 0 to 1.

Let's take a closer look. Here's the flip-flop at rest with both the Data and

Clock inputs at 0 and the Q output at 0:

Now change the Data input to 1:

This changes the first flip-flop stage because the inverted Clock input is 1.

But the second stage remains unchanged because the uninverted Clock

input is 0. Now change the Clock input to 1:

This causes the second stage to change, and the Q output goes to 1. The

difference is that the Data input can now change (for example, back to 0)

without affecting the Q output:

The Q and outputs can change only at the instant that the Clock input

changes from 0 to 1.

The function table of the edge-triggered D-type flip-flop requires a new

symbol, which is an arrow pointing up (↑). This symbol indicates a signal

making a transition from a 0 to a 1:

Inputs Outputs

D Clk Q

0 ↑ 0 1

1 ↑ 1 0

X 0 Q

The arrow indicates that the output Q becomes the same as the Data input

when the Clock makes a transition from 0 to 1. This is known as a positive
transition of the Clock signal. (A negative transition is the transition from 1

to 0.) The flip-flop has a diagram like this:

The little angle bracket indicates that the flip-flop is edge triggered.

Now I want to show you a circuit using the edge-triggered D-type flip-flop

that you can't duplicate with the level-triggered version. You'll recall the

oscillator that we constructed at the beginning of this chapter. The output of

the oscillator alternates between 0 and 1:

Let's connect the output of the oscillator to the Clock input of the

edgetriggered D-type flip-flop. And let's connect the output to the D

input:

The output of the flip-flop is itself an input to the flip-flop. It's feedback

upon feedback! (In practice, this could present a problem. The oscillator is

constructed out of a relay that's flipping back and forth as fast as it can. The

output of the oscillator is connected to the relays that make up the flip-flop.

These other relays might not be able to keep up with the speed of the

oscillator. To avoid these problems, let's assume that the relay used in the

oscillator is much slower than the relays used elsewhere in these circuits.)

To see what happens in this circuit, let's look at a function table that

illustrates the various changes. At the start, let's say that the Clock input is 0

and the Q output is 0. That means that the output is 1, which is connected

to the D input:

Inputs Outputs

D Clk Q

1 0 0 1

When the Clock input changes from 0 to 1, the Q output will become the

same as the D input:

Inputs Outputs

D Clk Q

1 0 0 1

1 ↑ 1 0

But because the output changes to 0, the D input will also change to 0.

The Clock input is now 1:

Inputs Outputs

D Clk Q

1 0 0 1

1 ↑ 1 0

0 1 1 0

The Clock input changes to back to 0 without affecting the outputs:

Inputs Outputs

D Clk Q

1 0 0 1

1 ↑ 1 0

0 1 1 0

0 0 1 0

Now the Clock input changes to 1 again. Because the D input is 0, the Q

output becomes 0 and the output becomes 1:

Inputs Outputs

D Clk Q

1 0 0 1

1 ↑ 1 0

0 1 1 0

0 0 1 0

0 ↑ 0 1

So the D input also becomes 1:

Inputs Outputs

D Clk Q

1 0 0 1

1 ↑ 1 0

0 1 1 0

0 0 1 0

0 ↑ 0 1

1 1 0 1

What's happening here can be summed up very simply: Every time the

Clock input changes from 0 to 1, the Q output changes, either from 0 to 1 or

from 1 to 0. The situation is clearer if we look at the timing diagram:

When the Clock input goes from 0 to 1, the value of D (which is the same

as) is transferred to Q, thus also changing and D for the next transition

of the Clock input from 0 to 1.

If the frequency of the oscillator is 20 Hz (which means 20 cycles per

second), the frequency of the Q output is half that, or 10 Hz. For this

reason, such a circuit—in which the output is routed back to the Data

input of a flip-flop—is also known as a frequency divider.

Of course, the output from the frequency divider can be the Clock input of

another frequency divider to divide the frequency once again. Here's an

arrangement of three of them:

Let's look at the four signals I've labeled at the top of that diagram:

I'll admit that I've started and ended this diagram at an opportune spot, but

there's nothing dishonest about it: The circuit will repeat this pattern over

and over again. But do you recognize anything familiar about it?

I'll give you a hint. Let's label these signals with 0s and 1s:

Do you see it yet? Try turning the diagram 90 degrees clockwise, and read

the 4-bit numbers going across. Each of them corresponds to a decimal

number from 0 through 15:

Binary Decimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

Thus, this circuit is doing nothing less than counting in binary numbers, and

the more flip-flops we add to the circuit, the higher it will count. I pointed

out in Chapter 8 that in a sequence of increasing binary numbers, each

column of digits alternates between 0 and 1 at half the frequency of the

column to the right. The counter mimics this. At each positive transition of

the Clock signal, the outputs of the counter are said to increment, that is, to

increase by 1.

Let's string eight flip-flops together and put them in a box:

This is called a ripple counter because the output of each flip-flop becomes

the Clock input of the next flip-flop. Changes ripple through the stages

sequentially, and the flip-flops at the end might be delayed a little in

changing. More sophisticated counters are synchronous, in which all the

outputs change at the same time.

I've labeled the outputs Q0 through Q7. These are arranged so that the

output from the first flip-flop in the chain (Q0) is at the far right. Thus, if

you connected lightbulbs to these outputs, you could read an 8-bit number.

A timing diagram of such a counter could show all eight outputs separately,

or it could show them together, like this:

At each positive transition of the Clock, some Q outputs might change and

some might not, but together they reflect increasing binary numbers.

I said earlier in this chapter that we'd discover some way to determine the

frequency of an oscillator. This is it. If you connect an oscillator to the

Clock input of the 8-Bit Counter, the counter will show you how many

cycles the oscillator has gone through. When the total reaches 11111111

(255 in decimal), it goes back to 00000000. Probably the easiest way to use

this counter to determine the frequency of an oscillator is to connect eight

lightbulbs to the outputs of the 8-Bit Counter. Now wait until all the outputs

are 0 (that is, when none of the lightbulbs are lit) and start a stopwatch. Stop

the stopwatch when all the lights go out again. That's the time required for

256 cycles of the oscillator. Say it's 10 seconds. The frequency of the

oscillator is thus 256 ÷ 10, or 25.6 Hz.

As flip-flops gain features, they also gain in complexity. This one is called

an edge-triggered D-type flip-flop with preset and clear:

The Preset and Clear inputs override the Clock and Data inputs. Normally

these two inputs are 0. When the Preset input is 1, Q becomes 1 and

becomes 0. When the Clear input is 1, Q becomes 0 and becomes 1.

(Like the Set and Reset inputs of an R-S flip-flop, Preset and Clear

shouldn't be 1 at the same time.) Otherwise, this behaves like a normal

edge-triggered D-type flip-flop:

Inputs Outputs

Pre Clr D Clk Q

1 0 X X 1 0

0 1 X X 0 1

0 0 0 ↑ 0 1

0 0 1 ↑ 1 0

0 0 X 0 Q

The diagram for the edge-triggered D-type flip-flop with preset and clear

looks like this:

We have now persuaded telegraph relays to add, subtract, and count in

binary numbers. This is quite an accomplishment, particularly considering

that all the hardware we've been using was available more than a hundred

years ago. We have still more to discover. But let's now take a short break

from building things and have another look at number bases.

Chapter 15. Bytes and Hex
The two improved adding machines of the last chapter illustrate clearly the

concept of data paths. Throughout the circuitry, 8-bit values move from one

component to another. Eight-bit values are inputs to the adders, latches, and

data selectors, and also outputs from these units. Eight-bit values are also

defined by switches and displayed by lightbulbs. The data path in these

circuits is thus said to be 8 bits wide. But why 8 bits? Why not 6 or 7 or 9 or

10?

The simple answer is that these improved adding machines were based on

the original adding machine in Chapter 12, which worked with 8-bit values.

But there's really no reason why it had to be built that way. Eight bits just

seemed at the time to be a convenient amount—a nice biteful of bits, if you

will. And perhaps I was being just a little bit sneaky, for I now confess that

I knew all along (and perhaps you did as well) that 8 bits of data are known

as a byte.

The word byte originated at IBM, probably around 1956. The word had its

origins in the word bite but was spelled with a y so that nobody would

mistake the word for bit. For a while, a byte meant simply the number of

bits in a particular data path. But by the mid-1960s, in connection with the

development of IBM's System/360 (their large complex of business

computers), the word came to mean a group of 8 bits.

As an 8-bit quantity, a byte can take on values from 00000000 through

11111111. These values can represent positive integers from 0 through 255,

or if two's complements are used to represent negative numbers, they can

represent both positive and negative integers in the range –128 through 127.

Or a particular byte can simply represent one of 28, or 256, different things.

It turns out that 8 is, indeed, a nice bite size of bits. The byte is right, in

more ways than one. One reason that IBM gravitated toward 8-bit bytes was

the ease in storing numbers in a format known as BCD (which I'll describe

in Chapter 23). But as we'll see in the chapters ahead, quite by coincidence

a byte is ideal for storing text because most written languages around the

world (with the exception of the ideographs used in Chinese, Japanese, and

Korean) can be represented with fewer than 256 characters. A byte is also

ideal for representing gray shades in black-and-white photographs because

the human eye can differentiate approximately 256 shades of gray. And

where 1 byte is inadequate (for representing, for example, the

aforementioned ideographs of Chinese, Japanese, and Korean), 2 bytes—

which allow the representation of 216, or 65,536, things—usually works just

fine.

Half a byte—that is, 4 bits—is sometimes referred to as a nibble (and is

sometimes spelled nybble), but this word doesn't come up in conversation

nearly as often as byte.

Because bytes show up a lot in the internals of computers, it's convenient to

be able to refer to their values in as succinct a manner as possible. The eight

binary digits 10110110, for example, are certainly explicit but hardly

succinct.

We could always refer to bytes by their decimal equivalents, of course, but

that requires converting from binary to decimal—not a particularly nasty

calculation, but certainly a nuisance. I showed one approach in Chapter 8

that's fairly straightforward. Because each binary digit corresponds to a

power of 2, we can simply write down the digits of the binary number and

the powers of 2 underneath. Multiply each column and add up the products.

Here's the conversion of 10110110:

Converting a decimal number to binary is a bit more awkward. You start

with the decimal number and divide by decreasing powers of 2. For each

division, the quotient is a binary digit and the remainder is divided by the

next smallest power of 2. Here's the conversion of 182 back to binary:

Chapter 8 has a more extensive description of this technique. Regardless,

converting between binary and decimal is usually not something that can be

done without a paper and pencil or lots of practice.

In Chapter 8, we also learned about the octal, or base-8, number system.

Octal uses only the digits 0, 1, 2, 3, 4, 5, 6, and 7. Converting between octal

and binary is a snap. All you need remember is the 3-bit equivalent of each

octal digit, as shown in the table on the next page.

Binary Octal

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

If you have a binary number (such as 10110110), start at the rightmost

digits. Each group of 3 bits is an octal digit:

So the byte 10110110 can be expressed as the octal digits 266. This is

certainly more succinct, and octal is indeed one good method for

representing bytes. But octal has a little problem.

The binary representations of bytes range from 00000000 through

11111111. The octal representations of bytes range from 000 through 377.

As is clear in the preceding example, 3 bits correspond to the middle and

rightmost octal digits, but only 2 bits correspond to the leftmost octal digit.

This means that an octal representation of a 16-bit number

isn't the same as the octal representations of the 2 bytes that compose the

16-bit number

In order for the representations of multibyte values to be consistent with the

representations of the individual bytes, we need to use a system in which

each byte is divided into equal numbers of bits. That means that we need to

divide each byte into four values of 2 bits each (that would be base 4) or

two values of 4 bits each (base 16).

Base 16. Now that's something we haven't looked at yet, and for good

reason. The base-16 number system is called hexadecimal, and even the

word itself is a mess. Most words that begin with the hexa- prefix (such as

hexagon or hexapod or hexameter) refer to six of something. Hexadecimal

is supposed to mean sixteen. And even though The Microsoft Manual of
Style for Technical Publications clearly states, "Do not abbreviate as hex, "

everyone always does and I will too.

That's not the only peculiarity of hexadecimal. In decimal, we count like

this:

0 1 2 3 4 5 6 7 8 9 10 11 12…

In octal, you'll recall, we no longer need digits 8 and 9:

0 1 2 3 4 5 6 7 10 11 12…

Similarly, the base-4 number system also doesn't need 4, 5, 6, or 7:

0 1 2 3 10 11 12…

And binary, of course, needs only 0 and 1:

0 1 10 11 100…

But hexadecimal is different because it requires more digits than decimal.

Counting in hexadecimal goes something like this:

0 1 2 3 4 5 6 7 8 9 ? ? ? ? ? ? 10 11 12…

where 10 (pronounced one-zero) is actually 16TEN. The question marks

indicate that we need six more symbols to display hexadecimal numbers.

What are these symbols? Where do they come from? Well, they weren't

handed down to us in tradition like the rest of our number symbols, so the

rational thing to do is make up six new symbols, for example:

Unlike the symbols used for most of our numbers, these have the benefit of

being easy to remember and identify with the actual quantities they

represent. There's a 10-gallon cowboy hat, a football (11 players on a team),

a dozen donuts, a black cat (associated with unlucky 13), a full moon that

occurs about a fortnight (14 days) after the new moon, and a knife that

reminds us of the assassination of Julius Caesar on the ides (the 15th day)

of March.

Each byte can be expressed as two hexadecimal digits. In other words, a

hexadecimal digit is equivalent to 4 bits, or 1 nibble. The table on the next

page shows how to convert between binary, hexadecimal, and decimal.

Binary Hexadecimal Decimal Binary Hexadecimal Decimal

0000 0 0 1000 8 8

0001 1 1 1001 9 9

0010 2 2 1010 10

0011 3 3 1011 11

0100 4 4 1100 12

0101 5 5 1101 13

0110 6 6 1110 14

0111 7 7 1111 15

Here's how to represent the byte 10110110 in hexadecimal:

And it doesn't matter if we're dealing with multibyte numbers:

One byte is always represented by a pair of hexadecimal digits.

Unfortunately (or perhaps, much to your relief), we really aren't going to be

using footballs and donuts to write hexadecimal numbers. It could have

been done that way, but it wasn't. Instead, the hexadecimal system ensures

that everybody gets really confused and stays that way. Those six missing

hexadecimal digits are actually represented by the first six letters of the

Latin alphabet, like this:

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12…

The following table shows the real conversion between binary,

hexadecimal, and decimal:

Binary Hexadecimal Decimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 A 10

1011 B 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

The byte 10110110 can thus be represented by the hexadecimal number B6

without your drawing a football. As you'll recall from previous chapters,

I've been indicating number bases by subscripts, such as

10110110TWO

for binary, and

2312FOUR

for quaternary, and

266EIGHT

for octal, and

182TEN

for decimal. To continue the same system, we can use

B6SIXTEEN

for hexadecimal. But that's clearly excessive. Fortunately, several other,

terser, methods of denoting hexadecimal numbers are common. You can

indicate the numbers this way:

B6HEX

In this book, I'll be using mostly a very common approach, which is a

lowercase h following the number, like so:

B6h

In a hexadecimal number, the positions of each digit correspond to powers

of 16:

The hexadecimal number 9A48Ch is

9A48Ch = 9 x 10000h +

A x 1000h +

4 x 100h +

8 x 10h +

C x 1h

This can be written using powers of 16:

9A48Ch = 9 x 164 +

A x 163 +

4 x 162 +

8 x 161 +

C x 160

Or using the decimal equivalents of those powers:

9A48Ch = 9 x 65,536 +

A x 4096 +

4 x 256 +

8 x 16 +

C x 1

Notice that there's no ambiguity in writing the single digits of the number

(9, A, 4, 8, and C) without a subscript to indicate the number base. A 9 is a

9 whether it's decimal or hexadecimal. And an A is obviously hexadecimal

—equivalent to 10 in decimal.

Converting all the digits to decimal lets us actually do the calculation:

9A48Ch = 9 x 65,536 +

10 x 4096 +

4 x 256 +

8 x 16 +

12 x 1

And the answer is 631,948. This is how hexadecimal numbers are converted

to decimal.

Here's a template for converting any 4-digit hexadecimal number to

decimal:

For example, here's the conversion of 79ACh. Keep in mind that the

hexadecimal digits A and C are decimal 10 and 12, respectively:

Converting decimal numbers to hexadecimal generally requires divisions. If

the number is 255 or smaller, you know that it can be represented by 1 byte,

which is two hexadecimal digits. To calculate those two digits, divide the

number by 16 to get the quotient and the remainder. Let's use an earlier

example—the decimal number 182. Divide 182 by 16 to get 11 (which is a

B in hexadecimal) with a remainder of 6. The hexadecimal equivalent is

B6h.

If the decimal number you want to convert is smaller than 65,536, the

hexadecimal equivalent will have four digits or fewer. Here's a template for

converting such a number to hexadecimal:

You start by putting the entire decimal number in the box in the upper left

corner. That's your first dividend. Divide by 4096, the first divisor. The

quotient goes in the box below the dividend, and the remainder goes in the

box to the right of the dividend. That remainder is the new dividend that

you divide by 256. Here's the conversion of 31,148 back to hexadecimal:

Of course, decimal numbers 10 and 12 correspond to hexadecimal A and C.

The result is 79ACh.

One problem with this technique is that you probably want to use a

calculator for the divisions, but calculators don't show remainders. If you

divide 31,148 by 4096 on a calculator, you'll get 7.6044921875. To

calculate the remainder, you need to multiply 4096 by 7 (to get 28,672) and

subtract that from 31,148. Or multiply 4096 by 0.6044921875, the

fractional part of the quotient. (On the other hand, some calculators can

convert between decimal and hexadecimal.)

Another approach to converting decimal numbers through 65,535 to hex

involves first separating the number into 2 bytes by dividing by 256. Then

for each byte, divide by 16. Here's a template for doing it:

Start at the top. With each division, the quotient goes in the box to the left

below the divisor, and the remainder goes in the box to the right. For

example, here's the conversion of 51,966:

The hexadecimal digits are 12, 10, 15, and 14, or CAFE, which looks more

like a word than a number! (And if you go there, you may want to order

your coffee 56,495.)

As for every other number base, there's an addition table associated with

hexadecimal:

+ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 2 3 4 5 6 7 8 9 A B C D E F 10

2 2 3 4 5 6 7 8 9 A B C D E F 10 11

3 3 4 5 6 7 8 9 A B C D E F 10 11 12

4 4 5 6 7 8 9 A B C D E F 10 11 12 13

5 5 6 7 8 9 A B C D E F 10 11 12 13 14

6 6 7 8 9 A B C D E F 10 11 12 13 14 15

7 7 8 9 A B C D E F 10 11 12 13 14 15 16

8 8 9 A B C D E F 10 11 12 13 14 15 16 17

9 9 A B C D E F 10 11 12 13 14 15 16 17 18

A A B C D E F 10 11 12 13 14 15 16 17 18 19

B B C D E F 10 11 12 13 14 15 16 17 18 19 1A

C C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B

D D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C

E E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D

F F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

You can use the table and normal carry rules to add hexadecimal numbers:

You'll recall from Chapter 13 that you can use two's complements to

represent negative numbers. If you're dealing with 8-bit signed values in

binary, the negative numbers all begin with 1. In hexadecimal, 2-digit

signed numbers are negative if they begin with 8, 9, A, B, C, D, E, or F

because the binary representations of these hexadecimal digits all begin

with 1. For example, 99h could represent either decimal 153 (if you know

you're dealing with 1-byte unsigned numbers) or decimal –103 (if you're

dealing with signed numbers).

Or the byte 99h could actually be the number 99 in decimal! This has a

certain appeal to it, of course, but it seems to violate everything we've

learned so far. I'll explain how it works in Chapter 23. But next I must talk

about memory.

Chapter 16. An Assemblage of Memory
As we rouse ourselves from sleep every morning, memory fills in the

blanks. We remember where we are, what we did the day before, and what

we plan to do today. These memories might come in a rush or a dribble, and

maybe after some minutes a few lapses might persist ("Funny, I don't

remember wearing my socks to bed"), but all in all we can usually

reassemble our lives and achieve enough continuity to commence living

another day.

Of course, human memory isn't very orderly. Try to remember something

about high school geometry, and you're likely to start thinking about the kid

who sat in front of you or the day there was a fire drill just as the teacher

was about to explain what QED meant.

Nor is human memory foolproof. Indeed, writing was probably invented

specifically to compensate for the failings of human memory. Perhaps last

night you suddenly woke up at 3:00 A.M. with a great idea for a screenplay.

You grabbed the pen and paper you keep by your bed specifically for that

purpose, and you wrote it down so you wouldn't forget. The next morning

you can read the brilliant idea and start work on the screenplay. ("Boy

meets girl w. car chase & explosions"? That's it?) Or maybe not.

We write and we later read. We save and we later retrieve. We store and we

later access. The function of memory is to keep the information intact

between those two events. Anytime we store information, we're making use

of different types of memory. Paper is a good medium for storing textual

information, and magnetic tape works well for music and movies.

Telegraph relays too—when assembled into logic gates and then flip-flops

—can store information. As we've seen, a flip-flop is capable of storing 1

bit. This isn't a whole lot of information, but it's a start. For once we know

how to store 1 bit, we can easily store 2, or 3, or more.

In Chapter 14, we encountered the level-triggered D-type flip-flop, which is

made out of an inverter, two AND gates, and two NOR gates:

When the Clock input is 1, the Q output is the same as the Data input. But

when the Clock input goes to 0, the Q output holds the last value of the

Data input. Further changes to the Data input don't affect the outputs until

the Clock input goes to 1 again. The logic table of the flip-flop is the

following:

Inputs Outputs

D Clk Q Q-bar

0 1 0 1

1 1 1 0

X 0 Q Q-bar

In Chapter 14, this flip-flop was featured in a couple of different circuits,

but in this chapter it will be used in only one way—to store 1 bit of

information. For that reason, I'm going to rename the inputs and outputs so

that they'll be more in accordance with that purpose:

This is the same flip-flop, but now the Q output is named Data Out, and the

Clock input (which started out in Chapter 14 as Hold That Bit) is named

Write. Just as we might write down some information on paper, the Write

signal causes the Data In signal to be written into or stored in the circuit.

Normally, the Write input is 0 and the Data In signal has no effect on the

output. But whenever we want to store the Data In signal in the flip-flop,

we make the Write input 1 and then 0 again. As I mentioned in Chapter 14,

this type of circuit is also called a latch because it latches onto data. Here's

how we might represent a 1-bit latch without drawing all of the individual

components:

It's fairly easy to assemble multiple 1-bit latches into a multibit latch. All

you have to do is connect the Write signals:

This 8-bit latch has eight inputs and eight outputs. In addition, the latch has

a single input named Write that's normally 0. To save an 8-bit value in this

latch, make the Write input 1 and then 0 again. This latch can also be drawn

as a single box, like so:

Or to be more consistent with the 1-bit latch, it can be drawn this way:

Another way of assembling eight 1-bit latches isn't quite as straightforward

as this. Suppose we want only one Data In signal and one Data Out signal.

But we want the ability to save the value of the Data In signal at eight

different times during the day, or maybe eight different times during the

next minute. And we also want the ability to later check those eight values

by looking at just one Data Out signal.

In other words, rather than saving one 8-bit value as in the 8-bit latch, we

want to save eight separate 1-bit values.

Why do we want to do it this way? Well, maybe because we have only one

lightbulb.

We know we need eight 1-bit latches. Let's not worry right now about how

data actually gets stored in these latches. Let's focus first on checking the

Data Out signals of these eight latches using only one lightbulb. Of course,

we could always test the output of each latch by manually moving the

lightbulb from latch to latch, but we'd prefer something a bit more

automated than that. In fact, we'd like to use switches to select which of the

eight 1-bit latches we want to look at.

How many switches do we need? If we want to select something from eight

items, we need three switches. Three switches can represent eight different

values: 000, 001, 010, 011, 100, 101, 110, and 111.

So here are our eight 1-bit latches, three switches, a lightbulb, and

something else that we need in between the switches and the lightbulb:

The "something else" is that mysterious box with eight inputs on top and

three inputs on the left. By closing and opening the three switches, we can

select which of the eight inputs is routed to the output at the bottom of the

box. This output lights up the lightbulb.

So what exactly is "What Is This?"? We've encountered something like it

before, although not with so many inputs. It's similar to a circuit we used in

Chapter 14 in the first revised adding machine. At that time, we needed

something that let us select whether a row of switches or the output from a

latch was used as an input to the adder. In that chapter, it was called a 2-

Line-to-1-Line Selector. Here we need an 8-Line-to-1-Line Data Selector:

The 8-to-1 Selector has eight Data inputs (shown at the top) and three

Select inputs (shown at the left). The Select inputs choose which of the

Data inputs appears at the Output. For example, if the Select inputs are 000,

the Output is the same as D0. If the Select inputs are 111, the Output is the

same as D7. If the Select inputs are 101, the Output is the same as D5.

Here's the logic table:

Inputs Outputs

S2 S1 S0 Q

0 0 0 D0

0 0 1 D1

0 1 0 D2

0 1 1 D3

1 0 0 D4

1 0 1 D5

1 1 0 D6

1 1 1 D7

The 8-to-1 Selector is built from three inverters, eight 4-input AND gates,

and an 8-input OR gate, like this:

Now, this is a fairly hairy circuit, but perhaps just one example will

convince you that it works. Suppose S2 is 1, S1 is 0, and S0 is 1. The inputs

to the sixth AND gate from the top include S0, 1, S2, all of which are 1. No

other AND gate has these three inputs, so all the other AND gates will have

an output of 0. The sixth AND gate from the top will possibly have an

output of 0 if D5 is 0. Or it will have an output of 1 if D5 is 1. The same

goes for the OR gate at the far right. Thus, if the Select inputs are 101, the

Output is the same as D5.

Let's recap what we're trying to do here. We're trying to wire eight 1-bit

latches so that they can be individually written to using a single Data In

signal and individually examined using a single Data Out signal. We've

already established that we can choose a Data Output signal from one of the

eight latches by using an 8-to-1 Selector, as shown on the following page.

We're halfway finished. Now that we've established what we need for the

output side, let's look at the input side.

The input side involves the Data input signals and the Write signal. On the

input side of the latches, we can connect all the Data input signals together.

But we can't connect the eight Write signals together because we want to be

able to write into each latch individually. We have a single Write signal that

must be routed to one (and only one) of the latches:

To accomplish this task, we need another circuit that looks somewhat

similar to the 8-to-1 Selector but actually does the opposite. This is the 3-to-
8 Decoder. We've also seen a simple Data Decoder before—when wiring

the switches to select the color of our ideal cat in Chapter 11.

The 3-to-8 Decoder has eight Outputs. At any time, all but one of the

Outputs are 0. The exception is the Output that's selected by the S0, S1, and

S2 inputs. This Output is the same as the Data Input.

Again, notice that the inputs to the sixth AND gate from the top include S0,

1, S2. No other AND gate has these three inputs. So if the Select inputs are

101, then all the other AND gates will have an output of 0. The sixth AND

gate from the top will possibly have an output of 0 if the Data Input is 0 or

an output of 1 if the Data Input is 1. Here's the complete logic table:

Inputs Outputs

S2 S1 S0 O7 O6 O5 O4 O4 O2 O1 O0

0 0 0 0 0 0 0 0 0 0 Data

0 0 1 0 0 0 0 0 0 Data 0

0 1 0 0 0 0 0 0 Data 0 0

0 1 1 0 0 0 0 Data 0 0 0

1 0 0 0 0 0 Data 0 0 0 0

1 0 1 0 0 Data 0 0 0 0 0

1 1 0 0 Data 0 0 0 0 0 0

1 1 1 Data 0 0 0 0 0 0 0

And here's the complete circuit with the 8 latches:

Notice that the three Select signals to the Decoder and the Selector are the

same and that I've also labeled those three signals the Address. Like a post

office box number, this 3-bit address determines which of the eight 1-bit

latches is being referenced. On the input side, the Address input determines

which latch the Write signal will trigger to store the Data input. On the

output side (at the bottom of the figure), the Address input controls the 8-to-

1 Selector to select the output of one of the eight latches.

This configuration of latches is sometimes known as read/write memory,

but more commonly as random access memory, or RAM (pronounced the

same as the animal). This particular RAM configuration stores eight

separate 1-bit values. It can be represented this way:

It's called memory because it retains information. It's called read/write
memory because you can store a new value in each latch (that is, write the

value) and because you can determine what's stored in each latch (that is,

you can later read the value). It's called random access memory because

each of the eight latches can be read from or written to simply by changing

the Address inputs. In contrast, some other types of memory have to be read

sequentially—that is, you'd have to read the value stored at address 100

before you could read the value stored at address 101.

A particular configuration of RAM is often referred to as a RAM array.

This particular RAM array is organized in a manner called in abbreviated

form 8 x 1 (pronounced eight by one). Each of the eight values in the array

is 1 bit. Multiply the two values to get the total number of bits that can be

stored in the RAM array.

RAM arrays can be combined in various ways. For example, you can take

two 8 x 1 RAM arrays and arrange them so that they are addressed in the

same way:

The Address and Write inputs of the two 8 x 1 RAM arrays are connected,

so the result is an 8 x 2 RAM array:

This RAM array stores eight values, but each of them is 2 bits in size.

Or the two 8 x 1 RAM arrays can be combined in much the same way that

the individual latches were combined—by using a 2-to-1 Selector and a 1-

to-2 Decoder, as shown on the next page.

The Select input that goes to both the Decoder and the Selector essentially

selects between the two 8 x 1 RAM arrays. It's really a fourth address line.

So this is actually a 16 x 1 RAM array:

This RAM array stores 16 values, each of which is 1 bit.

The number of values that a RAM array stores is directly related to the

number of Address inputs. With no Address inputs (which is the case with

the 1-bit latch and the 8-bit latch), only one value can be stored. With one

Address input, two values are possible. With two Address inputs, four

values are stored. With three Address inputs, eight values, and with four

Address inputs, sixteen values. The relationship is summed up by this

equation:

Number of values in RAM array = 2Number of Address inputs

I've demonstrated how small RAM arrays can be constructed, and it

shouldn't be difficult to imagine much larger ones. For example

This RAM array stores a total of 8196 bits, organized as 1024 values of

eight bits each. There are ten Address inputs because 210 equals 1024. There

are eight Data inputs and eight Data outputs.

In other words, this RAM array stores 1024 bytes. It's like a post office with

1024 post office boxes. Each one has a different 1-byte value inside (which

may or may not be better than junk mail).

One thousand twenty-four bytes is known as a kilobyte, and herein lies

much confusion. The prefix kilo (from the Greek khilioi, meaning a

thousand) is most often used in the metric system. For example, a kilogram

is 1000 grams and a kilometer is 1000 meters. But here I'm saying that a

kilobyte is 1024 bytes—not 1000 bytes.

The problem is that the metric system is based on powers of 10, and binary

numbers are based on powers of 2, and never the twain shall meet. Powers

of 10 are 10, 100, 1000, 10000, 100000, and so on. Powers of 2 are 2, 4, 8,

16, 32, 64, and so on. There is no integral power of 10 that equals some

integral power of 2.

But every once in a while they do come close. Yes, 1000 is fairly close to

1024, or to put it more mathematically using an "approximately equal to"

sign:

210 ≈ 103

Nothing is magical about this relationship. All it implies is that a particular

power of 2 is approximately equal to a particular power of 10. This little

quirk allows people to conveniently refer to a kilobyte of memory when

they really mean 1024 bytes.

Kilobyte is abbreviated K or KB. The RAM array shown above can be said

to store 1024 bytes or 1 kilobyte or 1K or 1 KB.

What you don't say is that a 1-KB RAM array stores 1000 bytes, or (in

English) "one thousand bytes." It's more than a thousand—it's 1024. To

sound like you know what you're talking about, you say either "1K" or "one

kilobyte."

One kilobyte of memory has eight Data inputs, eight Data outputs, and ten

Address inputs. Because the bytes are accessed by ten Address inputs, the

RAM array stores 210 bytes. Whenever we add another address input, we

double the amount of memory. Each line of the following sequence

represents a doubling of memory:

1 kilobyte = 1024 bytes = 210 bytes ≈ 103 bytes

2 kilobytes = 2048 bytes = 211 bytes

4 kilobytes = 4096 bytes = 212 bytes

8 kilobytes = 8192 bytes = 213 bytes

16 kilobytes = 16,384 bytes = 214 bytes

32 kilobytes = 32,768 bytes = 215 bytes

64 kilobytes = 65,536 bytes = 216 bytes

128 kilobytes = 131,072 bytes = 217 bytes

256 kilobytes = 262,144 bytes = 218 bytes

512 kilobytes = 524,288 bytes = 219 bytes

1,024 kilobytes = 1,048,576 bytes = 220 bytes ≈ 106 bytes

Note that the numbers of kilobytes shown on the left are also powers of 2.

With the same logic that lets us call 1024 bytes a kilobyte, we can also refer

to 1024 kilobytes as a megabyte. (The Greek word megas means great.)
Megabyte is abbreviated MB. And the memory doubling continues:

1 megabyte = 1,048,576 bytes = 220 bytes ≈ 106 bytes

2 megabytes = 2,097,152 bytes = 221 bytes

4 megabytes = 4,194,304 bytes = 222 bytes

8 megabytes = 8,388,608 bytes = 223 bytes

16 megabytes = 16,777,216 bytes = 224 bytes

32 megabytes = 33,554,432 bytes = 225 bytes

64 megabytes = 67,108,864 bytes = 226 bytes

128 megabytes = 134,217,728 bytes = 227 bytes

256 megabytes = 268,435,456 bytes = 228 bytes

512 megabytes = 536,870,912 bytes = 229 bytes

1,024 megabytes = 1,073,741,824 bytes = 230 bytes ≈ 109 bytes

The Greek work gigas means giant, so 1024 megabytes are called a

gigabyte, which is abbreviated GB.

Similarly, a terabyte (teras means monster) equals 240 bytes (approximately

1012) or 1,099,511,627,776 bytes. Terabyte is abbreviated TB.

A kilobyte is approximately a thousand bytes, a megabyte is approximately

a million bytes, a gigabyte is approximately a billion bytes, and a terabyte is

approximately a trillion bytes.

Ascending into regions that few have traveled, a petabyte equals 250 bytes

or 1,125,899,906,842,624 bytes, which is approximately 1015 or a

quadrillion. An exabyte equals 260 bytes or 1,152,921,504,606,846,976

bytes, approximately 1018 or a quintillion.

Just to provide you with a little grounding here, home computers purchased

at the time this book was written (1999) commonly have 32 MB or 64 MB

or sometimes 128 MB of random access memory. (And don't get too

confused just yet—I haven't mentioned anything about hard drives; I'm

talking only about RAM.) That's 33,554,432 bytes or 67,108,864 bytes or

134,217,728 bytes.

People, of course, speak in shorthand. Somebody who has 65,536 bytes of

memory will say, "I have 64K (and I'm a visitor from the year 1980)."

Somebody who has 33,554,432 bytes will say, "I have 32 megs." That rare

person who has 1,073,741,824 bytes of memory will say, "I've got a gig

(and I'm not talking music)."

Sometimes people will refer to kilobits or megabits (notice bits rather than

bytes), but this is rare. Almost always when people talk about memory,

they're talking number of bytes, not bits. (Of course, to convert bytes to bits,

multiply by 8.) Usually when kilobits or megabits come up in conversation,

it will be in connection with data being transmitted over a wire and will

occur in such phrases as "kilobits per second" or "megabits per second." For

example, a 56K modem refers to 56 kilobits per second, not kilobytes.

Now that we know how to construct RAM in any array size we want, let's

not get too out of control. For now, let's simply assume that we have

assembled 65,536 bytes of memory:

Why 64 KB? Why not 32 KB or 128 KB? Because 65,536 is a nice round
number. It's 216. This RAM array has a 16-bit address. In other words, the

address is 2 bytes exactly. In hexadecimal, the address ranges from 0000h

through FFFFh.

As I implied earlier, 64 KB was a common amount of memory in personal

computers purchased around 1980, although it wasn't constructed from

telegraph relays. But could you really build such a thing using relays? I

trust you won't consider it. Our design requires nine relays for each bit of

memory, so the total 64K x 8 RAM array requires almost 5 million of them!

It will be advantageous for us to have a control panel that lets us manage all

this memory—to write values into memory or examine them. Such a

control panel has 16 switches to indicate an address, 8 switches to define an

8-bit value that we want to write into memory, another switch for the Write

signal itself, and 8 lightbulbs to display a particular 8-bit value, as shown on

the following page.

All the switches are shown in their off (0) positions. I've also included a

switch labeled Takeover. The purpose of this switch is to let other circuits

use the same memory that the control panel is connected to. When the

switch is set to 0 (as shown), the rest of the switches on the control panel

don't do anything. When the switch is set to 1, however, the control panel

has exclusive control over the memory.

This is a job for a bunch of 2-to-1 Selectors. In fact, we need 25 of them—

16 for the Address signals, 8 for the Data input switches, and another for

the Write switch. Here's the circuit:

When the Takeover switch is open (as shown), the Address, Data input, and

Write inputs to the 64K x 8 RAM array come from external signals shown

at the top left of the 2-to-1 Selectors. When the Takeover switch is closed,

the Address, Data input, and Write signals to the RAM array come from the

switches on the control panel. In either case, the Data Out signals from the

RAM array go to the eight lightbulbs and possibly someplace else.

I'll draw a 64K x 8 RAM array with such a control panel this way:

When the Takeover switch is closed, you can use the 16 Address switches

to select any of 65,536 addresses. The lightbulbs show you the 8-bit value

currently stored in memory at that address. You can use the 8 Data switches

to define a new value, and you can write that value into memory using the

Write switch.

The 64K x 8 RAM array and control panel can certainly help you keep

track of any 65,536 8-bit values you may need to have handy. But we have

also left open the opportunity for something else—some other circuitry

perhaps—to use the values we have stored in memory and to write other

ones in as well.

There's one more thing you have to remember about memory, and it's very
important: When I introduced the concept of logic gates in Chapter 11, I

stopped drawing the individual relays that compose these gates. In

particular, I no longer indicated that every relay is connected to some kind

of supply of electricity. Whenever a relay is triggered, electricity is flowing

through the coils of the electromagnet and holding a metal contact in place.

So if you have a 64K x 8 RAM array filled to the brim with 65,536 of your

favorite bytes and you turn off the power to it, what happens? All the

electromagnets lose their magnetism and with a loud thunk, all the relay

contacts return to their untriggered states. And the contents of this RAM?

They all go POOF! Gone forever.

This is why random access memory is also called volatile memory. It

requires a constant supply of electricity to retain its contents.

Chapter 17. Automation
The human species is often amazingly inventive and industrious but at the

same time profoundly lazy. It's very clear that we humans don't like to

work. This aversion to work is so extreme—and our ingenuity so acute—

that we're eager to devote countless hours designing and building devices

that might shave a few minutes off our workday. Few fantasies tickle the

human pleasure center more than a vision of relaxing in a hammock

watching some newfangled contraption we just built mow the lawn.

I'm afraid I won't be showing plans for an automatic lawn-mowing machine

in these pages. But in this chapter, through a progression of ever more

sophisticated machines, I will automate the process of adding and

subtracting numbers. This hardly sounds earth-shattering, I know. But the

final machine in this chapter will be so versatile that it will be able to solve

virtually any problem that makes use of addition and subtraction, and that

includes a great many problems indeed.

Of course, with sophistication comes complexity, so some of this might be

rough going. No one will blame you if you skim over the excruciating

details. At times, you might rebel and promise that you'll never seek

electrical or mechanical assistance for a math problem ever again. But stick

with me because by the end of this chapter we'll have invented a machine

we can legitimately call a computer.

The last adder we looked at was in Chapter 14. That version included an 8-

bit latch that accumulated a running total entered on one set of eight

switches:

As you'll recall, an 8-bit latch uses flip-flops to store an 8-bit value. To use

this device, you first momentarily press the Clear switch to set the stored

contents of the latch to all zeros. Then you use the switches to enter your

first number. The adder simply adds this number to the zero output of the

latch, so the result is the number you entered. Pressing the Add switch

stores that number in the latch and turns on some lightbulbs to display it.

Now you set up the second number on the switches. The adder adds this one

to the number stored in the latch. Pressing the Add button again stores the

total in the latch and displays it using the lightbulbs. In this way, you can

add a whole string of numbers and display the running total. The limitation,

of course, is that the eight lightbulbs can't display a total greater than 255.

At the time I showed this circuit to you in Chapter 14, the only latches that I

had introduced so far were level triggered. In a level-triggered latch, the

Clock input has to go to 1 and then back to 0 in order for the latch to store

something. During the time the Clock input is 1, the data inputs of the latch

can change and these changes will affect the stored output. Later in that

chapter, I introduced edge-triggered latches. These latches save their values

in the brief moment that the Clock input goes from 0 to 1. Edge-triggered

latches are often somewhat easier to use, so I want to assume that all the

latches in this chapter are edge triggered.

A latch used to accumulate a running total of numbers is called an

accumulator. But we'll see later in this chapter that an accumulator need not

simply accumulate. An accumulator is often a latch that holds first one

number and then that number plus or minus another number.

The big problem with the adding machine shown above is fairly obvious:

Say you have a list of 100 binary numbers you want to add together. You sit

down at the adding machine and doggedly enter each and every number and

accumulate the sum. But when you're finished, you discover that a couple

of the numbers on the list were incorrect. Now you have to do the whole

thing over again.

But maybe not. In the preceding chapter, we used almost 5 million relays to

build a RAM array containing 64 KB of memory. We also wired a control

panel (shown on page 204) that let us close a switch labeled Takeover and

literally take over all the writing and reading of this RAM array using

switches.

If you had typed all 100 binary numbers into this RAM array rather than

directly into the adding machine, making a few corrections would be a lot

easier.

So now we face the challenge of connecting the RAM array to the

accumulating adder. It's pretty obvious that the RAM Data Out signals

replace the switches to the adder, but it's perhaps not so obvious that a 16-

bit counter (such as we built in Chapter 14) can control the address signals

of the RAM array. The Data Input and Write signals to the RAM aren't

needed in this circuit:

This is certainly not the easiest piece of calculating equipment ever

invented. To use it, you first must close the switch labeled Clear. This clears

the contents of the latch and sets the output of the 16-bit counter to 0000h.

Then you close the Takeover switch on the RAM control panel. You can

then enter a set of 8-bit numbers that you want to add beginning at RAM

address 0000h. If you have 100 numbers, you'll store these numbers at

addresses 0000h through 0063h. (You should also set all the unused entries

in the RAM array to 00h.) You can then open the Takeover switch of the

RAM control panel (so that the control panel no longer has control over the

RAM array) and open the Clear switch. Then just sit back and watch the

flashing lightbulbs.

Here's how it works: When the Clear switch is first opened, the address of

the RAM array is 0000h. The 8-bit value stored in the RAM array at that

address is an input to the adder. The other input to the adder is 00h because

the latch is also cleared.

The oscillator provides a clock signal—a signal that alternates between 0

and 1 very quickly. After the Clear switch is opened, whenever the clock

changes from a 0 to a 1, two things happen simultaneously: The latch stores

the sum from the adder, and the 16-bit counter increments, thus addressing

the next value in the RAM array. The first time the clock changes from 0 to

1 after the Clear switch is opened, the latch stores the first value and the

counter increments to 0001h. The second time, the latch stores the sum of

the first and second values, and the counter increments to 0002h. And so

on.

Of course, I'm making some assumptions here. Above all, I'm assuming that

the oscillator is slow enough to allow all the rest of the circuitry to work.

With each stroke of the clock, a lot of relays must trigger other relays before

a valid sum shows up at the output of the adder.

One problem with this circuit is that we have no way of stopping it! At

some point, the lightbulbs will stop flashing because all the rest of the

numbers in the RAM array will be 00h. At that time, you can read the

binary sum. But when the counter eventually reaches FFFFh, it will roll
over (just like a car odometer) to 0000h and this automated adder will begin

adding the numbers again to the sum that was already calculated.

This adding machine has other problems as well. All it does is add, and all

it adds are 8-bit numbers. Not only is each number in the RAM array

limited to 255, but the sum is limited to 255 as well. The adder also has no

way to subtract numbers, although it's possible that you're using negative

numbers in two's complements, in which case this machine is limited to

handling numbers from -128 through 127. One obvious way to make it add

larger numbers (for example, 16-bit values) is to double the width of the

RAM array, the adder, and the latch, as well as provide eight more

lightbulbs. But you might not be willing to make that investment quite yet.

Of course, I wouldn't even mention these problems unless I knew we were

going to solve them eventually. But the problem I want to focus on first is

yet another. What if you didn't need to add 100 numbers together in one big

sum? What if instead you wanted to use an automated adder to add 50 pairs

of numbers to get 50 different sums? Or maybe you'd like a machine

versatile enough to add pairs of numbers together, or 10 numbers together,

or 100. And you want all the results to be available for your convenient

perusal.

The automated adder shown previously displays the running total on a set

of lightbulbs attached to the latch. This approach is no good if you want to

add 50 pairs of numbers together to get 50 different sums. Instead, you

probably want the results to be stored back in the RAM array. That way,

you can use the RAM control panel to examine the results at your

convenience. That control panel has its own lightbulbs specifically for this

purpose.

What this means is that we can get rid of the lightbulbs connected to the

latch. But instead, the output from the latch must be connected to the data

input of the RAM array so that the sums can be written into the RAM:

I've eliminated some other parts of the automated adder in this diagram as

well, specifically the oscillator and the Clear switch. I removed them

because it's no longer at all obvious where the Clear and Clock inputs to the

counter and the latch will come from. Moreover, now that we've made use

of the RAM data inputs, we need a way to control the RAM Write signal.

So let's not worry about the circuit for a moment and instead focus on the

problem we're trying to solve. What we're trying to do here is configure an

automated adder so that it's not restricted merely to accumulating a running

total of a bunch of numbers. We want to have complete freedom in how

many numbers we add and how many different sums are saved in RAM for

later examination.

For example, suppose we want to add three numbers together and then add

two numbers together and then add another three numbers together. We

might imagine typing these numbers into the RAM array beginning at

address 0000h so that the contents of the memory look like this:

This is how I'll be showing a section of memory in this book. The boxes

represent the contents of the memory. Each byte of memory is in a box. The

address of that box is at the left. Not every address needs to be indicated

because the addresses are sequential and you can always figure out what

address applies to a particular box. At the right are some comments about

this memory. These particular comments indicate that we want the

automated adder to store the three sums in the empty boxes. (Although

these boxes are empty, the memory isn't necessarily empty. Memory always

contains something, even if it's just random data. But right now it doesn't

contain anything useful.)

Now I know you're tempted to practice your hexadecimal arithmetic and fill

in the little boxes yourself. But that's not the point of this demonstration.

We want the automated adder to do the additions for us.

Instead of making the automated adder do just one thing—which in the first

version involved adding the contents of a RAM address to the 8-bit latch

that I've called the accumulator—we actually want it now to do four
different things. To begin an addition, we want it to transfer a byte from

memory into the accumulator. I'll call this operation Load. The second

operation we need to perform is to Add a byte in memory to the contents of

the accumulator. Third, we need to take a sum in the accumulator and Store
it in memory. Finally, we need some way to Halt the automated adder.

In gory detail, what we want the automated adder to do in this particular

example is this:

Load the value at address 0000h into the accumulator.

Add the value at address 0001h to the accumulator.

Add the value at address 0002h to the accumulator.

Store the contents of the accumulator at address 0003h.

Load the value at address 0004h into the accumulator.

Add the value at address 0005h to the accumulator.

Store the contents of the accumulator at address 0006h.

Load the value at address 0007h into the accumulator.

Add the value at address 0008h to the accumulator.

Add the value at address 0009h to the accumulator.

Store the contents of the accumulator at address 000Ah.

Halt the workings of the automated adder.

Notice that just as in the original automated adder, each byte of memory is

still being addressed sequentially beginning at 0000h. The original

automated adder simply added the contents of the memory at that address to

the contents of the accumulator. In some cases, we still want to do that. But

we also sometimes want to Load the accumulator directly with a value in

memory or to Store the contents of the accumulator in memory. And after

everything is done, we want the automated adder to simply stop so that the

contents of the RAM array can be examined.

How can we accomplish this? Well, it's not sufficient to simply key in a

bunch of numbers in RAM and expect the automated adder to do the right

thing. For each number in RAM, we also need some kind of numeric code

that indicates what the automated adder is to do: Load, Add, Store, or Halt.

Perhaps the easiest (but certainly not the cheapest) way to store these codes

is in a whole separate RAM array. This second RAM array is accessed at

the same time as the original RAM array. But instead of containing numbers

to be added, it contains the codes that indicate what the automated adder is

supposed to do with the corresponding address in the original RAM array.

These two RAM arrays can be labeled Data (the original RAM array) and

Code (the new one):

We've already established that our new automated adder needs to be able to

write sums into the original RAM array (labeled Data). But the new RAM

array (labeled Code) will be written to solely through the control panel.

We need four codes for the four actions we want the new automated adder

to do. These codes can be anything we want to assign. Here are four

possibilities:

Operation Code

Load 10h

Store 11h

Add 20h

Halt FFh

So to perform the three sets of addition in the example I just outlined, you'll

need to use the control panel to store the following values in the Code RAM

array:

You might want to compare the contents of this RAM array with the RAM

array containing the data we want to add (shown on page 211). You'll notice

that each code in the Code RAM corresponds to a value in the Data RAM

that is to be loaded into or added to the accumulator, or the code indicates

that a value is to be stored back in memory. Numeric codes used in such a

manner are often called instruction codes, or operation codes, or (most

concisely) opcodes. They "instruct" circuitry to perform a certain

"operation."

As I mentioned earlier, the output of the 8-bit latch in the original

automated adder needs to be an input to the Data RAM array. That's how

the Store instruction works. Another change is necessary: Originally, the

output of the 8-Bit Adder was the input to the 8-bit latch. But now, to carry

out the Load instruction, the output of the Data RAM array must sometimes

be the input to the 8-bit latch. What's needed is a 2-Line-to-1-Line Data

Selector. The revised automated adder looks like the illustration on the next

page.

This diagram is missing a few pieces, but it shows all the 8-bit data paths

between the various components. The 16-bit counter provides an address

for the two RAM arrays. The output of the Data RAM array goes into the 8-

Bit Adder, as usual, to perform the Add instruction. But the input to the 8-

bit latch can be either the output of the Data RAM array (in the case of a

Load instruction) or the output of the adder (in the case of an Add
instruction). This situation requires a 2-to-1 Selector. The output of the latch

circles back to the adder, as usual, but it's also the data input of the Data

RAM array for a Store instruction.

What this diagram is missing are all the little signals that control these

components, known collectively as the control signals. These include the

Clock and Clear inputs to the 16-bit counter, the Clock and Clear inputs to

the 8-bit latch, the Write input to the Data RAM array, and the Select input

to the 2-to-1 Selector. Some of these signals will obviously be based on the

output of the Code RAM array. For example, the Select input to the 2-to-1

Selector must be 0 (selecting the Data RAM output) if the output of the

Code RAM array indicates a Load instruction. The Write input to the Data

RAM array must be 1 only when the opcode is a Store instruction. These

control signals can be generated by various combinations of logic gates.

With a minimal amount of extra hardware and the addition of a new

opcode, we can also persuade this circuit to subtract a number from the

value in the accumulator. The first step is to expand the table of operation

codes:

Operation Code

Load 10h

Store 11h

Add 20h

Subtract 21h

Halt FFh

The codes for Add and Subtract differ only by the least-significant bit of the

code value, which we'll call C0. If the operation code is 21h, the circuit

should do the same thing it does for an Add instruction, except that the data

out from the Data RAM array is inverted before it goes into the adder, and

the carry input to the adder is set to 1. The C0 signal can perform both those

tasks in this revised automated adder that includes an inverter:

Now suppose we wish to add 56h and 2Ah together and then subtract 38h

from the sum. You can do it with the following codes and data stored in the

two RAM arrays:

After the Load operation, the accumulator contains the value 56h. After the

Add operation, the accumulator contains the sum of 56h and 2Ah, or 80h.

The Subtract operation causes the bits of the next value in the Data RAM

array (38h) to be inverted. The inverted value C7h is added to 80h with the

carry input of the adder set to 1:

The result is 48h. (In decimal, 86 plus 42 minus 56 equals 72.)

One persistent problem that hasn't yet been adequately addressed is the

meager 8-bit data width of the adder and everything else that's attached to

it. In the past, the only solution I've offered is to connect two 8-Bit Adders

(and two of mostly everything else) together to get 16-bit devices.

But a much less expensive solution is possible. Suppose you want to add

two 16-bit numbers, for example:

This 16-bit addition is the same as separately adding this rightmost byte

(often called the low-order byte):

and then the leftmost, or high-order, byte:

for a result of 99D7h. So if we store the two 16-bit numbers in memory like

this:

the result D7h will be stored at address 0002h, and the result 99h will be

stored at address 0005h.

Of course, this won't work all the time. It works for the numbers I've chosen

as an example, but what if the two 16-bit numbers to be added were 76ABh

and 236Ch? In that case, adding the 2 low-order bytes results in a carry:

This carry must be added to the sum of the 2 high-order bytes:

for a final result of 9A17h.

Can we enhance the circuitry of our automated adding machine to add two

16-bit numbers correctly? Yes, we can. All we need do is save the Carry
Out bit from the 8-Bit Adder when the first addition is performed and then

use that Carry Out bit as the Carry Input bit to the next addition. How can a

bit be saved? By a 1-bit latch, of course; this time, the latch is known as the

Carry latch.

To use the Carry latch, another operation code is needed. Let's call it Add
with Carry. When you're adding 8-bit numbers together, you use the regular

old Add instruction. The carry input to the adder is 0, and the carry output

from the adder is latched in the Carry latch (although it need not be used at

all).

If you want to add two 16-bit numbers together, you use the regular Add
instruction for adding the low-order bytes. The carry input to the adder is 0

and the carry output is latched in the Carry latch. To add the 2 high-order

bytes, you use the new Add with Carry instruction. In this case, the two

numbers are added using the output of the Carry latch as the carry input to

the adder. So if the first addition resulted in a carry, that carry bit is used in

the second addition. If no carry resulted, the output from the Carry latch is

0.

If you're subtracting one 16-bit number from another, you need another new

instruction; this one is called Subtract with Borrow. Normally, a Subtract
instruction requires that you invert the subtrahend and set the carry input of

the adder to 1. A carry out of 1 is normal and should usually be ignored. If

you're subtracting a 16-bit number, however, that carry output should be

saved in the Carry latch. In the second subtraction, the carry input to the

adder should be set to the result of the Carry latch.

With the new Add with Carry and Subtract with Borrow operations, we

have a total of seven opcodes so far:

Operation Code

Load 10h

Store 11h

Add 20h

Subtract 21h

Add with Carry 22h

Subtract with Borrow 23h

Halt FFh

The number sent to the adder is inverted for a Subtract or a Subtract with
Borrow operation. The carry output of the adder is the data input to the

Carry latch. The latch is clocked whenever an Add, Subtract, Add with
Carry, or Subtract with Borrow operation is being performed. The carry

input of the 8-Bit Adder is set to 1 when a Subtract operation is performed

or when the data output of the Carry latch is 1 and an Add with Carry or

Subtract with Borrow operation is being performed.

Keep in mind that the Add with Carry instruction causes the carry input of

the 8-Bit Adder to be set to 1 only if the previous Add or Add with Carry
instruction resulted in a carry output from the adder. Thus you use the Add
with Carry instruction whenever you're adding multibyte numbers whether

or not the operation is actually needed. To properly code the 16-bit addition

shown earlier, you use

This works correctly regardless of what the numbers are.

With these two new opcodes, we've greatly expanded the scope of the

machine. No longer are we restricted to adding 8-bit values. By repeated

use of the Add with Carry instruction, we can now add 16-bit values, 24-bit

values, 32-bit values, 40-bit values, and so on. Suppose we want to add the

32-bit values 7A892BCDh and 65A872FFh. We need one Add instruction

and three Add with Carry instructions:

Of course, actually keying these numbers into memory isn't the most

rewarding job around. Not only do you have to use switches to represent

binary numbers, but the numbers aren't stored in consecutive addresses. For

example, the number 7A892BCDh goes into addresses 0000h, 0003h,

0006h, and 0009h starting with the least-significant byte. To get the final

result, you have to examine the values located at addresses 0002h, 0005h,

0008h, and 000Bh.

Moreover, the current design of our automated adder doesn't allow the reuse

of results in subsequent calculations. Suppose we want to add three 8-bit

numbers together and then subtract an 8-bit number from that sum and store

the result. That would require a Load instruction, two Add instructions, a

Subtract, and a Store. But what if we also wanted to subtract other numbers

from that original sum? That sum isn't accessible. We'd have to recalculate

it every time we needed it.

The problem is that we've built an automated adder that addresses the Code
memory and the Data memory simultaneously and sequentially beginning at

address 0000h. Each instruction in the Code memory corresponds to a

location in the Data memory at the same address. Once a Store instruction

causes something to be stored in the Data memory, that value can't later be

loaded back into the accumulator.

To fix this problem, I'm going to make a fundamental and excruciating

change to the automated adder that will at first seem insanely complicated.

But in time, you'll see (I hope) that it opens a wide door of flexibility.

Here we go. We currently have seven opcodes:

Operation Code

Load 10h

Store 11h

Add 20h

Subtract 21h

Add with Carry 22h

Subtract with Borrow 23h

Halt FFh

Each of these codes occupies 1 byte in memory. With the exception of the

Halt code, I now want each of these instructions to require 3 bytes of

memory. The first byte will be the code itself, and the next 2 bytes will be a

16-bit memory location. For the Load instruction, that address indicates a

location in the Data RAM array that contains the byte to be loaded into the

accumulator. For the Add, Subtract, Add with Carry, and Subtract with
Borrow instructions, that address indicates the location of the byte that's to

be added to or subtracted from the accumulator. For the Store instruction,

the address indicates where the contents of the accumulator are to be stored.

For example, just about the simplest chore that the current automated adder

can do is add two numbers together. To do this, you set up the Code and

Data RAM arrays this way:

In the revised automated adder, each instruction (except Halt) requires 3

bytes:

Each of the instruction codes (except Halt) is followed by 2 bytes that

indicate a 16-bit address in the Data RAM array. These three addresses

happen to be 0000h, 0001h, and 0002h, but they could be anything.

Earlier I showed how to add a pair of 16-bit numbers—specifically 76ABh

and 232 Ch—using the Add and Add with Carry instructions. But we had to

store the 2 low-order bytes of these numbers at memory locations 0000h

and 0001h, and the 2 high-order bytes at 0003h and 0004h. The result of the

addition was stored at 0002h and 0005h.

With this change, we can store the two numbers and the result in a more

rational manner, and perhaps in an area of memory that we've never used

before:

These six locations don't have to be all together like this. They can be

scattered anywhere throughout the whole 64-KB Data RAM array. To add

these values at these memory locations, you must set up the instructions in

the Code RAM array, like this:

Notice that the 2 low-order bytes located at addresses 4001h and 4003h are

added first, with the result stored at address 4005h. The 2 high-order bytes

(at addresses 4000h and 4002h) are added with the Add with Carry
instruction, and the result is stored at address 4004h. And if we were to

remove the Halt instruction and add more instructions to the Code memory,

a sub-sequent calculation could later make use of the original numbers and

the sum of them simply by referring to these memory addresses.

The key to implementing this design is to have the data output of the Code

RAM array go into three 8-bit latches. Each of these latches stores one of

the bytes of the 3-byte instruction. The first latch stores the instruction

code, the second latch stores the high-order byte of the address, and the

third latch stores the low-order address byte. The output of the second and

third latches becomes the 16-bit address of the Data RAM array:

The process of retrieving an instruction from memory is known as the

instruction fetch. In our machine, each instruction is 3 bytes in length, and

it's retrieved from memory 1 byte at a time; the instruction fetch requires

three cycles of the Clock signal. The entire instruction cycle requires a

fourth cycle of the Clock signal. These changes certainly complicate the

control signals.

The machine is said to execute an instruction when it does a series of

actions in response to the instruction code. But it's not as if the machine is

alive or anything. It's not analyzing the machine code and deciding what to

do. Each machine code is just triggering various control signals in a unique

way that causes the machine to do various things.

Notice that by making this machine more versatile, we've also slowed it

down. Using the same oscillator, it adds numbers at only one-fourth the

speed of the first automated adder I showed in this chapter. This is the result

of an engineering principle known as TANSTAAFL (pronounced tans
toffle), which means "There Ain't No Such Thing As A Free Lunch."

Usually, whenever you make a machine better in one way, something else

tends to suffer as a result.

If you were actually building such a machine out of relays, the bulk of the

circuit would obviously be the two 64-KB RAM arrays. Indeed, much

earlier you might have skimped on these components and decided that

initially you would need only 1 KB of memory. If you made sure you stored

everything in addresses 0000h through 03FFh, using less memory than 64

KB would work out just fine.

Still, however, you probably weren't thrilled that you needed two RAM

arrays. And in fact, you don't. I originally introduced two RAM arrays—

one for code and one for data—so that the architecture of the automated

adder would be as clear and simple as possible. But now that we've decided

to make each instruction 3 bytes long—with the second and third bytes

indicating an address where the data is located—it's no longer necessary to

have two separate RAM arrays. Both code and data can be stored in the

same RAM array.

To accomplish this, we need to have a 2-to-1 Selector to determine how the

RAM array is addressed. Usually, the address is the 16-bit counter, as

before. The RAM Data Out is still connected to three latches that latch the

instruction code and the 2 address bytes that accompany each instruction.

But the 16-bit address is the second input to the 2-to-1 Selector. After the

address is latched, this selector allows the latched address to be the address

input to the RAM array:

We've made a lot of progress. Now it's possible to enter the instructions and

the data in a single RAM array. For example, the diagram on the next page

shows how to add two 8-bit numbers together and subtract a third.

As usual, the instructions begin at 0000h because that's where the counter

starts accessing the RAM array after it has been reset. The final Halt
instruction is stored at address 000Ch. We could have stored the three

numbers and the results anywhere in the RAM array (except in the first 13

bytes, of course, because those memory locations are occupied by

instructions), but we chose to store the data starting at address 0010h.

Now suppose you discover that you need to add two more numbers to that

result. Well, you can replace all the instructions you just entered with some

new instructions, but maybe you don't want to do that. Maybe you'd prefer

to just continue with the new instructions starting at the end of these

instructions, first replacing the Halt instruction with a new Load instruction

at address 000Ch. But you also need two new Add instructions, a Store
instruction, and a new Halt instruction. Your only problem is that you have

some data stored at address 0010h. You have to move that data someplace

at a higher memory address. And you then have to change the instructions

that refer to those memory instructions.

Hmmm, you think. Maybe combining Code and Data into a single RAM

array wasn't such a hot idea after all. But I assure you, a problem such as

this would have come up sooner or later. So let's solve it. In this case,

maybe what you'd like to do is enter the new instructions beginning at

address 0020h and the new data at address 0030h:

Notice that the first Load instruction refers to the memory location 0013h,

which is where the result of the first calculation was stored.

So now we have some instructions starting at address 0000h, some data

starting at 0010h, some more instructions at 0020h, and some more data at

0030h. We want to let the automated adding machine start at 0000h and

execute all the instructions.

We know we must remove that Halt instruction at address 000Ch, and by

remove I really mean replace it with something else. But is that sufficient?

The problem is that whatever we replace the Halt instruction with is going

to be interpreted as an instruction byte. And so will the bytes stored every 3

bytes after that—at 000Fh, and 0012h, and 0015h, and 0018h, and 001Bh,

and 001Eh. What if one of these bytes just happens to be an 11h? That's a

Store instruction. And what if the 2 bytes following that Store instruction

happened to refer to address 0023h? That would cause the machine to write

the contents of the accumulator to that address. But that address contains

something important already! And even if nothing like this happened, the

next instruction byte that the adder retrieves from memory after the one at

001Eh will be at address 0021h, not 0020h, which is where our next real

instruction happens to be.

Are we all in agreement that we can't just remove the Halt instruction at

address 000Ch and hope for the best?

But what we can replace it with is a new instruction called Jump. Let's add

that to our repertoire.

Operation Code

Load 10h

Store 11h

Add 20h

Subtract 21h

Add with Carry 22h

Subtract with Borrow 23h

Jump 30h

Halt FFh

Normally, this automated adder addresses the RAM array sequentially. A

Jump instruction causes the machine to alter that pattern. Instead, it begins

addressing the RAM array at a different specified address. Such an

instruction is sometimes also called a Branch instruction, or Goto, as in "go

to another place."

In the preceding example, we can replace the Halt instruction at address

000Ch with a Jump instruction:

The 30h byte is the code for a Jump instruction. The 16-bit address that

follows indicates the address of the next instruction that the automated

adder is to read.

So in the preceding example, the automated adder begins at 0000h, as usual,

and does a Load instruction, an Add, a Subtract, and a Store. It then does

the Jump instruction and continues at address 0020h with a Load, two Add
instructions, a Store, and finally Halt.

The Jump instruction affects the 16-bit counter. Whenever the automated

adder encounters a Jump instruction, the counter must somehow be forced

to output that new address that follows the Jump instruction code. This is

implemented by using the Preset and Clear inputs of the edge-triggered D-

type flip-flops that make up the 16-bit counter:

You'll recall that the Preset and Clear inputs should both be 0 for normal

operation. But if Preset is 1, Q becomes 1. And if Clear is 1, Q becomes 0.

If you want to load a single flip-flop with a new value (which I'll call A for

address), you can wire it like this:

Normally the Set It signal is 0. In that case, the Preset input to the flip-flop

is 0. The Clear input is also 0 unless the Reset signal is 1. This allows the

flip-flop to be cleared independently of the Set It signal. When the Set It

signal is 1, the Preset input will be 1 and the Clear input will be 0 if A is 1.

If A is 0, the Preset input will be 0 and the Clear input will be 1. This means

that Q will be set to the value of A.

We need one of these for each bit of the 16-bit counter. Once loaded with a

particular value, the counter will continue counting from that value on.

Otherwise, the changes aren't severe. The 16-bit address that's latched from

the RAM array is an input to both the 2-to-1 Selector (which allows this

address to be an address input to the RAM array) and the 16-bit counter for

the Set It function:

Obviously, we must ensure that the Set It signal is 1 only if the instruction

code is 30h and the address has been latched.

The Jump instruction is certainly useful. But it's not nearly as useful as an

instruction that jumps sometimes but not all the time. Such an instruction is

known as a conditional jump, and perhaps the best way to show how useful

such an instruction can be is to pose a question: How can we persuade our

automated adder to multiply two 8-bit numbers? For example, how do we

get the result for something as simple as A7h times 1Ch?

Easy, right? The result of multiplying two 8-bit values is a 16-bit product.

For convenience, all three numbers involved in the multiplication are

expressed as 16-bit values. The first job is to decide where you want to put

the numbers and the product:

Everyone knows that multiplying A7h and 1Ch (which is 28 in decimal) is

the same as 28 additions of A7h. So the 16-bit location at addresses 1004h

and 1005h will actually be an accumulated summation. Here's the code for

adding A7h to that location once:

At the completion of these six instructions, the 16-bit value at memory

locations 1004h and 1005h will equal A7h times 1. Therefore, these six

instructions have to be repeated 27 more times in order for that 16-bit value

to equal A7h times 1Ch. You can achieve this by typing in these six

instructions 27 more times beginning at address 0012h. Or you can put a

Halt instruction at 0012h and press the Reset button 28 times to get the final

answer.

Of course, neither of these two options is ideal. They both require that you

do something—type in a bunch of instructions or press the Reset button—a

number of times that's proportional to one of the numbers being multiplied.

Surely you wouldn't want to generalize this process for 16-bit values that

you want to multiply.

But what if you put a Jump instruction at 0012h? This instruction causes the

counter to start from 0000h again:

This certainly does the trick (sort of). The first time through, the 16-bit

value at memory locations 1004h and 1005h will equal A7h times 1. Then

the Jump instruction will go back up to the top. At the end of the second

time through, the 16-bit result will equal A7h times 2. Eventually, it will

equal A7h times 1Ch, but there's no stopping it. It just keeps going and

going and going.

What we want is a Jump instruction that starts the process over again only

as many times as are needed. That's the conditional jump. And it's really not

that hard to implement. The first thing we'll want to add is a 1-bit latch

similar to the Carry latch. This will be called the Zero latch because it will

latch a value of 1 only if the output of the 8-Bit Adder is all zeros:

The output of that 8-bit NOR gate is 1 only if all the inputs are 0. Like the

Clock input of the Carry latch, the Clock input of the Zero latch latches a

value only when an Add, Subtract, Add with Carry, or Subtract with

Borrow instruction is being performed. This latched value is known as the

Zero flag. Watch out because it could seem as if it's working backward: The

Zero flag is 1 if the output of the adder is all zeros, and the Zero flag is 0 if

output of the adder is not all zeros.

With the Carry latch and the Zero latch, we can expand our repertoire of

instructions by four:

Operation Code

Load 10h

Store 11h

Add 20h

Subtract 21h

Add with Carry 22h

Subtract with Borrow 23h

Jump 30h

Jump If Zero 31h

Jump If Carry 32h

Jump If Not Zero 33h

Jump If Not Carry 34h

Halt FFh

For example, the Jump If Not Zero instruction jumps to the specified

address only if the output of the Zero latch is 0. In other words, there will

be no jump if the last Add, Subtract, Add with Carry, or Subtract with
Borrow instruction resulted in 0. Implementing this design is just an add-on

to the control signals that implement the regular Jump command: If the

instruction is Jump If Not Zero, the Set It signal on the 16-bit counter is

triggered only if the Zero flag is 0.

Now all that's necessary to make the code shown above multiply two

numbers are the following instructions starting at address 0012h:

The first time through, the 16-bit location at 0004h and 0005h contains A7h

times 1, as we've already established. The instructions here load the byte

from location 1003h into the accumulator. This is 1Ch. This byte is added to

the value at location 001Eh. This happens to be the Halt instruction, but of

course it's also a valid number. Adding FFh to 1Ch is the same as

subtracting 1 from 1Ch, so the result is 1Bh. This isn't 0, so the Zero flag is

0. The 1Bh byte is stored back at address 1003h. Next is a Jump If Not Zero
instruction. The Zero flag isn't set to 1, so the jump occurs. The next

instruction is the one located at address 0000h.

Keep in mind that the Store instruction doesn't affect the Zero flag. The

Zero flag is affected only by the Add, Subtract, Add with Carry, or Subtract
with Borrow instruction, so it will remain the same value that was set the

last time one of these instructions occurred.

The second time through, the 16-bit location at 1004h and 1005h will

contain the value A7h times 2. The value 1Bh is added to FFh to get the

result 1Ah. That's not 0, so back to the top.

On the twenty-eighth time through, the 16-bit location at 1004h and 1005h

will contain the value A7h times 1Ch. At location 1003h will be the value

1. This will be added to FFh and the result will be zero. The Zero flag will

be set! So the Jump If Not Zero instruction will not jump back to 0000h.

Instead, the next instruction is a Halt. We're done.

I now assert that at long last we've assembled a piece of hardware that we

can honestly call a computer. To be sure, it's a primitive computer, but it's a

computer nonetheless. What makes the difference is the conditional jump.

Controlled repetition or looping is what separates computers from

calculators. I've just demonstrated how a conditional jump instruction

allows this machine to multiply two numbers. In a similar way, it can also

divide two numbers. Moreover, it's not limited to 8-bit values. It can add,

subtract, multiply, and divide 16-bit, 24-bit, 32-bit, or even larger numbers.

And if it can do this, it can calculate square roots, logarithms, and

trigonometric functions.

Now that we've assembled a computer, we can start using words that sound

like we're talking about computers.

The particular computer that we've assembled is classified as a digital
computer because it works with discrete numbers. At one time, there were

also analog computers that are now largely extinct. (Digital data is discrete
data—data that has certain specific distinct values. Analog information is

continuous and varies throughout an entire range.)

A digital computer has four main parts: a processor, memory, at least one

input device, and least one output device. In our machine, the memory is

the 64-KB RAM array. The input and output devices are the rows of

switches and lightbulbs on the RAM array control panel. These switches

and lightbulbs let us (the human beings in this show) put numbers into

memory and examine the results.

The processor is everything else. A processor is also called a central
processing unit, or CPU. More casually, the processor is sometimes called

the brain of the computer, but I'd like to avoid using such terminology,

mainly because what we designed in this chapter hardly seems anything like

a brain to me. (The word microprocessor is very common these days. A

microprocessor is just a processor that—through use of technology I'll

describe in Chapter 18—is very small. What we've built out of relays in this

chapter could hardly be defined as a micro anything!)

The processor that we've built is an 8-bit processor. The accumulator is 8

bits wide and most of the data paths are 8 bits wide. The only 16-bit data

path is the address to the RAM array. If we used 8 bits for that, we'd be

limited to 256 bytes of memory rather than 65,536 bytes, and that would be

quite restrictive.

A processor has several components. I've already identified the

accumulator, which is simply a latch that holds a number inside the

processor. In our computer, the 8-bit inverter and the 8-Bit Adder together

can be termed the Arithmetic Logic Unit, or ALU. Our ALU performs only

arithmetic, specifically addition and subtraction. In slightly more

sophisticated computers (as we'll see), the ALU can also perform logical

functions, such as AND, OR, and XOR. The 16-bit counter is called a

Program Counter.

The computer that we've built is constructed from relays, wires, switches,

and lightbulbs. All of these things are hardware. In contrast, the instructions

and other numbers that we enter into memory are called software. It's "soft"

because it can be changed much more easily than the hardware can.

When we speak of computers, the word software is almost synonymous

with the term computer program, or, more simply, program. Writing

software is known as computer programming. Computer programming is

what I was doing when I determined the series of instructions that would

allow our computer to multiply two numbers together.

Generally, in computer programs, we can distinquish between code (which

refers to the instructions themselves) and data, which are the numbers that

the code manipulates. Sometimes the distinction isn't so obvious, as when

the Halt instruction served double duty as the number –1.

Computer programming is sometimes also referred to as writing code, or

coding, as in, "I spent my vacation coding" or "I was up until seven this

morning banging out some code." Sometimes computer programmers are

known as coders, although some might consider this a derogatory term.

Such programmers might prefer to be called software engineers.

The operation codes that a processor responds to (such as 10h and 11h for

Load and Store) are known as machine codes, or machine language. The

term language is used because it's akin to a spoken or written human

language in that a machine "understands" it and responds to it.

I've been referring to the instructions that our machine carries out by rather

long phrases, such as Add with Carry. Commonly, machine codes are

assigned short mnemonics that are written with uppercase letters.

These mnemonics can be as short as 2 or 3 letters. Here's a set of possible

mnemonics for the machine codes that our computer recognizes:

Operation Code Mnemonic

Load 10h LOD

Store 11h STO

Add 20h ADD

Subtract 21h SUB

Add with Carry 22h ADC

Subtract with Borrow 23h SBB

Jump 30h JMP

Jump If Zero 31h JZ

Jump If Carry 32h JC

Jump If Not Zero 33h JNZ

Jump If Not Carry 34h JNC

Halt FFh HLT

These mnemonics are particularly useful when combined with a couple of

other shortcuts. For example, instead of saying something long-winded like,

"Load byte at address 1003h into accumulator," we can instead write the

statement:

LOD A,[1003h]

The A and the [1003] that appear to the right of the mnemonic are called

arguments that indicate what's going on with this particular Load
instruction. The arguments are written with a destination on the left (the A

stands for accumulator) and a source on the right. The brackets indicate that

the accumulator should be loaded not with the value 1003h but with the

value stored in memory at address 1003h.

Similarly, the instruction "Add byte at address 001Eh to accumulator" can

be shortened to

ADD A,[001Eh]

and "Store contents of accumulator at address 1003h" is

STO [1003h],A

Notice that the destination (a memory location for the Store instruction) is

still on the left and the source is on the right. The contents of the

accumulator must be stored in memory at address 1003h. The wordy "Jump

to 0000h if the Zero flag is not 1" is more concisely written as

JNZ 0000h

The brackets aren't used in this instruction because the instruction jumps to

address 0000h, not to the value that might be stored at address 0000h.

It's convenient to write these instructions in this type of shorthand because

the instructions can be listed sequentially in a readable way that doesn't

require us to draw boxes of memory locations. To indicate that a particular

instruction is stored at a particular address, you can use the hexadecimal

address followed by a colon, such as

0000h: LOD A,[1005h]

And here's how we can indicate some data stored at a particular address:

1000h: 00h, A7h
1002h: 00h, 1Ch
1004h: 00h, 00h

The 2 bytes separated by commas indicate that the first byte is stored at the

address on the left and the second byte is stored at the next address. These

three lines are equivalent to

1000h: 00h, A7h, 00h, 1Ch, 00h, 00h

So the entire multiplication program can be written as a series of statements

like this:

0000h: LOD A,[1005h]
 ADD A,[1001h]
 STO [1005h],A

 LOD A,[1004h]
 ADC A,[1000h]
 STO [1004h],A

 LOD A,[1003h]
 ADD A,[001Eh]
 STO [1003h],A

 JNZ 0000h

001Eh: HLT

1000h: 00h, A7h
1002h: 00h, 1Ch
1004h: 00h, 00h

The judicious use of blank lines and other white space is simply to make the

whole program more readable for human beings like you and me.

It's better not to use actual numeric addresses when writing code because

they can change. For example, if you decided to store the numbers at

memory locations 2000h through 20005h, you'd need to rewrite many of the

statements as well. It's better to use labels to refer to locations in memory.

These labels are simply words, or they look almost like words, like this:

BEGIN: LOD A,[RESULT + 1]
 ADD A,[NUM1 + 1]
 STO [RESULT + 1],A

 LOD A,[RESULT]
 ADC A,[NUM1]
 STO [RESULT],A

 LOD A,[NUM2 + 1]
 ADD A,[NEG1]
 STO [NUM2 + 1],A

 JNZ BEGIN

NEG1: HLT

NUM1: 00h, A7h
NUM2: 00h, 1Ch
RESULT: 00h, 00h

Notice that the labels NUM1, NUM2, and RESULT all refer to memory

locations where 2 bytes are stored. In these statements, the labels NUM1 +

1, NUM2 + 1, and RESULT + 1 refer to the second byte after the particular

label. Notice the NEG1 (negative one) label on the HLT instruction.

Finally, if there's a chance that you'll forget what these statements do, you

can add little comments, which are in English and are separated from the

actual statements by a semicolon:

BEGIN: LOD A,[RESULT + 1]
 ADD A,[NUM1 + 1] ; Add low-order byte
 STO [RESULT + 1],A

 LOD A,[RESULT]
 ADC A,[NUM1] ; Add high-order byte
 STO [RESULT],A

 LOD A,[NUM2 + 1]
 ADD A,[NEG1] ; Decrement second number
 STO [NUM2 + 1],A

 JNZ BEGIN

NEG1: HLT

NUM1: 00h, A7h
NUM2: 00h, 1Ch
RESULT: 00h, 00h

I'm showing you here a type of computer programming language known as

assembly language. It's something of a compromise between the naked

numbers of machine code and the wordiness of our English descriptions of

the instructions, coupled with symbolic representations of memory

addresses. People are sometimes confused about the difference between

machine code and assembly language because they're really just two

different ways of looking at the same thing. Every statement in assembly

language corresponds to certain specific bytes of machine code.

If you were to write a program for the computer that we've built in this

chapter, you'd probably want to write it first (on paper) in assembly

language. Then, once you were satisfied that it was mostly correct and

ready to be tested, you would hand assemble it: This means that you would

manually convert each assembly-language statement to machine code, still

on paper. At that point, you can use the switches to enter the machine code

into the RAM array and run the program, which means to let the machine

execute the instructions.

When you're learning the concepts of computer programming, it's never too

early to get acquainted with bugs. When you're coding—particularly in

machine code—it's very easy to make mistakes. It's bad enough to enter a

number incorrectly, but what happens when you enter an instruction code

incorrectly? If you enter a 11h (the Store instruction) when you really meant

to enter a 10h (the Load instruction), not only will the machine not load in

the number it's supposed to, but that number will be overwritten by

whatever happens to be in the accumulator.

Some bugs can have unpredictable results. Suppose you use the Jump
instruction to jump to a location that doesn't contain a valid instruction

code. Or suppose you accidentally use the Store instruction to write over

instructions. Anything can happen (and often does).

There's even a bug in my multiplication program. If you run it twice, the

second time through it will multiply A7h by 256 and add that result to the

result already calculated. This is because after you run the program once,

the number at address 1003h will be 0. When you run it the second time,

FFh will be added to that value. The result won't be 0, so the program will

keep running until it is.

We've seen that this machine can do multiplication, and in a similar way it

can also do division. I've also asserted that this machine can use these

primitive functions to do square roots, logarithms, and trigonometric

functions. All a machine needs is the hardware to add and subtract and

some way to use conditional jump instructions to execute the proper code.

As a programmer might say, "I can do the rest in software."

Of course, this software might be quite complex. Many whole books have

been written that describe the algorithms that programmers use to solve

specific problems. We're not yet ready for that. We've been thinking about

whole numbers and haven't taken a crack at how to represent decimal

fractions in the computer. I'll get to that in Chapter 23.

I've mentioned several times that all the hardware to build these devices

was available over a hundred years ago. But it's unlikely that the computer

shown in this chapter could have been built at that time. Many of the

concepts implicit in its design weren't apparent when relay computers were

first built in the mid-1930s and only started to be understood around 1945

or so. Until that time, for example, people were still trying to build

computers that internally used decimal numbers rather than binary. And

computer programs weren't always stored in memory but instead were

sometimes coded on paper tape. In particular, in the early days of

computers, memory was expensive and bulky. Building a 64-KB RAM

array from five million telegraph relays would have been as absurd one

hundred years ago as it is now.

It's time to put what we've done in perspective and to review the history of

calculation and computing devices and machines. Perhaps we shall find that

we don't have to build this elaborate relay computer after all. As I

mentioned in Chapter 12, relays were eventually replaced with electronic

devices such as vacuum tubes and transistors. Perhaps we shall also find

that someone else has built something that's equivalent to the processor and

the memory we designed but that can fit in the palm of your hand.

Chapter 18. From Abaci to Chips
Throughout recorded history, people have invented numerous clever

gadgets and machines in a universal quest to make mathematical

calculations just a little bit easier. While the human species seemingly has

an innate numerical ability, we also require frequent assistance. We can

often conceive of problems that we can't easily solve ourselves.

The development of number systems can be seen as an early tool to help

people keep track of commodities and property. Many cultures, including

the ancient Greeks and native Americans, seem to have counted with the

assistance also of pebbles or kernels of grain. In Europe, this led to counting

boards, and in the Middle East to the familiar frame-and-bead abacus:

Although commonly associated with Asian cultures, the abacus seems to

have been introduced to China by traders around 1200 CE.

No one has ever really enjoyed multiplication and division, but few people

have done anything about it. The Scottish mathematician John Napier

(1550–1617) was one of those few. He invented logarithms for the specific

purpose of simplifying these operations. The product of two numbers is

simply the sum of their logarithms. So if you need to multiply two numbers,

you look them up in a table of logarithms, add the numbers from the table,

and then use the table in reverse to find the actual product.

The construction of tables of logarithms occupied some of the greatest

minds of the subsequent 400 years while others designed little gadgets to

use in place of these tables. The slide rule has a long history beginning with

a logarithmic scale made by Edmund Gunter (1581–1626) and refined by

William Oughtred (1574–1660). The history of the slide rule effectively

ended in 1976, when the Keuffel & Esser Company presented its last

manufactured slide rule to the Smithsonian Institution in Washington D.C.

The cause of death was the hand-held calculator.

Napier also invented another multiplication aid, which is composed of strips

of numbers usually inscribed on bone, horn, or ivory and hence referred to

as Napier's Bones. The earliest mechanical calculator was a somewhat

automated version of Napier's bones built around 1620 by Wilhelm

Schickard (1592–1635). Other calculators based on interlocking wheels,

gears, and levers are almost as old. Two of the more significant builders of

mechanical calculators were the mathematicians and philosophers Blaise

Pascal (1623–1662) and Gottfried Wilhelm von Leibniz (1646–1716).

You'll no doubt recall what a nuisance the carry bit was in both the original

8-Bit Adder and the computer that (among other things) automated the

addition of numbers wider than 8 bits. The carry seems at first to be just a

little quirk of addition, but in adding machines, the carry is really the central

problem. If you've designed an adding machine that does everything except

the carry, you're nowhere close to being finished!

How successfully the carry is dealt with is a key to the evaluation of old

calculating machines. For example, Pascal's design of the carry mechanism

prohibited the machine from subtracting. To subtract, the nines' complement

had to be added the way that I demonstrated in Chapter 13. Successful

mechanical calculators that real people could use weren't available until the

late nineteenth century.

One curious invention that was to have a later influence on the history of

computing—as well as a profound influence on the textile industry—was an

automated loom developed by Joseph Marie Jacquard (1752–1834). The

Jacquard loom (circa 1801) used metal cards with holes punched in them

(much like those of a player piano) to control the weaving of patterns in

fabrics. Jacquard's own tour de force was a self-portrait in black and white

silk that required about 10,000 cards.

In the eighteenth century (and indeed up to the 1940s), a computer was a

person who calculated numbers for hire. Tables of logarithms were always

needed, and trigonometric tables were essential for nautical navigation

using the stars and planets. If you wanted to publish a new set of tables, you

would hire a bunch of computers, set them to work, and then assemble all

the results. Errors could creep in at any stage of this process, of course,

from the initial calculation to setting up the type to print the final pages.

The desire to eliminate errors from mathematical tables motivated the work

of Charles Babbage (1791–1871), a British mathematician and economist

who was almost an exact contemporary of Samuel Morse.

At the time, mathematical tables (of logarithms, for example) were not
created by calculating an actual logarithm for each and every entry in the

table. This would have taken far too long. Instead, the logarithms were

calculated for select numbers, and then numbers in between were calculated

by interpolation, using what are called differences in relatively simple

calculations.

Beginning about 1820, Babbage believed that he could design and build a

machine that would automate the process of constructing a table, even to

the point of setting up type for printing. This would eliminate errors. He

conceived the Difference Engine, and basically it was a big mechanical

adding machine. Multidigit decimal numbers were represented by geared

wheels that could be in any of 10 positions. Negatives were handled using

the ten's complement. Despite some early models that showed Babbage's

design to be sound and some grants from the British government (never

enough, of course), the Difference Engine was never completed. Babbage

abandoned work on it in 1833.

By that time, however, Babbage had an even better idea. It was called the

Analytical Engine, and through repeated design and redesign (with a few

small models and parts of it actually built) it consumed Babbage off and on

until his death. The Analytical Engine is the closest thing to a computer that

the nineteenth century has to offer. In Babbage's design, it had a store
(comparable to our concept of memory) and a mill (the arithmetic unit).

Multiplication could be handled by repeated addition, and division by

repeated subtraction.

What's most intriguing about the Analytical Engine is that it could be

programmed using cards that were adapted from the cards used in the

Jacquard pattern-weaving loom. As Augusta Ada Byron, Countess of

Lovelace (1815–1852), put it (in notes to her translation of an article written

by an Italian mathematician about Babbage's Analytical Engine), "We may

say that the Analytical Engine weaves algebraical patterns just as the

Jacquard-loom weaves flowers and leaves."

Babbage seems to be the first person to understand the importance of a

conditional jump in computers. Here's Ada Byron again: "A cycle of

operations, then, must be understood to signify any set of operations which

is repeated more than once. It is equally a cycle, whether it be repeated

twice only, or an indefinite number of times; for it is the fact of a repetition
occurring at all that constitutes it such. In many cases of analysis there is a

recurring group of one or more cycles; that is, a cycle of cycle, or a cycle of
cycles."

Although a difference engine was eventually built by father-and-son team

Georg and Edvard Scheutz in 1853, Babbage's engines were forgotten for

many years, only to be resurrected in the 1930s when people began

searching for the roots of twentieth century computing. By that time,

everything Babbage had done had already been surpassed by later

technology, and he had little to offer the twentieth century computer

engineer except a precocious vision of automation.

Another milestone in the history of computing resulted from Article I,

Section 2, of the Constitution of the United States of America. Among other

things, this section calls for a census to be taken every ten years. By the

time of the 1880 census, information was accumulated on age, sex, and

national origin. The data amassed took about seven years to process.

Fearing that the 1890 census would take longer than a decade to process,

the Census Office explored the possibility of automating the system and

chose machinery developed by Herman Hollerith (1860–1929), who had

worked as a statistician for the 1880 census.

Hollerith's plan involved manila punch cards 6 ⅝ x 3 ¼ inches in size. (It's

unlikely that Hollerith knew about Charles Babbage's use of cards to

program his Analytical Engine, but he was almost certainly familiar with

the use of cards in the Jacquard loom.) The holes in these cards were

organized into 24 columns of 12 positions each, for a total of 288 positions.

These positions represented certain characteristics of a person being tallied

in the census. The census taker indicated these characteristics by punching

¼-inch square holes into the appropriate positions on the card.

This book has probably so accustomed you to thinking in terms of binary

codes that you might immediately assume that a card with 288 possible

punches is capable of storing 288 bits of information. But the cards weren't

used that way.

For example, a census card used in a purely binary system would have one

position for sex. It would be either punched for male or unpunched for

female (or the other way around). But Hollerith's cards had two positions

for sex. One position was punched for male, the other for female. Likewise,

the census taker indicated a subject's age by making two punches. The first

punch designated a five-year age range: 0 through 4, 5 through 9, 10

through 14, and so forth. The second punch was in one of five positions to

indicate the precise age within that range. Coding the age required a total of

28 positions on the card. A pure binary system would require just 7

positions to code any age from 0 through 127.

We should forgive Hollerith for not implementing a binary system for

recording census information: Converting an age to binary numbers was a

little too much to ask of the 1890 census takers. There's also a practical

reason why a system of punched cards can't be entirely binary. A binary

system would produce cases in which all the holes (or nearly all) were

punched, rendering the card very fragile and structurally unsound.

Census data is collected so that it can be counted, or tabulated. You want to

know how many people live in each census district, of course, but it's also

interesting to obtain information about the age distribution of the

population. For this, Hollerith created a tabulating machine that combined

hand operation and automation. An operator pressed a board containing 288

spring-loaded pins on each card. Pins corresponding to punched holes in the

cards came into contact with a pool of mercury that completed an electrical

circuit that triggered an electromagnet that incremented a decimal counter.

Hollerith also used electromagnets in a machine that sorted cards. For

example, you might want to accumulate separate age statistics for each

occupation that you've tallied. You first need to sort the cards by occupation

and then accumulate the age statistics separately for each. The sorting

machine used the same hand press as the tabulator, but the sorter had

electromagnets to open a hatch to one of 26 separate compartments. The

operator dropped the card into the compartment and manually closed the

hatch.

This experiment in automating the 1890 census was a resounding success.

All told, over 62 million cards were processed. They contained twice as

much data as was accumulated in the 1880 census, and the data was

processed in about one-third the time. Hollerith and his inventions became

known around the world. In 1895, he even traveled to Moscow and

succeeded in selling his equipment for use in the very first Russian census,

which occurred in 1897.

Herman Hollerith also set in motion a long trail of events. In 1896, he

founded the Tabulating Machine Company to lease and sell the punch-card

equipment. By 1911, with the help of a couple of mergers, it had become

the Computing-Tabulating-Recording Company, or C-T-R. By 1915, the

president of C-T-R was Thomas J. Watson (1874–1956), who in 1924

changed the name of the company to International Business Machines

Corporation, or IBM.

By 1928, the original 1890 census cards had evolved into the famous "do

not spindle, fold, or mutilate" IBM cards, with 80 columns and 12 rows.

They remained in active use for over 50 years, and even in their later years

were sometimes referred to as Hollerith cards. I'll describe the legacy of

these cards more in Chapters Chapter 20, Chapter 21, and Chapter 24.

Before we move on to the twentieth century, let's not leave the nineteenth

century with too warped a view about that era. For obvious reasons, in this

book I've been focusing most closely on inventions that are digital in nature.

These include the telegraph, Braille, Babbage's engines, and the Hollerith

card. When working with digital concepts and devices, you might find it

easy to think that the whole world must be digital. But the nineteenth

century is characterized more by discoveries and inventions that were

decidedly not digital. Indeed, very little of the natural world that we

experience through our senses is digital. It's instead mostly a continuum that

can't be so easily quantified.

Although Hollerith used relays in his card tabulators and sorters, people

didn't really begin building computers using relays—electromechanical
computers, as they were eventually called—until the mid 1930s. The relays

used in these machines were generally not telegraph relays, but instead

were relays developed for the telephone system to control the routing of

calls.

Those early relay computers were not like the relay computer that we built

in the last chapter. (As we'll see, I based the design of that computer on

microprocessors from the 1970s.) In particular, while it's obvious to us

today that computers internally should use binary numbers, that wasn't

always the case.

Another difference between our relay computer and the early real ones is

that nobody in the 1930s was crazy enough to construct 524,288 bits of

memory out of relays! The cost and space and power requirements would

have made so much memory impossible. The scant memory available was

used only for storing intermediate results. The programs themselves were

on a physical medium such as a paper tape with punched holes. Indeed, our

process of putting code and data into memory is a more modern concept.

Chronologically, the first relay computer seems to have been constructed by

Conrad Zuse (1910–1995), who as an engineering student in 1935 began

building a machine in his parents' apartment in Berlin. It used binary

numbers but in the early versions used a mechanical memory scheme rather

than relays. Zuse punched holes in old 35mm movie film to program his

computers.

In 1937, George Stibitz (1904–1995) of Bell Telephone Laboratories took

home a couple of telephone relays and wired a 1-bit adder on his kitchen

table that his wife later dubbed the K Machine (K for kitchen). This

experimentation led to Bell Labs' Complex Number Computer in 1939.

Meanwhile, Harvard graduate student Howard Aiken (1900–1973) needed

some way to do lots of repetitive calculations, and that led to a

collaboration between Harvard and IBM that resulted in the Automated

Sequence Controlled Calculator (ASCC) eventually known as the Harvard

Mark I, completed in 1943. This was the first digital computer that printed

tables, thus finally realizing Charles Babbage's dream. The Mark II was the

largest relay-based machine, using 13,000 relays. The Harvard Computation

Laboratory headed by Aiken taught the first classes in computer science.

Relays weren't perfect devices for constructing computers. Because they

were mechanical and worked by bending pieces of metal, they could break

after an extended workout. A relay could also fail because of a piece of dirt

or paper stuck between the contacts. In one famous incident in 1947, a moth

was extracted from a relay in the Harvard Mark II computer. Grace Murray

Hopper (1906–1992), who had joined Aiken's staff in 1944 and who would

later become quite famous in the field of computer programming languages,

taped the moth to the computer logbook with the note "first actual case of

bug being found."

A possible replacement for the relay is the vacuum tube, which was

developed by John Ambrose Fleming (1849–1945) and Lee de Forest

(1873–1961) in connection with radio. By the 1940s, vacuum tubes had

long been used to amplify telephones, and virtually every home had a

console radio set filled with glowing tubes that amplified radio signals to

make them audible. Vacuum tubes can also be wired—much like relays—

into AND, OR, NAND, and NOR gates.

It doesn't matter whether gates are built from relays or vacuum tubes. Gates

can always be assembled into adders, selectors, decoders, flip-flops, and

counters. Everything I explained about relay-based components in the

preceding chapters remains valid when the relays are replaced by vacuum

tubes.

Vacuum tubes had their own problems, though. They were expensive,

required a lot of electricity, and generated a lot of heat. The big problem,

however, was that they eventually burned out. This was a fact of life that

people lived with. Those who owned tube radios were accustomed to

replacing tubes periodically. The telephone system was designed with a lot

of redundancy, so the loss of a tube now and then was no big deal. (No one

expects the telephone system to work flawlessly anyway.) When a tube

burns out in a computer, however, it might not be immediately detected.

Moreover, a computer uses so many vacuum tubes, that statistically they

might be burning out every few minutes.

The big advantage of using vacuum tubes over relays is that tubes can

switch in about a millionth of a second—one microsecond. A vacuum tube

changes state (switches on or off) a thousand times faster than a relay,

which at its very best only manages to switch in about 1 millisecond, a

thousandth of a second. Interestingly enough, the speed issue wasn't a major

consideration in early computer development because overall computing

speed was linked to the speed that the machine read the program from the

paper or film tape. As long as computers were built in this way, it didn't

matter how much faster vacuum tubes were than relays.

But beginning in the early 1940s, vacuum tubes began supplanting relays in

new computers. By 1945, the transition was complete. While relay

machines were known as electromechanical computers, vacuum tubes were

the basis of the first electronic computers.

In Great Britain, the Colossus computer (first operational in 1943) was

dedicated to cracking the German "Enigma" code-making machine.

Contributing to this project (and to some later British computer projects)

was Alan M. Turing (1912–1954), who is most famous these days for

writing two influential papers. The first, published in 1937, pioneered the

concept of "computability," which is an analysis of what computers can and

can't do. He conceived of an abstract model of a computer that's now known

as the Turing Machine. The second famous paper Turing wrote was on the

subject of artificial intelligence. He introduced a test for machine

intelligence that's now known as the Turing Test.

At the Moore School of Electrical Engineering (University of

Pennsylvania), J. Presper Eckert (1919–1995) and John Mauchly (1907–

1980) designed the ENIAC (Electronic Numerical Integrator and

Computer). It used 18,000 vacuum tubes and was completed in late 1945. In

sheer tonnage (about 30), the ENIAC was the largest computer that was

ever (and probably will ever be) made. By 1977, you could buy a faster

computer at Radio Shack. Eckert and Mauchly's attempt to patent the

computer was, however, thwarted by a competing claim of John V.

Atanasoff (1903–1995), who earlier designed an electronic computer that

never worked quite right.

The ENIAC attracted the interest of mathematician John von Neumann

(1903–1957). Since 1930, the Hungarian-born von Neumann (whose last

name is pronounced noy mahn) had been living in the United States. A

flamboyant man who had a reputation for doing complex arithmetic in his

head, von Neumann was a mathematics professor at the Princeton Institute

for Advanced Study, and he did research in everything from quantum

mechanics to the application of game theory to economics.

John von Neumann helped design the successor to the ENIAC, the EDVAC

(Electronic Discrete Variable Automatic Computer). Particularly in the

1946 paper "Preliminary Discussion of the Logical Design of an Electronic

Computing Instrument," coauthored with Arthur W. Burks and Herman H.

Goldstine, he described several features of a computer that made the

EDVAC a considerable advance over the ENIAC. The designers of the

EDVAC felt that the computer should use binary numbers internally. The

ENIAC used decimal numbers. The computer should also have as much

memory as possible, and this memory should be used for storing both

program code and data as the program was being executed. (Again, this

wasn't the case with the ENIAC. Programming the ENIAC was a matter of

throwing switches and plugging in cables.) These instructions should be

sequential in memory and addressed with a program counter but should also

allow conditional jumps. This design came to be known as the stored-
program concept.

These design decisions were such an important evolutionary step that today

we speak of von Neumann architecture. The computer that we built in the

last chapter was a classic von Neumann machine. But with von Neumann

architecture comes the von Neumann bottleneck. A von Neumann machine

generally spends a significant amount of time just fetching instructions

from memory in preparation for executing them. You'll recall that the final

design of the Chapter 17 computer required that three-quarters of the time it

spent on each instruction be involved in the instruction fetch.

At the time of the EDVAC, it wasn't cost effective to build a lot of memory

out of vacuum tubes. Some very odd solutions were proposed instead. One

successful one was mercury delay line memory, which used 5-foot tubes of

mercury. At one end of the tube, little pulses were sent into the mercury

about 1 microsecond apart. These pulses took about a millisecond to reach

the other end (where they were detected like sound waves and routed back

to the beginning), and hence each tube of mercury could store about 1024

bits of information.

It wasn't until the mid-1950s that magnetic core memory was developed.

Such memory consisted of large arrays of little magnetized metal rings

strung with wires. Each little ring could store a bit of information. Long

after core memory had been replaced by other technologies, it was common

to hear older programmers refer to the memory that the processor accessed

as core.

John von Neumann wasn't the only person doing some major conceptual

thinking about the nature of computers in the 1940s.

Claude Shannon (born 1916) was another influential thinker. In Chapter 11,

I discussed his 1938 master's thesis, which established the relationship

between switches, relays, and Boolean algebra. In 1948, while working for

Bell Telephone Laboratories, he published a paper in the Bell System
Technical Journal entitled "A Mathematical Theory of Communication" that

not only introduced the word bit in print but established a field of study

today known as information theory. Information theory is concerned with

transmitting digital information in the presence of noise (which usually

prevents all the information from getting through) and how to compensate

for that. In 1949, he wrote the first article about programming a computer to

play chess, and in 1952 he designed a mechanical mouse controlled by

relays that could learn its way around a maze. Shannon was also well

known at Bell Labs for riding a unicycle and juggling simultaneously.

Norbert Wiener (1894–1964), who earned his Ph.D. in mathematics from

Harvard at the age of 18, is most famous for his book Cybernetics, or
Control and Communication in the Animal and Machine (1948). He coined

the word cybernetics (derived from the Greek for steersman) to identify a

theory that related biological processes in humans and animals to the

mechanics of computers and robots. In popular culture, the ubiquitous

cyber-prefix now denotes anything related to the computer. Most notably,

the interconnection of millions of computers through the Internet is known

as cyberspace, a word coined by cyberpunk sciencefiction novelist William

Gibson in his 1984 novel Neuromancer.

In 1948, the Eckert-Mauchly Computer Corporation (later part of

Remington Rand) began work on what would become the first

commercially available computer—the Universal Automatic Computer, or

UNIVAC. It was completed in 1951, and the first one was delivered to the

Bureau of the Census. The UNIVAC made its prime-time network debut on

CBS, when it was used to predict results of the 1952 presidential election.

Walter Cronkite referred to it as an "electronic brain." Also in 1952, IBM

announced the company's first commercial computer system, the 701.

And thus began a long history of corporate and governmental computing.

However interesting that history might be, we're going to pursue another

historical track—a track that shrank the cost and size of computers and

brought them into the home, and which began with an almost unnoticed

electronics breakthrough in 1947.

Bell Telephone Laboratories was for many years a place where smart

people could work on just about anything that interested them. Some of

them, fortunately, were interested in computers. I've already mentioned

George Stibitz and Claude Shannon, both of whom made significant

contributions to early computing while working at Bell Labs. Later on, in

the 1970s, Bell Labs was the birthplace of the influential computer

operating system named Unix and a programming language named C,

which I'll describe in upcoming chapters.

Bell Labs came about when American Telephone and Telegraph officially

separated their scientific and technical research divisions from the rest of

their business, creating the subsidiary on January 1, 1925. The primary

purpose of Bell Labs was to develop technologies for improving the

telephone system. That mandate was fortunately vague enough to

encompass all sorts of things, but one obvious perennial goal within the

telephone system was the undistorted amplification of voice signals

transmitted over wires.

Since 1912, the Bell System had worked with vacuum tube amplification,

and a considerable amount of research and engineering went into improving

vacuum tubes for use by the telephone system. Despite this work, vacuum

tubes still left much to be desired. Tubes were large, consumed a lot of

power, and eventually burned out. But they were the only game in town.

All that changed December 16, 1947, when two physicists at Bell Labs

named John Bardeen (1908–1991) and Walter Brattain (1902–1987) wired a

different type of amplifier. This new amplifier was constructed from a slab

of germanium—an element known as a semiconductor—and a strip of gold

foil. They demonstrated it to their boss, William Shockley (1910–1989), a

week later. It was the first transistor, a device that some people have called

the most important invention of the twentieth century.

The transistor didn't come out of the blue. Eight years earlier, on December

29, 1939, Shockley had written in his notebook, "It has today occurred to

me that an amplifier using semiconductors rather than vacuum is in

principle possible." And after that first transistor was demonstrated, many

years followed in perfecting it. It wasn't until 1956 that Shockley, Bardeen,

and Brattain were awarded the Nobel Prize in physics "for their researches

on semiconductors and their discovery of the transistor effect."

Earlier in this book, I talked about conductors and insulators. Conductors

are so called because they're very conducive to the passage of electricity.

Copper, silver, and gold are the best conductors, and it's no coincidence that

all three are found in the same column of the periodic table of the elements.

As you'll recall, the electrons in an atom are distributed in shells that

surround the nucleus of the atom. What characterizes these three conductors

is a lone electron in the outermost shell. This electron can be easily

dislodged from the rest of the atom and hence is free to move as electrical

current. The opposites of conductors are insulators—like rubber and plastic

—that barely conduct electricity at all.

The elements germanium and silicon (as well as some compounds) are

called semiconductors, not because they conduct half as well as conductors,

but because their conductance can be manipulated in various ways.

Semiconductors have four electrons in the outermost shell, which is half the

maximum number the outer shell can have. In a pure semiconductor, the

atoms form very stable bonds with each other and have a crystalline

structure similar to the diamond. Such semiconductors aren't good

conductors.

But semiconductors can be doped, which means that they're combined with

certain impurities. One type of impurity adds extra electrons to those

needed for the bond between the atoms. These are called N-type
semiconductors (N for negative). Another type of impurity results in a P-
type semiconductor.

Semiconductors can be made into amplifiers by sandwiching a P-type

semiconductor between two N-type semiconductors. This is known as an

NPN transistor, and the three pieces are known as the collector, the base,

and the emitter.

Here's a schematic diagram of an NPN transistor:

A small voltage on the base can control a much larger voltage passing from

the collector to the emitter. If there's no voltage on the base, it effectively

turns off the transistor.

Transistors are usually packaged in little metal cans about a quarter-inch in

diameter with three wires poking out:

The transistor inaugurated solid-state electronics, which means that

transistors don't require vacuums and are built from solids, specifically

semiconductors and most commonly (these days) silicon. Besides being

much smaller than vacuum tubes, transistors require much less power,

generate much less heat, and last longer. Carrying around a tube radio in

your pocket was inconceivable. But a transistor radio could be powered by

a small battery, and unlike tubes, it wouldn't get hot. Carrying a transistor

radio in your pocket became possible for some lucky people opening

presents on Christmas morning in 1954. Those first pocket radios used

transistors made by Texas Instruments, an important company of the

semiconductor revolution.

The first commercial application of the transistor was, however, a hearing

aid. In commemorating the heritage of Alexander Graham Bell in his

lifelong work with deaf people, AT&T allowed hearing aid manufacturers

to use transistor technology without paying any royalties. The first

transistor television debuted in 1960, and today tube appliances have almost

disappeared. (Not entirely, however. Some audiophiles and electric

guitarists continue to prefer the sound of tube amplifiers to their transistor

counterparts.)

In 1956, Shockley left Bell Labs to form Shockley Semiconductor

Laboratories. He moved to Palo Alto, California, where he had grown up.

His was the first such company to locate in that area. In time, other

semiconductor and computer companies set up business there, and the area

south of San Francisco is now informally known as Silicon Valley.

Vacuum tubes were originally developed for amplification, but they could

also be used for switches in logic gates. The same goes for the transistor.

On the next page, you'll see a transistor-based AND gate structured much

like the relay version. Only when both the A input is 1 and the B input is 1

will both transistors conduct current and hence make the output 1. The

resistor prevents a short circuit when this happens.

Wiring two transistors as you see below in the diagram on the right creates

an OR gate. In the AND gate, the emitter of the top transistor is connected

to the collector of the bottom transistor. In the OR gate, the collectors of

both transistors are connected to the voltage supply. The emitters are

connected together.

So everything we learned about constructing logic gates and other

components from relays is valid for transistors. Relays, tubes, and

transistors were all initially developed primarily for purposes of

amplification but can be connected in similar ways to make logic gates out

of which computers can be built. The first transistor computers were built in

1956, and within a few years tubes had been abandoned for the design of

new computers.

Here's a question: Transistors certainly make computers more reliable,

smaller, and less power hungry. But do transistors make computers any

simpler to construct?

Not really. The transistor lets you fit more logic gates in a smaller space, of

course, but you still have to worry about all the interconnections of these

components. It's just as difficult wiring transistors to make logic gates as it

is wiring relays and vacuum tubes. In some ways, it's even more difficult

because the transistors are smaller and less easy to hold. If you wanted to

build the Chapter 17 computer and the 64-KB RAM array out of transistors,

a good part of the design work would be devoted to inventing some kind of

structure in which to hold all the components. Most of your physical labor

would be the tedious wiring of millions of interconnections among millions

of transistors.

As we've discovered, however, there are certain combinations of transistors

that show up repeatedly. Pairs of transistors are almost always wired as

gates. Gates are often wired into flip-flops or adders or selectors or

decoders. Flip-flops are combined into multibit latches or RAM arrays.

Assembling a computer would be much easier if the transistors were

prewired in common configurations.

This idea seems to have been proposed first by British physicist Geoffrey

Dummer (born 1909) in a speech in May 1952. "I would like to take a peep

into the future," he said.

With the advent of the transistor and the work in semiconductors generally, it seems now possible
to envisage electronic equipment in a solid block with no connecting wires. The block may consist
of layers of insulating, conducting, rectifying and amplifying materials, the electrical functions
being connected directly by cutting out areas of the various layers.

A working product, however, would have to wait a few years.

Without knowing about the Dummer prediction, in July 1958 it occurred to

Jack Kilby (born 1923) of Texas Instruments that multiple transistors as

well as resistors and other electrical components could be made from a

single piece of silicon. Six months later, in January 1959, basically the same

idea occurred to Robert Noyce (1927–1990). Noyce had originally worked

for Shockley Semiconductor Laboratories, but in 1957 he and seven other

scientists had left and started Fairchild Semiconductor Corporation.

In the history of technology, simultaneous invention is more common than

one might suspect. Although Kilby had invented the device six months

before Noyce, and Texas Instruments had applied for a patent before

Fairchild, Noyce was issued a patent first. Legal battles ensued, and only

after a decade were they finally settled to everyone's satisfaction. Although

they never worked together, Kilby and Noyce are today regarded as the

coinventors of the integrated circuit, or IC, commonly called the chip.

Integrated circuits are manufactured through a complex process that

involves layering thin wafers of silicon that are precisely doped and etched

in different areas to form microscopic components. Although it's expensive

to develop a new integrated circuit, they benefit from mass production—the

more you make, the cheaper they become.

The actual silicon chip is thin and delicate, so it must be securely packaged,

both to protect the chip and to provide some way for the components in the

chip to be connected to other chips. Integrated circuits are packaged in a

couple of different ways, but the most common is the rectangular plastic

dual inline package (or DIP), with 14, 16, or as many as 40 pins protruding

from the side:

This is a 16-pin chip. If you hold the chip so the little indentation is at the

left (as shown), the pins are numbered 1 through 16 beginning at the lower

left and circling around the right side to end with pin 16 at the upper left.

The pins on each side are exactly inch apart.

Throughout the 1960s, the space program and the arms race fueled the early

integrated circuits market. On the civilian side, the first commercial product

that contained an integrated circuit was a hearing aid sold by Zenith in

1964. In 1971, Texas Instruments began selling the first pocket calculator,

and Pulsar the first digital watch. (Obviously the IC in a digital watch is

packaged much differently from the example just shown.) Many other

products that incorporated integrated circuits in their design followed.

In 1965, Gordon E. Moore (then at Fairchild and later a cofounder of Intel

Corporation) noticed that technology was improving in such a way that the

number of transistors that could fit on a single chip had doubled every year

since 1959. He predicted that this trend would continue. The actual trend

was a little slower, so Moore's Law (as it was eventually called) was

modified to predict a doubling of transistors on a chip every 18 months.

This is still an astonishingly fast rate of progress and reveals why home

computers always seem to become outdated in just a few short years. Some

people believe that Moore's Law will continue to be accurate until about

2015.

In the early days, people used to speak of small-scale integration, or SSI, to

refer to a chip that had fewer than 10 logic gates; medium-scale integration,

or MSI (10 to 100 gates); and large-scale integration, or LSI (100 to 5000).

Then the terms ascended to very-large-scale integration, or VLSI (5000 to

50,000); super-large-scale integration, or SLSI (50,000 to 100,000); and

ultra-large-scale integration, (more than 100,000 gates).

For the remainder of this chapter and the next, I want to pause our time

machine in the mid-1970s, an ancient age before the first Star Wars movie

was released and with VLSI just on the horizon. At that time, several

different technologies were used to fabricate the components that make up

integrated circuits. Each of these technologies is sometimes called a family
of ICs. By the mid-1970s, two families were prevalent: TTL (pronounced

tee tee ell) and CMOS (see moss).

TTL stands for transistor-transistor logic. If in the mid-1970s you were a

digital design engineer (which meant that you designed larger circuits from

ICs), a 1 ¼-inch-thick book first published in 1973 by Texas Instruments

called The TTL Data Book for Design Engineers would be a permanent

fixture on your desk. This is a complete reference to the 7400 (seventy-four
hundred) series of TTL integrated circuits sold by Texas Instruments and

several other companies, so called because each IC in this family is

identified by a number beginning with the digits 74.

Every integrated circuit in the 7400 series consists of logic gates that are

prewired in a particular configuration. Some chips provide simple prewired

gates that you can use to create larger components; other chips provide

common components such as flip-flops, adders, selectors, and decoders.

The first IC in the 7400 series is number 7400 itself, which is described in

the TTL Data Book as "Quadruple 2-Input Positive-NAND Gates." What

this means is that this particular integrated circuit contains four 2-input

NAND gates. They're called positive NAND gates because a voltage

corresponds to 1 and no voltage corresponds to 0. This is a 14-pin chip, and

a little diagram in the data book shows how the pins correspond to the

inputs and outputs:

This diagram is a top view of the chip (pins on the bottom) with the little

indentation (shown on page 250) at the left.

Pin 14 is labeled VCC and is equivalent to the V symbol that I've been using

to indicate a voltage. (By convention, any double letter subscript on a

capital V indicates a power supply. The C in this subscript refers to the

collector input of a transistor, which is internally where the voltage supply

is connected.) Pin 7 is labeled GND for ground. Every integrated circuit

that you use in a particular circuit must be connected to a power supply and

a common ground.

For 7400 series TTL, VCC must be between 4.75 and 5.25 volts. Another

way of saying this is that the power supply voltage must be 5 volts plus or

minus 5 percent. If the power supply is below 4.75 volts, the chip might not

work. If it's higher than 5.25, the chip could be damaged. You generally

can't use batteries with TTL; even if you were to find a 5-volt battery, the

voltage wouldn't be exact enough to be adequate for these chips. TTL

usually requires a power supply that you plug into the wall.

Each of the four NAND gates in the 7400 chip has two inputs and one

output. They work independently of each other. In past chapters, we've been

differentiating between inputs being either 1 (which is a voltage) or 0

(which is no voltage). In reality, an input to one of these NAND gates can

range anywhere from 0 volts (ground) to 5 volts (VCC). In TTL, anything

between 0 volts and 0.8 volt is considered to be a logical 0, and anything

between 2 volts and 5 volts is considered to be a logical 1. Inputs between

0.8 volt and 2 volts should be avoided.

The output of a TTL gate is typically about 0.2 volt for a logical 0 and 3.4

volts for a logical 1. Because these voltages can vary somewhat, inputs and

outputs to integrated circuits are sometimes referred to as low and high
rather than 0 and 1. Moreover, sometimes a low voltage can mean a logical

1 and a high voltage can mean a logical 0. This configuration is referred to

as negative logic. When the 7400 chip is referred to as "Quadruple 2-Input

Positive-NAND Gates," the word positive means positive logic is assumed.

If the output of a TTL gate is typically 0.2 volt for a logical 0 and 3.4 volts

for a logical 1, these outputs are safely within the input ranges, which are

between 0 and 0.8 volt for a logical 0 and between 2 and 5 volts for a

logical 1. This is how TTL is insulated against noise. A 1 output can lose

about 1.4 volts and still be high enough to qualify as a 1 input. A 0 output

can gain 0.6 volt and still be low enough to qualify as a 0 input.

Probably the most important fact to know about a particular integrated

circuit is the propagation time. That's the time it takes for a change in the

inputs to be reflected in the output.

Propagation times for chips are generally measured in nanoseconds,

abbreviated nsec. A nanosecond is a very short period of time. One

thousandth of a second is a millisecond. One millionth of a second is a

microsecond. One billionth of a second is a nanosecond. The propagation

time for the NAND gates in the 7400 chip is guaranteed to be less than 22

nanoseconds. That's 0.000000022 seconds, or 22 billionths of a second.

If you can't get the feel of a nanosecond, you're not alone. Nobody on this

planet has anything but an intellectual appreciation of the nanosecond.

Nanoseconds are much shorter than anything in human experience, so

they'll forever remain incomprehensible. Every explanation makes the

nanosecond more elusive. For example, I can say that if you're holding this

book 1 foot away from your face, a nanosecond is the time it takes the light

to travel from the page to your eyes. But do you really have a better feel for

the nanosecond now?

Yet the nanosecond is what makes computers possible. As we saw in

Chapter 17, a computer processor does moronically simple things—it

moves a byte from memory to register, adds a byte to another byte, moves

the result back to memory. The only reason anything substantial gets

completed (not in the Chapter 17 computer but in real ones) is that these

operations occur very quickly. To quote Robert Noyce, "After you become

reconciled to the nanosecond, computer operations are conceptually fairly

simple."

Let's continue perusing the TTL Data Book for Design Engineers. You will

see a lot of familiar little items in this book. The 7402 chip contains four 2-

input NOR gates, the 7404 has six inverters, the 7408 has four 2-input AND

gates, the 7432 has four 2-input OR gates, and the 7430 has an 8-input

NAND gate:

The abbreviation NC means no connection.

The 7474 chip is another that will sound very familiar. It's a "Dual D-Type

Positive-Edge-Triggered Flip-Flop with Preset and Clear" and is

diagrammed like this:

The TTL Data Book even includes a logic diagram for each flip-flop in this

chip:

You'll recognize this as being similar to the diagram at the end of

Chapter 14, except that I used NOR gates. The logic table in the TTL Data
Book is a little different as well:

Inputs Outputs

Pre Clr Clk D Q

L H X X H L

H L X X L H

L L X X H* H*

H L ↑ H H L

H H ↑ L L H

H H L X Q0 0

In this table, the H stands for High and the L stands for Low. You can think

of these as 1 and 0 if you wish. In my flip-flop, the Preset and Clear inputs

were normally 0; here they're normally 1.

Moving right along in the TTL Data Book, you'll discover that the 7483

chip is a 4-Bit Binary Full Adder, 74151 is a 8-Line-To-1-Line Data

Selector, the 74154 is a 4-line-To-16-Line Decoder, 74161 is a Synchronous

4-Bit Binary Counter, and 74175 is a Quadruple D-Type Flip-Flop with

Clear. You can use two of these chips for making an 8-bit latch.

So now you know how I came up with all the various components I've been

using since Chapter 11. I stole them from the TTL Data Book for Design
Engineers.

As a digital design engineer, you would spend long hours going through the

TTL Data Book familiarizing yourself with the types of TTL chips that

were available. Once you knew all your tools, you could actually build the

computer I showed in Chapter 17 out of TTL chips. Wiring the chips

together is a lot easier than wiring individual transistors together. But you

might want to consider not using TTL to make the 64-KB RAM array. In

the 1973 TTL Data Book, the heftiest RAM chip listed is a mere 256 x 1

bits. You'd need 2048 of these chips to make 64 KB! TTL was never the

best technology for memory. I'll have more to say about memory in

Chapter 21.

You'd probably want to use a better oscillator as well. While you can

certainly connect the output of a TTL inverter to the input, it's better to have

an oscillator with a more predictable frequency. Such an oscillator can be

constructed fairly easily using a quartz crystal that comes in a little flat can

with two wires sticking out. These crystals vibrate at very specific

frequencies, usually at least a million cycles per second. A million cycles

per second is called a megahertz and abbreviated MHz. If the Chapter 17

computer were constructed out of TTL, it would probably run fine with a

clock frequency of 10 MHz. Each instruction would execute in 400

nanoseconds. This, of course, is much faster than anything we conceived

when we were working with relays.

The other popular chip family was (and still is) CMOS, which stands for

complementary metal-oxide semiconductor. If you were a hobbyist

designing circuits from CMOS ICs in the mid-1970s, you might use as a

reference source a book published by National Semiconductor and available

at your local Radio Shack entitled CMOS Databook. This book contains

information about the 4000 (four thousand) series of CMOS ICs.

The power supply requirement for TTL is 4.75 to 5.25 volts. For CMOS,

it's anything from 3 volts to 18 volts. That's quite a leeway! Moreover,

CMOS requires much less power than TTL, which makes it feasible to run

small CMOS circuits from batteries. The drawback of CMOS is lack of

speed. For example, the CMOS 4008 4-bit full adder running at 5 volts is

only guaranteed to have a propagation time of 750 nanoseconds. It gets

faster as the power supply gets higher—250 nsec at 10 volts and 190 nsec at

15 volts. But the CMOS device doesn't come close to the TTL 4-bit adder,

which has a propagation time of 24 nsec. (Twenty-five years ago, the trade-

off between the speed of TTL and the low power requirements of CMOS

was fairly clear cut. Today there are low-power versions of TTL and high-

speed versions of CMOS.)

On the practical side, you would probably begin wiring chips together on a

plastic breadboard:

Each short row of 5 holes is electrically connected underneath the plastic

base. You insert chips into the breadboard so that a chip straddles the long

central groove and the pins go into the holes on either side of the groove.

Each pin of the IC is then electrically connected to 4 other holes. You

connect the chips with pieces of wires pushed into the other holes.

You can wire chips together more permanently using a technique called

wire-wrapping. Each chip is inserted into a socket that has long square

posts:

Each post corresponds to a pin of the chip. The sockets themselves are

inserted into thin perforated boards. From the other side of the board, you

use a special wire-wrap gun to tightly wrap thin pieces of insulated wire

around the post. The square edges of the post break through the insulation

and make an electrical connection with the wire.

If you were actually manufacturing a particular circuit using ICs, you'd

probably use a printed circuit board. Back in the old days, this was

something a hobbyist could do. Such a board has holes and is covered by a

thin layer of copper foil. Basically, you cover all the areas of copper you

want to preserve with an acid resistant and use acid to etch away the rest.

You can then solder IC sockets (or the ICs themselves) directly to the

copper on the board. But because of the very many interconnections among

ICs, a single area of copper foil is usually inadequate. Commercially

manufactured printed circuit boards have multiple layers of

interconnections.

By the early 1970s, it became possible to use ICs to create an entire

computer processor on a single circuit board. It was really only a matter of

time before somebody put the whole processor on a single chip. Although

Texas Instruments filed a patent for a single-chip computer in 1971, the

honor of actually making one belongs to Intel, a company started in 1968

by former Fairchild employees Robert Noyce and Gordon Moore. Intel's

first major product was, in 1970, a memory chip that stored 1024 bits,

which was the greatest number of bits on a chip at that time.

Intel was in the process of designing chips for a programmable calculator to

be manufactured by the Japanese company Busicom when they decided to

take a different approach. As Intel engineer Ted Hoff put it, "Instead of

making their device act like a calculator with some programming abilities, I

wanted to make it function as a general-purpose computer programmed to

be a calculator." This led to the Intel 4004 (pronounced forty oh four), the

first "computer on a chip," or microprocessor. The 4004 became available

in November 1971 and contained 2300 transistors. (By Moore's Law,

microprocessors made 18 years later should contain about 4000 times as

many transistors, or about 10 million. That's a fairly accurate prediction.)

Having told you the number of its transistors, I'll now describe three other

important characteristics of the 4004. These three measures are often used

as standards for comparison among microprocessors since the 4004.

First, the 4004 was a 4-bit microprocessor. This means that the data paths in

the processor were only 4 bits wide. When adding or subtracting numbers,

it handled only 4 bits at a shot. In contrast, the computer developed in

Chapter 17 has 8-bit data paths and is thus an 8-bit processor. As we'll soon

see, 4-bit microprocessors were surpassed very quickly by 8-bit

microprocessors. No one stopped there. In the late 1970s, 16-bit

microprocessors became available. When you think back to Chapter 17 and

recall the several instruction codes necessary to add two 16-bit numbers on

an 8-bit processor, you'll appreciate the advantage that a 16-bit processor

gives you. In the mid-1980s, 32-bit microprocessors were introduced and

have remained the standard for home computers since then.

Second, the 4004 had a maximum clock speed of 108,000 cycles per

second, or 108 kilohertz (KHz). Clock speed is the maximum speed of an

oscillator that you can connect to the microprocessor to make it go. Any

faster and it might not work right. By 1999, microprocessors intended for

home computers had hit the 500-megahertz point—about 5000 times faster

than the 4004.

Third, the addressable memory of the 4004 was 640 bytes. This seems like

an absurdly low amount; yet it was in line with the capacity of memory

chips available at the time. As you'll see in the next chapter, within a couple

of years microprocessors could address 64 KB of memory, which is the

capability of the Chapter 17 machine. Intel microprocessors in 1999 can

address 64 terabytes of memory, although that's overkill considering that

most people have fewer than 256 megabytes of RAM in their home

computers.

These three numbers don't affect the capability of a computer. A 4-bit

processor can add 32-bit numbers, for example, simply by doing it in 4-bit

chunks. In one sense, all digital computers are the same. If the hardware of

one processor can do something another can't, the other processor can do it

in software; they all end up doing the same thing. This is one of the

implications of Alan Turing's 1937 paper on computability.

Where processors ultimately do differ, however, is in speed. And speed is a

big reason why we're using computers to begin with.

The maximum clock speed is an obvious influence on the overall speed of a

processor. That clock speed determines how fast each instruction is being

executed. The processor data width affects speed as well. Although a 4-bit

processor can add 32-bit numbers, it can't do it nearly as fast as a 32-bit

processor. What might be confusing, however, is the effect on speed of the

maximum amount of memory that a processor can address. At first,

addressable memory seems to have nothing to do with speed and instead

reflects a limitation on the processor's ability to perform certain functions

that might require a lot of memory. But a processor can always get around

the memory limitation by using some memory addresses to control some

other medium for saving and retrieving information. (For example, suppose

every byte written to a particular memory address is actually punched on a

paper tape, and every byte read from that address is read from the tape.)

What happens, however, is that this process slows down the whole

computer. The issue again is speed.

Of course, these three numbers indicate only roughly how fast the

microprocessor operates. These numbers tell you nothing about the internal

architecture of the microprocessor or about the efficiency and capability of

the machine-code instructions. As processors have become more

sophisticated, many common tasks previously done in software have been

built into the processor. We'll see examples of this trend in the chapters

ahead.

Even though all digital computers have the same capabilities, even though

they can do nothing beyond the primitive computing machine devised by

Alan Turing, the speed of a processor of course ultimately affects the over-

all usefulness of a computer system. Any computer that's slower than the

human brain in performing a set of calculations is useless, for example. And

we can hardly expect to watch a movie on our modern computer screens if

the processor needs a minute to draw a single frame.

But back to the mid-1970s. Despite the limitations of the 4004, it was a

start. By April 1972, Intel had released the 8008—an 8-bit microprocessor

running at 200 kHz that could address 16 KB of memory. (See how easy it

is to sum up a processor with just three numbers?) And then, in a five-

month period in 1974, both Intel and Motorola came out with

microprocessors that were intended to improve on the 8008. These two

chips changed the world.

Chapter 19. Two Classic Microprocessors
The microprocessor—a consolidation of all the components of a central
processing unit (CPU) of a computer on a single chip of silicon—was born
in 1971. It was a modest beginning: The first microprocessor, the Intel
4004, contained about 2300 transistors. Today, nearly three decades later,
microprocessors made for home computers are approaching the 10,000,000
transistor mark.

Yet what the microprocessor actually does on a fundamental level has
remained unchanged. While those millions of additional transistors in
today's chips might be doing interesting things, in an initial exploration of
the microprocessor they offer more distraction than enlightenment. To
obtain the clearest view of what a microprocessor does, let's look at the first
ready-for-prime-time microprocessors.

These microprocessors appeared in 1974, the year in which Intel introduced
the 8080 (pronounced eighty eighty) in April and Motorola—a company
that had been making semiconductors and transistor-based products since
the 1950s—introduced the 6800 (sixty-eight hundred) in August. These
weren't the only microprocessors available that year. Also in 1974, Texas
Instruments introduced the 4-bit TMS 1000, which was used in many
calculators, toys, and appliances; and National Semiconductor introduced
the PACE, which was the first 16-bit microprocessor. In retrospect,
however, the 8080 and the 6800 were certainly the two most historically
significant chips.

Intel set the initial price of the 8080 at $360, a sly dig at IBM's System/360,
a large mainframe system used by many large corporations that cost
millions. (Today you can buy an 8080 chip for $1.95.) It's not as if the 8080
is comparable to System/360 in any way, but within a few years IBM itself
would certainly be taking notice of these very small computers.

The 8080 is an 8-bit microprocessor that contains about 6000 transistors,
runs at a 2 MHz clock speed, and addresses 64 kilobytes of memory. The
6800 (also selling these days for $1.95) has about 4000 transistors and also
addresses 64 KB of memory. The first 6800 ran at 1 MHz, but by 1977
Motorola introduced later versions running at 1.5 and 2 MHz.

These chips are referred to as single-chip microprocessors and less
accurately as computers on a chip. The processor is only one part of the
whole computer. In addition to the processor, a computer at the very least
requires some random access memory (RAM), some way for a person to get
information into the computer (an input device), some way for a person to
get information out of the computer (an output device), and several other
chips that bind everything together. But I'll describe these other components
in greater detail in Chapter 21.

For now, let's look at the microprocessor itself. Often a description of a
microprocessor is accompanied by a block diagram that illustrates the
internal components of the microprocessor and how they're connected. But
we had enough of that in Chapter 17. Instead, we'll get a sense of what's
inside the processor by seeing how it interacts with the outside world. In
other words, we can think of the microprocessor as a black box whose
internal operations we don't need to study minutely in order to understand
what it does. We can instead grasp what the microprocessor does by
examining the chip's input and output signals, and in particular the chip's
instruction set.

Both the 8080 and 6800 are 40-pin integrated circuits. The most common
IC package for these chips is about 2 inches long, about a half inch wide,
and ⅛ inch thick:

Of course, what you see is just the packaging. The actual wafer of silicon
inside is much smaller—in the case of the early 8-bit microprocessors, the
silicon is less than ¼ inch square. The packaging protects the silicon chip
and also provides access to all of the chip's input and output points through
the pins. The diagram on the following page shows the function of the 40
pins of the 8080.

Every electrical or electronic device that we've built in this book has
required some kind of electrical power supply. One of the 8080's quirks is
that it requires three power supply voltages. Pin 20 must be connected to a
5-volt power supply, pin 11 to a –5-volt power supply, and pin 28 to a 12-
volt power supply. You connect pin 2 to ground. (In 1976, Intel released the
8085 chip, which simplified these power requirements.)

All the remaining pins are drawn as arrows. An arrow from the chip
indicates an output signal. This is a signal controlled by the microprocessor
that other chips in the computer respond to. An arrow into the chip indicates
an input signal. This is a signal that comes from another chip in the
computer that the 8080 responds to. Some pins are both inputs and outputs.

The processor in Chapter 17 required an oscillator to make it go. The 8080
requires two different synchronized 2-MHz clock inputs labeled ø1 and ø2

on pins 22 and 15. These signals are most conveniently supplied by another
chip made by Intel known as the 8224 Clock Signal Generator. You connect
an 18-MHz quartz crystal to this chip, and it basically does the rest.

A microprocessor always has multiple output signals that address memory.
The number of signals it has for this purpose is directly related to the
amount of memory the microprocessor can address. The 8080 has 16
signals labeled A0 through A15, which give it the ability to address 216, or

65,536, bytes of memory.

The 8080 is an 8-bit microprocessor that reads data from memory and
writes data to memory 8 bits at a time. The chip includes eight signals
labeled D0 through D7. These signals are the only ones on the chip that are

both inputs and outputs. When the microprocessor reads a byte of memory,
the pins function as inputs; when the microprocessor writes a byte to
memory, the pins function as outputs.

The other ten pins of the microprocessor are control signals. The RESET
input, for example, is used to reset the microprocessor. The output signal

 indicates that the microprocessor needs to write a byte of memory into

RAM. (The signal corresponds to the Write input of the RAM array.)
In addition, other control signals appear on the D0 through D7 pins at a

particular time while the chip reads instructions. Computer systems built
around the 8080 generally use the 8228 System Controller chip to latch
these additional control signals. I'll describe some control signals later on,
but the 8080's control signals are notoriously messy, so unless you're going
to actually design a computer based on the chip, it's best not to torture
yourself with its control signals.

Let's assume that the 8080 microprocessor is connected to 64 KB of
memory that we have the ability to write bytes into and read bytes from
independent of the microprocessor.

After the 8080 chip is reset, it reads the byte located at memory address
0000h into the microprocessor. It does this by outputting 16 zeros on the
address signals A0 through A15. The byte it reads should be an 8080

instruction, and the process of reading this byte is known as an instruction
fetch.

In the computer we built in Chapter 17, all instructions (except HLT) were 3
bytes in length, consisting of an opcode and a 2-byte address. In the 8080,
instructions can be 1 byte, 2 bytes, or 3 bytes in length. Some instructions
cause the 8080 to read a byte from a particular location in memory into the
microprocessor. Some instructions cause the 8080 to write a byte from the
microprocessor into a particular location in memory. Other instructions
cause the 8080 to do something internally without using any RAM. After
processing the first instruction, the 8080 accesses the second instruction in
memory, and so forth. Together, these instructions constitute a computer
program that can do something interesting.

When the 8080 is running at its maximum speed of 2 MHz, each clock
cycle is 500 nanoseconds. (1 ÷ 2,000,000 cycles per second = 0.000000500
seconds.) The instructions in the Chapter 17 computer all required 4 clock
cycles. Each 8080 instruction requires anywhere from 4 to 18 clock cycles.
This means that each instruction is executed in 2 to 9 microseconds
(millionths of a second).

Probably the best way to understand what a particular microprocessor is
capable of doing is to examine its complete instruction set in a systematic
manner.

The final computer in Chapter 17 had only 12 instructions. An 8-bit
microprocessor could easily have as many as 256 instructions, each opcode
corresponding to a particular 8-bit value. (It could actually have more if
some instructions have 2-byte opcodes.) The 8080 doesn't go quite that far,
but it does have 244 opcodes. That might seem like a lot, but all in all, the
8080 doesn't really do all that much more than the computer in Chapter 17.
For example, if you need to do multiplication or division using an 8080,
you still need to write your own little program to do it.

As you'll recall from Chapter 17, each opcode in a processor's instruction
set is usually associated with a particular mnemonic, and some of these
mnemonics might have arguments. But these mnemonics are solely for
convenience in referring to the opcodes. The processor reads only bytes; it
knows nothing about the text that makes up the mnemonics. (For purposes
of clarity, I've taken some liberty with the mnemonics as they appear in
Intel's documentation of the 8080.)

The Chapter 17 computer had two important instructions that we initially
called Load and Store. Each of these instructions occupied 3 bytes of
memory. The first byte of a Load instruction was the opcode, and the 2
bytes that followed the opcode indicated a 16-bit address. The processor
loaded the byte at that address into the accumulator. Similarly, the Store
instruction saved the contents of the accumulator in the address indicated in
the instruction.

Later on, we discovered that we could abbreviate these two opcodes using
mnemonics:

LOD A,[aaaa]
STO [aaaa],A

where A stands for the accumulator (the destination in the Load instruction
and the source in the Store instruction) and aaaa indicates a 16-bit memory
address, usually written as 4 hexadecimal digits.

The 8-bit accumulator in the 8080 is called A, just like the accumulator in
Chapter 17. And like the computer in Chapter 17, the 8080 includes two
instructions that do exactly the same thing as the Load and Store
instructions. The 8080 opcodes for these two instructions are 32h and 3Ah,
and each opcode is followed by a 16-bit address. The 8080 mnemonics are
STA (standing for Store Accumulator) and LDA (Load Accumulator):

Opcode Instruction

32 STA [aaaa],A

3A LDA A,[aaaa]

In addition to the accumulator, the 8080 contains six registers that can also
hold 8-bit values inside the microprocessor. These registers are very similar
to the accumulator; indeed, the accumulator is considered to be a special
type of register. Like the accumulator, the other six registers are latches; the
processor can move bytes from memory into registers, and from registers
back into memory. The other registers, however, aren't as versatile as the
accumulator. When you add two 8-bit numbers, for example, the result
always goes into the accumulator rather than into one of the other registers.

The six additional registers in the 8080 are named B, C, D, E, H, and L. The
first question people usually ask is, "What happened to F and G?" and the

second question is, "And what about I, J, and K?" The answer is that
registers H and L are so called because they're special in a certain way. H
stands for high and L stands for low. Very often the 8-bit quantities in H
and L are treated in tandem as a 16-bit register pair named HL, H being the
high-order byte and L being the low-order byte. This 16-bit value is often
used to address memory. We'll see how this works shortly.

Are all these registers necessary? Why didn't we need them in the
Chapter 17 computer? In theory, they aren't necessary. But they turn out to
be very convenient. Many computer programs juggle several numbers at the
same time. It's easiest to do this if all the numbers are stored in
microprocessor registers rather than memory. The program is usually faster
as well: The fewer times a program needs to access memory, generally the
faster it will run.

No fewer than 63 opcodes are devoted to a single 8080 instruction called
MOV, which is short for Move. This instruction is just a single byte. The
instruction usually moves the contents of one register into another (or the
same) register. The large number of MOV instructions is a normal
consequence of designing a microprocessor with seven registers (including
the accumulator).

Here are the first 32 MOV instructions. Remember that the destination is
the argument on the left and the source is the argument on the right:

Opcode Instruction Opcode Instruction

40 MOV B,B 50 MOV D,B

41 MOV B,C 51 MOV D,C

42 MOV B,D 52 MOV D,D

43 MOV B,E 53 MOV D,E

44 MOV B,H 54 MOV D,H

45 MOV B,L 55 MOV D,L

46 MOV B,[HL] 56 MOV D,[HL]

47 MOV B,A 57 MOV D,A

48 MOV C,B 58 MOV E,B

49 MOV C,C 59 MOV E,C

4A MOV C,D 5A MOV E,D

4B MOV C,E 5B MOV E,E

4C MOV C,H 5C MOV E,H

4D MOV C,L 5D MOV E,L

4E MOV C,[HL] 5E MOV E,[HL]

4F MOV C,A 5F MOV E,A

These are handy instructions to have. Whenever you have a value in one
register, you know you can move it to another register. Notice also the four
instructions that use the HL register pair, such as

MOV B,[HL]

The LDA instruction shown earlier transfers a byte from memory into the
accumulator; the 16-bit address of the byte directly follows the LDA
opcode. This MOV instruction transfers a byte from memory into register
B. But the address of the byte to be loaded into the register is stored in the
register pair HL registers. How did HL come to hold a 16-bit memory

address? Well, it could happen in a variety of ways. Maybe the address was
calculated in some way.

To summarize, these two instructions

LDA A,[aaaa]
MOV B,[HL]

both load a byte from memory into the microprocessor, but they use two
different methods to address memory. The first method is called direct
addressing and the second method is called indexed addressing.

The second batch of 32 MOV instructions shows that the memory location
addressed by HL can also be a destination:

Opcode Instruction Opcode Instruction

40 MOV B,B 50 MOV D,B

60 MOV H,B 70 MOV [HL],B

61 MOV H,C 71 MOV [HL],C

62 MOV H,D 72 MOV [HL],D

63 MOV H,E 73 MOV [HL],E

64 MOV H,H 74 MOV [HL],H

65 MOV H,L 75 MOV [HL],L

66 MOV H,[HL] 76 HLT

67 MOV H,A 77 MOV [HL],A

68 MOV L,B 78 MOV A,B

69 MOV L,C 79 MOV A,C

6A MOV L,D 7A MOV A,D

6B MOV L,E 7B MOV A,E

6C MOV L,H 7C MOV A,H

6D MOV L,L 7D MOV A,L

6E MOV L,[HL] 7E MOV A,[HL]

6F MOV L,A 7F MOV A,A

Several of these instructions, such as

MOV A,A

don't do anything useful. But the instruction

MOV [HL],[HL]

doesn't exist. The opcode that would otherwise correspond to that
instruction is actually a HLT (Halt) instruction.

A more revealing way to look at all these MOV opcodes is to examine the
bit pattern of the opcode. The MOV opcode consists of the 8 bits

01dddsss

in which the letters ddd represent a 3-bit code that refers to a destination,
and sss is a 3-bit code that refers to a source. These 3-bit codes are

000 = Register B

001 = Register C

010 = Register D

011 = Register E

100 = Register H

101 = Register L

110 = Contents of memory at address HL

111 = Accumulator

For example, the instruction

MOV L,E

is associated with the opcode

01101011

or 6Bh. You can check the preceding table to verify that.

So probably somewhere inside the 8080, the 3 bits labeled sss are used in a
8-Line-to-1-Line Data Selector, and the 3 bits labeled ddd are used to
control a 3-Line-to-8-Line Decoder that determines which register latches a
value.

It's also possible to use registers B and C as a 16-bit register pair BC, and
registers D and E as a 16-bit register pair DE. If either register pair contains
the address of a memory location that you want to use to load or store a
byte, you can use the following instructions:

Opcode Instruction Opcode Instruction

02 STAX [BC],A 0A LDAX A,[BC]

12 STAX [DE],A 1A LDAX A,[DE]

Another type of Move instruction is called Move Immediate and is assigned
the mnemonic MVI. The Move Immediate instruction is composed of 2
bytes. The first is the opcode, and the second is a byte of data. That byte is

transferred from memory into one of the registers or to the memory location
addressed by the HL register pair:

Opcode Instruction

06 MVI B,xx

0E MVI C,xx

16 MVI D,xx

1E MVI E,xx

26 MVI H,xx

2E MVI L,xx

36 MVI [HL],xx

3E MVI A,xx

For example, after the instruction

MVI E,37h

the register E contains the byte 37h. This is considered to be a third method
of addressing memory, called immediate addressing.

A collection of 32 opcodes do the four basic arithmetical operations we're
familiar with from the processor we developed in Chapter 17. These are
addition (ADD), addition with carry (ADC), subtraction (SUB), and
subtraction with borrow (SBB). In all cases, the accumulator is one of the
two operands and is also the destination for the result:

Opcode Instruction Opcode Instruction

80 ADD A,B 90 SUB A,B

81 ADD A,C 91 SUB A,C

82 ADD A,D 92 SUB A,D

83 ADD A,E 93 SUB A,E

84 ADD A,H 94 SUB A,H

85 ADD A,L 95 SUB A,L

86 ADD A,[HL] 96 SUB A,[HL]

87 ADD A,A 97 SUB A,A

88 ADC A,B 98 SBB A,B

89 ADC A,C 99 SBB A,C

8A ADC A,D 9A SBB A,D

8B ADC A,E 9B SBB A,E

8C ADC A,H 9C SBB A,H

8D ADC A,L 9D SBB A,L

8E ADC A,[HL] 9E SBB A,[HL]

8F ADC A,A 9F SBB A,A

Suppose A contains the byte 35h and register B contains the byte 22h. After
executing

SUB A,B

the accumulator contains the byte 13h.

If A contains the byte 35h, and register H contains the byte 10h, and L
contains the byte 7Ch, and the memory location 107Ch contains the byte
4Ah, the instruction

ADD A,[HL]

adds the byte in the accumulator (35h) and the byte addressed by the
register pair HL (4Ah) and stores the result (7Fh) in the accumulator.

The ADC and SBB instructions allow the 8080 to add and subtract 16-bit,
24-bit, 32-bit, and larger numbers. For example, suppose the register pairs
BC and DE both contain 16-bit numbers. You want to add them and put the
result in BC. Here's how to do it:

MOV A,C ; Low-order byte
ADD A,E
MOV C,A
MOV A,B ; High-order byte
ADC A,D
MOV B,A

The two addition instructions are ADD for the low-order byte and ADC for
the high-order byte. Any carry bit that results from the first addition is
included in the second addition. But because you can add only with the
accumulator, this little snippet of code requires no fewer than 4 MOV
instructions. Lots of MOV instructions usually show up in 8080 code.

This is a good time to talk about the 8080 flags. In our processor in
Chapter 17, we had a Carry flag and a Zero flag. The 8080 has three more,
called Sign, Parity, and Auxiliary Carry. All the flags are stored in yet
another 8-bit register called the Program Status Word (PSW). Instructions
such as LDA, STA, or MOV don't affect the flags at all. The ADD, SUB,
ADC, and SBB instructions do affect the flags, however, in the following
way:

The Sign flag is set to 1 if the most significant bit of the result is 1,
meaning that the result is negative.

The Zero flag is set to 1 if the result is 0.

The Parity flag is set to 1 if the result has even parity, which means that
the number of 1 bits in the result is even. The parity flag is 0 if the result
has odd parity. Parity is sometimes used as a crude form of error
checking. This flag isn't often used in 8080 programming.

The Carry flag is set to 1 if an ADD or ADC operation results in a carry
or if a SUB and SBB does not result in a carry. (This is different from
the implementation of the Carry flag in the Chapter 17 computer.)

The Auxiliary Carry flag is 1 if the operation results in a carry from the
low nibble into the high nibble. This flag is used only for the DAA
(Decimal Adjust Accumulator) instruction.

Two instructions affect the carry flag directly:

Opcode Instruction Meaning

37 STC Set Carry flag to 1

3F CMC Complement Carry flag

The computer in Chapter 17 performed ADD, ADC, SUB, and SBB
instructions (although not with nearly as much flexibility), but the 8080
does Boolean AND, OR, and XOR operations as well. Both arithmetic and
logical operations are performed by the processor's Arithmetic Logic Unit
(ALU).

Opcode Instruction Opcode Instruction

A0 AND A,B B0 OR A,B

A1 AND A,C B1 OR A,C

A2 AND A,D B2 OR A,D

A3 AND A,E B3 OR A,E

A4 AND A,H B4 OR A,H

A5 AND A,L B5 OR A,L

A6 AND A,[HL] B6 OR A,[HL]

A7 AND A,A B7 OR A,A

A8 XOR A,B B8 CMP A,B

A9 XOR A,C B9 CMP A,C

AA XOR A,D BA CMP A,D

AB XOR A,E BB CMP A,E

AC XOR A,H BC CMP A,H

AD XOR A,L BD CMP A,L

AE XOR A,[HL] BE CMP A,[HL]

AF XOR A,A BF CMP A,A

The AND, XOR, and OR instructions perform bitwise operations. This
means that the logical operation is performed on each pair of bits separately.

For example,

MVI A,0Fh
MVI B,55h
AND A,B

The value in the accumulator will be 05h. If the third instruction were an
OR, the result would be 5Fh. If the instruction were an XOR, the result
would be 5Ah.

The CMP (Compare) instruction is just like the SUB instruction except that
the result isn't stored in the accumulator. In other words, the CMP performs
a subtraction and then throws away the result. What's the point? The flags!
The flags tell you the relationship between the 2 bytes that you compared.
For example, consider the following instructions:

MVI B,25h
CMP A,B

After this instruction, the contents of A remain unchanged. However, the
Zero flag is set if the value in A equals 25h. The Carry flag is set if the
value in A is less than 25h.

The eight arithmetic and logic operations also have versions that operate on
an immediate byte:

Opcode Instruction Opcode Instruction

C6 ADI A,xx E6 ANI A,xx

CE ACI A,xx EE XRI A,xx

D6 SUI A,xx F6 ORI A,xx

DE SBI A,xx FE CPI A,xx

For example, the two lines shown above can be replaced with

CPI A,25h

Here are two miscellaneous 8080 instructions:

Opcode Instruction

27 DAA

2F CMA

CMA stands for Complement Accumulator. It performs a ones' complement
of the value in the accumulator. Every 0 becomes a 1 and every 1 becomes
a 0. If the accumulator is 01100101, the CMA instruction causes it to be
10011010. You can also complement the accumulator using the instruction

XRI A,FFh

DAA stands for Decimal Adjust Accumulator, as I mentioned earlier, and
it's probably the most sophisticated single instruction in the 8080. A whole
little section of the microprocessor is dedicated specifically to performing
this instruction.

The DAA instruction helps a programmer implement decimal arithmetic
using a method of representing numbers known as binary-coded decimal, or
BCD. In BCD, each nibble of data may range only from 0000 through
1001, corresponding to decimal digits 0 through 9. The 8 bits of a byte can
store two decimal digits in BCD format.

Suppose the accumulator contains the BCD value 27h. Because this is a
BCD value, it actually refers to the decimal value 27. (Normally, the
hexadecimal value 27h has the decimal equivalent 39.) Suppose also that
register B contains the BCD value 94h. If you execute the instruction

MVI A,27h
MVI B,94h
ADD A,B

the accumulator will contain the value BBh, which, of course, isn't a BCD
value because the nibbles of BCD bytes never exceed 9. But now execute
the instruction

DAA

Now the accumulator contains 21h, and the Carry flag is set. That's because
the decimal sum of 27 and 94 equals 121. This can be handy if you need to
do BCD arithmetic.

Very often it's necessary to add 1 to a particular value or subtract 1 from a
value. In the multiplication program in Chapter 17, we needed to subtract 1
from a value, and the way we did it was to add FFh, which is the two's
complement value of –1. The 8080 includes special instructions for
increasing a register or memory location by 1 (this is known as an
increment) or decreasing by 1 (decrement):

Opcode Instruction Opcode Instruction

04 INR B 05 DCR B

0C INR C 0D DCR C

14 INR D 15 DCR D

1C INR E 1D DCR E

24 INR H 25 DCR H

2C INR L 2D DCR L

34 INR [HL] 35 DCR [HL]

3C INR A 3D DCR A

The single-byte INR and DCR instructions affect all flags except the Carry
flag.

The 8080 also includes four Rotate instructions. These instructions shift the
contents of the accumulator 1 bit to the left or right:

Opcode Instruction Meaning

07 RLC Rotate accumulator left

0F RRC Rotate accumulator right

17 RAL Rotate accumulator left through carry

1F RAR Rotate accumulator right through carry

Only the Carry flag is affected by these instructions.

Suppose the accumulator contains the value A7h, or 10100111 in binary.
The RLC instruction shifts the bits left. The lowest bit (shifted out of the
bottom) becomes the highest bit (shifted into the top) and also determines
the state of the Carry flag. The result is 01001111, and the Carry flag is 1.
The RRC instruction shifts the bits right in the same way. Beginning with
10100111, the result after an RRC instruction is 11010011, and the Carry
flag is 1.

The RAL and RAR instructions work a little differently. The RAL
instruction sets the Carry flag to the lowest bit of the accumulator when
shifting left but sets the highest bit to the previous contents of the Carry
flag. For example, if the accumulator contains 10100111 and the Carry flag
is 0, RAL causes the accumulator to become 01001110 and the Carry flag to
be 1. Similarly, under the same initial conditions RAR causes the
accumulator to become 01010011 and the Carry flag to be set to 1.

The shift instructions come in handy when you're multiplying a number by
2 (that's a shift left) or dividing a number by 2 (a shift right).

The memory that the microprocessor addresses is called random access
memory (RAM) for a reason: The microprocessor can access any particular
memory location simply by supplying an address of that location. RAM is
like a book that we can open to any page. It's not like a week's worth of a
newspaper on microfilm. Finding something in Saturday's edition requires
us to scan through most of the week. Similarly, playing the last song on a
cassette tape requires us to fast forward through the whole side of the
album. The term for microfilm or tape storage isn't random access but
sequential access.

Random access memory is definitely a good thing, particularly for
microprocessors, but sometimes it's advantageous to treat memory a little
differently. Here's a form of storage that's neither random nor sequential:
Suppose you work in an office where people come to your desk to give you
jobs to do. Each job involves a file folder of some sort. Often when you're
working on one job, you find that before you can continue you must do a
related job using another file folder. So you leave the first folder on your
desk and put the second one on top of it to work on that. Now someone
comes to your desk to give you yet another job that has higher priority than
the earlier one. You're handed a new file folder and you work with that one
on top of the other two. That job requires yet another file folder, and soon
you have a pile of four file folders on your desk.

Notice that this pile is actually a very orderly way to store and keep track of
all the jobs you're doing. The topmost file folder always has the highest-
priority job. After you get rid of that one, the next one on the pile must be
attended to, and so on. When you finally get rid of the last file folder on
your desk (the first one you started with), you can go home.

The technical term for this form of storage is a stack. You're stacking things
from the bottom up and removing them from the top down. It's also called
last-in-first-out storage, or LIFO. The last thing put on the stack is the first
thing taken off the stack. The first thing put on the stack is the last thing
taken off the stack.

Computers also can use a stack, not for storing jobs but for storing numbers,
and it's something that turns out to be quite convenient. Putting something
on the stack is called a push, and taking something off the stack is called a
pop.

Suppose you were writing an assembly-language program that used
registers A, B, and C. But you notice that you've reached a point where the
program needs to do something else—another little calculation that also
needs to use registers A, B, and C. You eventually want to come back to
what you were doing before, however, and continue using A, B, and C with
the values they previously had.

What you could do, of course, is simply store registers A, B, and C in
various locations in memory and later load these locations back into the
registers. But that requires keeping track of where you stored them. A much
cleaner way to do it is to push the registers on the stack:

PUSH A
PUSH B
PUSH C

I'll explain what these instructions actually do in a moment. For now, all we
need to know is that they somehow save the contents of the registers in last-
in-first-out memory. Once these statements are executed, your program can
use these registers for other purposes without worry. To get the earlier
values back, you simply pop them from the stack in the reverse order, as
shown at the top of the following page.

POP C
POP B
POP A

Remember: Last in, first out. Accidentally switching around these POP
statements would constitute a bug.

What's particularly nice about the stack mechanism is that lots of different
sections of a program can use the stack without causing problems. For
example, after the program pushes A, B, and C on the stack, another section

of the program could decide it needs to do the same thing with registers C,
D, and E:

PUSH C
PUSH D
PUSH E

Then all that's necessary is for that section of the program to restore the
registers this way:

POP E
POP D
POP C

before the first section popped C, B, and A.

How is the stack implemented? The stack is, first of all, just a section of
normal RAM that isn't being used for anything else. The 8080
microprocessor contains a special 16-bit register that addresses this section
of memory. That 16-bit register is called the Stack Pointer.

My examples of pushing and popping individual registers weren't quite
accurate for the 8080. The 8080 PUSH instruction actually stores 16-bit
values on the stack, and the POP instruction retrieves them. So instead of
instructions like PUSH C and POP C, we have the following 8 instructions:

Opcode Instruction Opcode Instruction

C5 PUSH BC C1 POP BC

D5 PUSH DE D1 POP DE

E5 PUSH HL E1 POP HL

F5 PUSH PSW F1 POP PSW

The PUSH BC instruction stores registers B and C on the stack, and POP
BC retrieves them. The abbreviation PSW in the last row refers to the
Program Status Word, which, as you'll recall, is the 8-bit register that
contains the flags. The two instructions in the bottom row actually push and
pop both the accumulator and the PSW. If you want to save the contents of
all the registers and flags, you can use

PUSH PSW
PUSH BC

PUSH DE
PUSH HL

When you later need to restore the contents of these registers, use the POP
instructions in reverse order:

POP HL
POP DE
POP BC
POP PSW

How does the stack work? Let's assume the Stack Pointer is 8000h. The
PUSH BC instruction causes the following to occur:

The Stack Pointer is decremented to 7FFFh.

The contents of register B are stored at the Stack Pointer address, or
7FFFh.

The Stack Pointer is decremented to 7FFEh.

The contents of register C are stored at the Stack Pointer address, or
7FFEh.

A POP BC instruction executed when the Stack Pointer is still 7FFEh
undoes everything:

The contents of register C are loaded from the Stack Pointer address, or
7FFEh.

The Stack Pointer is incremented to 7FFFh.

The contents of register B are loaded from the Stack Pointer address, or
7FFFh.

The Stack Pointer is incremented to 8000h.

For every PUSH instruction, the stack increases 2 bytes in size. It's possible
—possibly due to a bug in a program—that the stack will get so big that it
will begin to overwrite some code or data needed by a program. This is a
problem known as stack overflow. Similarly, too many POP instructions
can prematurely exhaust the contents of the stack, a condition known as
stack underflow.

If you have 64 KB of memory connected to your 8080, you might want to
initially set the Stack Pointer to 0000h. The first PUSH instruction
decrements that address to FFFFh. The stack then occupies the area of
memory with the very highest addresses, quite a distance from your

programs, which will probably be in the area of memory starting at address
0000h.

The instruction to set the value of the stack register is LXI, which stands for
Load Extended Immediate. These instructions also load 16-bit register pairs
with the two bytes that follow the opcode:

Opcode Instruction

01 LXI BC,xxxx

11 LXI DE,xxxx

21 LXI HL,xxxx

31 LXI SP,xxxx

The instruction

LXI BC,527Ah

is equivalent to

MVI B,52
MVI C,7Ah

The LXI instruction saves a byte. In addition, the last LXI instruction in the
preceding table is used to set the Stack Pointer to a particular value. It's not
uncommon for this instruction to be one of the first instructions that a
microprocessor executes after being restarted:

0000h: LXI SP,0000h

It's also possible to increment and decrement register pairs and the Stack
Pointer as if they were 16-bit registers:

Opcode Instruction Opcode Instruction

03 INX BC 0B DCX BC

13 INX DE 1B DCX DE

23 INX HL 2B DCX HL

33 INX SP 3B DCX SP

While I'm on the subject of 16-bit instructions, let's look at a few more. The
following instructions add the contents of 16-bit register pairs to the register
pair HL:

Opcode Instruction

09 DAD HL,BC

19 DAD HL,DE

29 DAD HL,HL

39 DAD HL,SP

These instructions could save a few bytes. For example, the first of these
instructions would normally require 6 bytes:

MOV A,L
ADD A,C
MOV L,A
MOV A,H
ADC A,B
MOV H,A

The DAD instruction is normally used for calculating memory addresses.
The only flag that the instruction affects is the Carry flag.

Next let's look at some miscellaneous instructions. These two opcodes are
followed by a 2-byte address and store and load the contents of the register
pair HL at that address:

Opcode Instruction Meaning

2h SHLD [aaaa],HL Store HL Direct

2Ah LHLD HL,[aaaa] Load HL Direct

The L register is stored at address aaaa, and the H register is stored at
address aaaa + 1.

These two instructions load the Program Counter or the Stack Pointer from
the register pair HL:

Opcode Instruction Meaning

E9h PCHL PC,HL Load Program Counter from HL

F9h SPHL SP,HL Load Stack Pointer from HL

The PCHL instruction is actually a type of Jump. The next instruction that
the 8080 executes is the one located at the address stored in the HL register
pair. SPHL is another method to set the Stack Pointer.

These two instructions exchange the contents of HL first with the two bytes
located on top of the stack and second with the register pair DE:

Opcode Instruction Meaning

E3h XTHL HL,[SP] Exchange top of stack with HL

EBh XCHG HL,DE Exchange DE and HL

I haven't described the 8080 Jump instructions yet, except for PCHL. As
you'll recall from Chapter 17, a processor includes a register called the
Program Counter that contains the memory address the processor uses to
retrieve the instructions that it executes. Normally the Program Counter
causes the processor to execute instructions that are located sequentially in
memory. But some instructions—usually named Jump or Branch or Goto—
cause the processor to deviate from this steady course. Such instructions
cause the Program Counter to be loaded with another value. The next
instruction that the processor fetches is somewhere else in memory.

While a plain old ordinary Jump instruction is certainly useful, conditional
jumps are even better. These instructions cause the processor to jump to
another address based on the setting of a particular flag, such as the Carry
flag or the Zero flag. The presence of a conditional Jump instruction is what
turned the Chapter 17 automated adding machine into a general-purpose
digital computer.

The 8080 has five flags, four of which are used for conditional jumps. The
8080 supports nine different Jump instructions, including the unconditional
Jump and conditional jumps based on whether the Zero, Carry, Parity, and
Sign flags are 1 or 0.

Before I show these instructions to you, however, I want to introduce two
other types of instructions that are related to the Jump. The first is the Call
instruction. A Call is similar to a Jump except that prior to loading the
Program Counter with a new address, the processor saves the previous
address. Where does it save that address? Why, on the stack, of course!

This strategy means that the Call instruction effectively saves a reminder of
where it jumped from. The saved address allows the processor to eventually
return to the original location. The returning instruction is called,
appropriately, Return. The Return instruction pops 2 bytes from the stack
and loads the Program Counter with that value.

The Call and Return instructions are extremely important features of any
processor. They allow a programmer to implement subroutines, which are
snippets of frequently used code. (By frequently I generally mean more
than once.) Subroutines are the primary organizational elements of
assembly-language programs.

Let's look at an example. Suppose you're writing an assembly-language
program and you come to a point where you need to multiply 2 bytes. So
you write some code that does precisely that, and you continue with the
program. Now you come to another point where you need to multiply 2
bytes. Well, you already know how to multiply two numbers, so you can
simply use the same instructions all over again. But do you simply enter the
instructions into memory a second time? I hope not. It's a waste of time and
memory. What you'd rather do is just jump to the previous code. But the
normal Jump doesn't work either because there's no way to return to the
current place in the program. That's what the Call and Return instructions
let you do.

A group of instructions that multiply 2 bytes is an ideal candidate for a
subroutine. Let's take a look at such a subroutine. In Chapter 17, the bytes
to be multiplied (and the result) were stored in particular locations in
memory. This 8080 subroutine instead multiplies the byte in register B by
the byte in register C and puts the 16-bit product in register HL:

Multiply: PUSH PSW ; Save registers being altered
 PUSH BC

 SUB H,H ; Set HL (result) to 0000h
 SUB L,L

 MOV A,B ; The multiplier goes in A
 CPI A,00h ; If it's 0, we're finished.
 JZ AllDone

 MVI B,00h ; Set high byte of BC to 0

MultLoop: DAD HL,BC ; Add BC to HL
 DEC A ; Decrement multiplier
 JNZ MultLoop ; Loop if it's not 0

AllDone: POP BC ; Restore saved registers
 POP PSW
 RET ; Return

Notice that the first line of the subroutine begins with a label, which is the
word Multiply. This label, of course, actually corresponds to a memory
address where the subroutine is located. The subroutine begins with two
PUSH instructions. Usually a subroutine should attempt to save (and later
restore) any registers that it might need to use.

The subroutine then sets the contents of the H and L registers to 0. It could
have used the MVI (Move Immediate) instructions rather than SUB
instructions for this job, but that would have required 4 instruction bytes
rather than 2. The register pair HL will hold the result of the multiplication
when the subroutine is completed.

Next the subroutine moves the contents of register B (the multiplier) into A
and checks if it's 0. If it's 0, the multiplication subroutine is complete
because the product is 0. Since registers H and L are already 0, the
subroutine can just use the JZ (Jump If Zero) instruction to skip to the two
POP instructions at the end.

Otherwise, the subroutine sets register B to 0. Now the register pair BC
contains a 16-bit multiplicand and A contains the multiplier. The DAD
instruction adds BC (the multiplicand) to HL (the result). The multiplier in
A is decremented and, as long as it's not 0, the JNZ (Jump If Not Zero)
instruction causes BC to be added to HL again. This little loop will continue
until BC is added to HL a number of times equal to the multiplier. (It's
possible to write a more efficient multiplication subroutine using the 8080
shift instructions.)

A program that wishes to make use of this subroutine to multiply (for
example) 25h by 12h uses the following code:

MVI B,25h
MVI C,12h
CALL Multiply

The CALL instruction saves the value of the Program Counter on the stack.
The value saved on the stack is the address of the next instruction after the
CALL instruction. Then the CALL instruction causes a jump to the
instruction identified by the label Multiply. That's the beginning of the
subroutine. When the subroutine has calculated the product, it executes a
RET (Return) instruction, which causes the Program Counter to be popped
from the stack. The program continues with the next statement after the
CALL instruction.

The 8080 instruction set includes conditional Call instructions and
conditional Return instructions, but these are used much less than the
conditional Jump instructions. The complete array of these instructions is
shown in the following table:

Condition Opcode Instruction Opcode Instruction Opcode Instruction

None C9 RET C3 JMP aaaa CD CALL aaaa

Z not set C0 RNZ C2 JNZ aaaa C4 CNZ aaaa

Z set C8 RZ CA JZ aaaa CC CZ aaaa

C not set D0 RNC D2 JNC aaaa D4 CNC aaaa

C set D8 RC DA JC aaaa DC CC aaaa

Odd parity E0 RPO E2 JPO aaaa E4 CPO aaaa

Even parity E8 RPE EA JPE aaaa EC CPE aaaa

S not set F0 RP F2 JP aaaa F4 CP aaaa

S set F8 RM FA JM aaaa FC CM aaaa

As you probably know, memory isn't the only thing connected to a
microprocessor. A computer system usually requires input and output (I/O)
devices that make it easier for humans to communicate with the machine.
These input devices usually include a keyboard and a video display.

How does the microprocessor communicate with these peripherals (as
anything connected to a microprocessor that isn't memory is called)?

Peripherals are built so that they have an interface similar to memory. A
microprocessor can write into and read from a peripheral by specifying
certain addresses that the peripheral responds to. In some microprocessors,
peripherals actually replace some addresses that would normally be used to
address memory. This configuration is known as memory-mapped I/O. In
the 8080, however, 256 additional addresses beyond the normal 65,536 are
specifically reserved for input and output devices. These are known as I/O
ports. The I/O address signals are A0 through A7, but I/O accesses are

distinguished from memory accesses through signals latched by the 8228
System Controller chip.

The OUT instruction writes the contents of the accumulator to a port
addressed by the byte that follows the instruction. The IN instruction reads
a byte into the accumulator.

Opcode Instruction

D3 OUT pp

DB IN pp

Peripherals sometimes need to get the attention of the microprocessor. For
example, when you press a key on a keyboard, it's usually helpful if the
microprocessor knows about this event right away. This is a accomplished
by a mechanism called an interrupt, which is a signal connected from the
peripheral to the INT input of the 8080.

When the 8080 is reset, however, it doesn't respond to interrupts. A
program must execute the EI (Enable Interrupts) instruction to enable
interrupts and can later execute DI (Disable Interrupts) to disable them:

Opcode Instruction

F3 DI

FB EI

The INTE output signal from the 8080 indicates when interrupts have been
enabled. When a peripheral needs to interrupt the microprocessor, it sets the
INT input of the 8080 to 1. The 8080 responds to that by fetching an
instruction from memory, but control signals indicate that an interrupt is

occurring. The peripheral usually responds by supplying one of the
following instructions to the 8080:

Opcode Instruction Opcode Instruction

C7 RST 0 E7 RST 4

CF RST 1 EF RST 5

D7 RST 2 F7 RST 6

DF RST 3 FF RST 7

These are called Restart instructions, and they're similar to Call instructions
in that the current Program Counter is saved on the stack. But the Restart
instructions then jump to specific locations: RST 0 jumps to address 0000h,
RST 1 to address 0008h, and so forth, up to RST 7, which jumps to address
0038h. Located at these addresses are sections of code that deal with the
interrupt. For example, an interrupt from the keyboard might cause a RST 4
instruction to be executed. At address 0020h begins some code to read a
byte from the keyboard. (I'll explain this more fully in Chapter 21.)

So far I've described 243 opcodes. The 12 bytes that aren't associated with
any opcodes are 08h, 10h, 18h, 20h, 28h, 30h, 38h, CBh, D9h, DDh, EDh,
and FDh. That brings the total to 255. There's one more opcode I need to
mention, and that's this one:

Opcode Instruction

00 NOP

NOP stands for (and is pronounced) no op, as in no operation. The NOP
causes the processor to do absolutely nothing. What's it good for? Filling
space. The 8080 can usually execute a bunch of NOP instructions without
anything bad happening.

I won't go into nearly as much detail discussing the Motorola 6800 because
many of the aspects of its design and functionality are quite similar to those
of the 8080. Here are the 40 pins of the 6800:

The VSS indicates Ground, and VCC is 5 volts. Like the 8080, the 6800 has

16 output Address signals and 8 Data signals used for both input and

output. There's a RESET signal and a R/ (read/write) signal. The
signal stands for interrupt request. The signal timing of the 6800 is
considered to be much simpler than that of the 8080. What the 6800 doesn't
have is the concept of I/O ports. All input and output devices must be part
of the 6800 memory address space.

The 6800 has a 16-bit Program Counter, a 16-bit Stack Pointer, an 8-bit
Status Register (for flags), and two 8-bit accumulators called A and B.
These are both considered accumulators (rather than B being considered
just a register) because there is nothing that you can do with A that you
can't also do with B. There are no additional 8-bit registers, however.

The 6800 instead has a 16-bit index register that can be used to hold a 16-
bit address, much like the register pair HL is used in the 8080. For many
instructions, an address can be formed from the sum of the index register
and the byte that follows the opcode.

While the 6800 does just about the same operations as the 8080—loading,
storing, adding, subtracting, shifting, jumping, calling—it should be
obvious that the opcodes and the mnemonics are completely different. Here,
for example, are the 6800 Branch instructions:

Opcode Instruction Meaning

20h BRA Branch

22h BHI Branch If Higher

23h BLS Branch If Lower or Same

24h BCC Branch If Carry Clear

25h BCS Branch If Carry Set

26h BNE Branch If Not Equal

27h BEQ Branch If Equal

28h BVC Branch If Overflow Clear

29h BVS Branch If Overflow Set

2Ah BPL Branch If Plus

2Bh BMI Branch If Minus

2Ch BGE Branch If Greater than or Equal to Zero

2Dh BLT Branch If Less than Zero

2Eh BGT Branch If Greater than Zero

2Fh BLE Branch If Less than or Equal to Zero

The 6800 doesn't have a Parity flag like the 8080, but it does have a flag the
8080 doesn't have—an Overflow flag. Some of these Branch instructions
depend on combinations of flags.

Of course the 8080 and 6800 instructions sets are different. The two chips
were designed about the same time by two different groups of engineers at
two different companies. What this incompatibility means is that neither
chip can execute the other chip's machine codes. Nor can an assembly-
language program written for one chip be translated into opcodes that run
on the other chip. Writing computer programs that run on more than one
processor is the subject of Chapter 24.

Here's another interesting difference between the 8080 and the 6800: In
both microprocessors, the instruction LDA loads the accumulator from a
specified memory address. In the 8080, for example, the following
sequence of bytes:

will load the accumulator with the byte stored at memory address 347Bh.
Now compare that with the 6800 LDA instruction using the so-called 6800
extended addressing mode:

This sequence of bytes loads accumulator A with the byte stored at memory
address 7B34h.

The difference is subtle. You expect the opcode to be different, of course:
3Ah for the 8080 and B6h for the 6800. But the two microprocessors treat
the address that follows the opcode differently. The 8080 assumes that the
low-order byte comes first, followed by the high-order byte. The 6800
assumes that the high-order byte comes first!

This fundamental difference in how Intel and Motorola microprocessors
store multibyte values has never been resolved. To this very day, Intel

microprocessors continue to store multibyte values with the least-significant
byte first (that is, at the lowest memory address), and Motorola
microprocessors store multibyte values with the most-significant byte first.

These two methods are known as little-endian (the Intel way) and big-
endian (the Motorola way). It might be fun to argue over which method is
better, but before you do so, be aware that the term Big-Endian comes from
Jonathan Swift's Gulliver's Travels and refers to the war between Lilliput
and Blefuscu over which end of an egg to break before eating it. Such an
argument is probably purposeless. (On the other hand, I feel obliged to
confess that the approach I used in the Chapter 17 computer wasn't the one I
personally prefer!) Despite neither method being intrinsically "right," the
difference does create an additional incompatibility problem when sharing
information between systems based on little-endian and big-endian
machines.

What became of these two microprocessors? The 8080 was used in what
some people have called the first personal computer but which is probably
more accurately the first home computer. This is the Altair 8800, which
appeared on the cover of the January 1975 issue of Popular Electronics.

When you look at the Altair 8800, the lights and switches on the front panel
should seem familiar. This is the same type of primitive "control panel"
interface that I proposed for the 64-KB RAM array in Chapter 16.

The 8080 was followed by the Intel 8085 and, more significantly, by the Z-
80 chip made by Zilog, a rival of Intel founded by former Intel employee
Federico Faggin, who had done important work on the 4004. The Z-80 was
entirely compatible with the 8080 but added many more very useful
instructions. In 1977, the Z-80 was used in the Radio Shack TRS-80 Model
1.

Also in 1977, the Apple Computer Company, founded by Steven Jobs and
Stephen Wozniak, introduced the Apple II. The Apple II, however, used
neither the 8080 nor the 6800 but instead used MOS Technology's less
expensive 6502 chip, which was an enhancement of the 6800.

In June 1978, Intel introduced the 8086, which was a 16-bit microprocessor
that could access 1 megabyte of memory. The 8086 opcodes weren't
compatible with the 8080, but I should note that they included instructions

to multiply and divide. A year later, Intel introduced the 8088, which
internally was identical to the 8086 but externally accessed memory in
bytes, thus allowing the microprocessor to use the more-prevalent 8-bit
support chips designed for the 8080. IBM used the 8088 chip in its 5150
Personal Computer—commonly called the IBM PC—introduced in the fall
of 1981.

IBM's entrance into the personal computer market had a great impact, with
many companies releasing machines that were compatible with the PC.
(What it means to be compatible will be explored more in subsequent
chapters.) Over the years "IBM PC compatible" has also implied "Intel
inside," specifically Intel microprocessors of the so-called x86 family. The
x86 family continued in 1982 with the 186 and 286 chips, in 1985 with the
32-bit 386 chip, in 1989 with the 486, and beginning in 1993, with the Intel
Pentium line of microprocessors that are currently used in PC compatibles.
While these Intel microprocessors have ever-increasing instruction sets,
they continue to support the opcodes of all earlier processors starting with
the 8086.

The Apple Macintosh, first introduced in 1984, used the Motorola 68000, a
16-bit microprocessor that's a direct descendant of the 6800. The 68000 and
its descendants (often called the 68K series) are some of the most beloved
microprocessors ever made.

Since 1994, Macintosh computers have used the PowerPC microprocessor
that was developed in a coalition of Motorola, IBM, and Apple. The
PowerPC was designed with a type of microprocessor architecture known
as RISC (Reduced Instruction Set Computing), which attempts to increase
the speed of the processor by simplifying it in some respects. In a RISC
computer, generally each instruction is the same length (32 bits on the
PowerPC), memory accesses are restricted to just load and store
instructions, and instructions do simple operations rather than complex
ones. RISC processors usually have plenty of registers to avoid frequent
accesses of memory.

The PowerPC can't execute 68K code because it has a whole different
instruction set. But the PowerPC microprocessors currently used in the
Apple Macintoshes can emulate the 68K. An emulator program running on
the PowerPC examines each opcode of a 68K program, one by one, and

performs an appropriate action. It's not as fast as native PowerPC code, but
it works.

According to Moore's Law, the number of transistors in microprocessors
should double every 18 months. What are those many additional transistors
used for?

Some of the transistors accommodate the increase in processor data width,
from 4 bits to 8 bits to 16 bits to 32 bits. Another part of the increase is due
to new instructions. Most microprocessors these days have instructions to
do floating-point arithmetic (as I'll explain in Chapter 23); new instructions
have also been added to microprocessors to do some of the repetitive
calculations required to display pictures or movies on computer screens.

Modern processors use several techniques to help improve their speed. One
is pipelining. When the processor is executing one instruction, it's reading
in the next instructions, even to a certain extent anticipating how Jump
instructions will alter the execution flow. Modern processors also include a
cache (pronounced cash). This is an array of very fast RAM inside the
processor that is used to store recently executed instructions. Because
computer programs often execute small loops of instructions, the cache
prevents these instructions from being repetitively reloaded. All these
speed-improving features require more logic and more transistors in the
microprocessor.

As I mentioned earlier, the microprocessor is only one part (although the
most important part) of a complete computer system. We'll build such a
system in Chapter 21, but first we must learn how to encode something else
in memory besides opcodes and numbers. We must go back to first grade
and learn again how to read and write text.

Chapter 20. ASCII and a Cast of Characters
Digital computer memory stores only bits, so anything that we want to work
with on the computer must be stored in the form of bits. We've already seen
how bits can represent numbers and machine code. The next challenge must
be text. After all, the great bulk of the accumulated information of this
world is in the form of text, and our libraries are full of books and
magazines and newspapers. Although we'd eventually like to use our
computers to store sounds and pictures and movies, text is a much easier
place to begin.

To represent text in digital form, we must develop some kind of system in
which each letter corresponds to a unique code. Numbers and punctuation
also occur in text, so codes for these must be developed as well. In short,
we need codes for all alphanumeric characters. Such a system is sometimes
known as a coded character set, and the individual codes are known as
character codes.

The first question must be: How many bits do we need for these codes? The
answer isn't an easy one!

When we think about representing text using bits, let's not get too far ahead
of ourselves. We're accustomed to seeing text nicely formatted on the pages
of a book or in the columns of a magazine or newspaper. Paragraphs are
neatly separated into lines of a consistent width. Yet this formatting isn't
essential to the text itself. When we read a short story in a magazine and
years later encounter that same story in a book, we don't think the story has
changed just because the text column is wider in the book than in the
magazine.

In other words, don't think about text as formatted into two-dimensional
columns on the printed page. Think of text instead as a one-dimensional
stream of letters, numbers, and punctuation marks, with perhaps an
additional code to indicate the end of one paragraph and the start of another.

Again, if you read a story in a magazine and later see it in a book and the
typeface is a little different, is that a big deal? If the magazine version
begins

Call me Ishmael.

and the book version begins

Call me Ishmael.

is that something we really want to be concerned with just yet? Probably
not. Yes, the typeface subtly affects the tone of the text, but the story hasn't
been lost with the change of typeface. The typeface can always be changed
back. There's no harm done.

Here's another way we're going to simplify the problem: Let's stick to plain
vanilla text. No italics, no boldface, no underlining, no colors, no outlined
letters, no subscripts, no superscripts. And no accent marks. No Å or é or ñ
or ö. Just the naked Latin alphabet as it's used in 99 percent of English.

In our earlier studies of Morse code and Braille, we've already seen how the
letters of the alphabet can be represented in a binary form. Although these
systems are fine for their specific purposes, both have their failings when it
comes to computers. Morse code, for example, is a variable-width code: It
uses shorter codes for frequently used letters and longer codes for less
common ones. Such a code is suitable for telegraphy, but it might be
awkward for computers. In addition, Morse code doesn't differentiate
between uppercase and lowercase versions of letters.

Braille is a fixed-width code, which is much preferable for computers.
Every letter is represented by 6 bits. Braille also differentiates between
uppercase and lowercase letters, although it does so with the use of a
special escape code. This code indicates that the next character is
uppercase. What this really means is that every capital letter requires two
codes rather than one. Numbers are represented with a shift code: After that
special code, the codes that follow are assumed to represent numbers until
another shift code signals the return to letters.

Our goal here is to develop a coded character set so that a sentence such as

I have 27 sisters.

can be represented by a series of codes, each of which is a certain number
of bits. Some of the codes will represent letters, some will representation
punctuation marks, and some will represent numbers. There should even be
a code that represents the space between words. There are 18 characters in
that sentence (including the spaces between the words). The consecutive
character codes for such a sentence are often referred to as a text string.

That we need codes for numbers in a text string such as 27 might seem odd
because we've been using bits to represent numbers for many chapters now.
We may be tempted to assume that the codes for the 2 and 7 in this sentence
are simply the binary numbers 10 and 111. But that's not necessarily the
case. In the context of a sentence such as this, the characters 2 and 7 can be
treated like any other character found in written English. They can have
character codes that are completely unrelated to the actual values of the
numbers.

Perhaps the most economical code for text is a 5-bit code that originated in
an 1874 printing telegraph developed by Emile Baudot (pronounced
bawdoh), an officer in the French Telegraph Service; his code was adopted
by the Service in 1877. This code was later modified by Donald Murray and
standardized in 1931 by the Comité Consultatif International Télégraphique
et Téléphonique (CCITT), which is now known as the International
Telecommunication Union (ITU). The code is formally known as the
International Telegraph Alphabet No. 2, or ITA-2, and it's more popularly
known in the United States as Baudot, although it's more correctly called
the Murray code.

In the twentieth century, Baudot was often used in teletypewriters. A
Baudot teletypewriter has a keyboard that looks something like a typewriter,
except that it has only 30 keys and a spacebar. Teletypewriter keys are
actually switches that cause a binary code to be generated and sent down
the teletypewriter's output cable, one bit after the other. A teletypewriter
also contains a printing mechanism. Codes coming through the
teletypewriter's input cable trigger electromagnets that print characters on
paper.

Because Baudot is a 5-bit code, there are only 32 codes. The hexadecimal
values of these codes range from 00h through 1Fh. Here's how the 32
available codes correspond to the letters of the alphabet:

Hex Code Baudot Letter Hex Code Baudot Letter

00 10 E

01 T 11 Z

02 Carriage Return 12 D

03 O 13 B

04 Space 14 S

05 H 15 Y

06 N 16 F

07 M 17 X

08 Line Feed 18 A

09 L 19 W

0A R 1A J

0B G 1B Figure Shift

0C I 1C U

0D P 1D Q

0E C 1E K

0F V 1F Letter Shift

Code 00h isn't assigned to anything. Of the remaining 31 codes, 26 are
assigned to letters of the alphabet and the other five are indicated by
italicized words or phrases in the table.

Code 04h is the Space code, which is used for the space separating words.
Codes 02h and 08h are labeled Carriage Return and Line Feed. This
terminology comes from the typewriter. When you're typing on a typewriter
and reach the end of a line, you push a lever or button that does two things.
First, it causes the carriage to be moved to the right so that the next line
begins at the left side of the paper. That's a carriage return. Second, the
typewriter rolls the carriage so that the next line is underneath the line you
just finished. That's the linefeed. In Baudot, separate keyboard keys

generate these two codes. A Baudot teletypewriter printer responds to these
two codes when printing.

Where are the numbers and punctuation marks in the Baudot system? That's
the purpose of code 1Bh, identified in the table as Figure Shift. After the
Figure Shift code, all subsequent codes are interpreted as numbers or
punctuation marks until the Letter Shift code (1Fh) causes them to revert to
the letters. Here are the codes for the numbers and punctuation:

Hex Code Baudot Figure Hex Code Baudot Figure

00 10 3

01 5 11 +

02 Carriage Return 12 Who Are You?

03 9 13 ?

04 Space 14 '

05 # 15 6

06 , 16 $

07 . 17 /

08 Line Feed 18 -

09) 19 2

0A 4 1A Bell

0B & 1B Figure Shift

0C 8 1C 7

0D 0 1D 1

0E : 1E (

0F = 1F Letter Shift

Actually, the code as formalized by the ITU doesn't define codes 05h, 0Bh,
and 16h, and instead reserves them "for national use." The table shows how
these codes were used in the United States. The same codes were often used
for accented letters of some European languages. The Bell code is supposed

to ring an audible bell on the teletypewriter. The "Who Are You?" code
activates a mechanism whereby a teletypewriter can identify itself.

Like Morse code, this 5-bit code doesn't differentiate between uppercase
and lowercase. The sentence

I SPENT $25 TODAY.

is represented by the following stream of hexadecimal data:

0C 04 14 0D 10 06 01 04 1B 16 19 01 1F 04 01 03 12 18 15 1B 07 02 08

Notice the three shift codes: 1Bh right before the number, 1Fh after the
number, and 1Bh again before the final period. The line concludes with
carriage-return and linefeed codes.

Unfortunately, if you sent this stream of data to a teletypewriter printer
twice in a row, it would come out like this:

I SPENT $25 TODAY.

8 '03,5 $25 TODAY.

What happened? The last shift code the printer received before the second
line was a Figure Shift code, so the codes at the beginning of the second
line were interpreted as numbers.

Problems like this are typical nasty results of using shift codes. Although
Baudot is certainly an economical code, it's probably preferable to use
unique codes for numbers and punctuation, as well as separate codes for
lowercase and uppercase letters.

So if we want to figure out how many bits we need for a better character
encoding system than Baudot, just add them up: We need 52 codes just for
the uppercase and lowercase letters and 10 codes for the digits 0 through 9.
We're up to 62 already. Throw in a few punctuation marks, and we top 64
codes, which means we need more than 6 bits. But we seem to have lots of
leeway before we exceed 128 characters, which would require 8 bits.

So the answer is 7. We need 7 bits to represent the characters of English text
if we want uppercase and lowercase with no shifting.

And what are these codes? Well, the actual codes can be anything we want.
If we were going to build our own computer, and we were going to build
every piece of hardware required by this computer, and we were going to

program this computer ourselves and never use the computer to connect to
any other computer, we could make up our own codes. All we need do is
assign every character we'll be using a unique code.

But since it's rarely the case that computers are built and used in isolation, it
makes more sense for everyone to agree to use the same codes. That way,
the computers that we build can be more compatible with one another and
maybe even actually exchange textual information.

We also probably shouldn't assign codes in a haphazard manner. For
example, when we work with text on the computer, certain advantages
accrue if the letters of the alphabet are assigned to sequential codes. This
ordering scheme makes alphabetizing and sorting easier, for example.

Fortunately, such a standard has already been developed. It's called the
American Standard Code for Information Interchange, abbreviated ASCII,
and referred to with the unlikely pronunciation ASS-key. It was formalized
in 1967 and remains the single most important standard in the entire
computer industry. With one big exception (which I'll describe later),
whenever you deal with text on a computer you can be sure that ASCII is
involved in some way.

ASCII is a 7-bit code using binary codes 0000000 through 1111111, which
are hexadecimal codes 00h through 7Fh. Let's take a look at the ASCII
codes, but let's not start at the very beginning because the first 32 codes are
conceptually a bit more difficult than the rest of the codes. I'll begin with
the second batch of 32 codes, which includes punctuation and the ten
numeric digits. This table shows the hexadecimal code and the character
that corresponds to that code:

Hex Code ASCII Character Hex Code ASCII Character

20 Space 30 0

21 ! 31 1

22 " 32 2

23 # 33 3

24 $ 34 4

25 % 35 5

26 & 36 6

27 ' 37 7

28 (38 8

29) 39 9

2A * 3A :

2B + 3B ;

2C , 3C <

2D - 3D =

2E . 3E >

2F / 3F ?

Notice that 20h is the space character that divides words and sentences.

The next 32 codes include the uppercase letters and some additional
punctuation. Aside from the @ sign and the underscore, these punctuation
symbols aren't normally found on typewriters. They're all now standard on
computer keyboards.

Hex Code ASCII Character Hex Code ASCII Character

40 @ 50 P

41 A 51 Q

42 B 52 R

43 C 53 S

44 D 54 T

45 E 55 U

46 F 56 V

47 G 57 W

48 H 58 X

49 I 59 Y

4A J 5A Z

4B K 5B [

4C L 5C \

4D M 5D]

4E N 5E ^

4F O 5F _

The next 32 characters include all the lowercase letters and some additional
punctuation, again not often found on typewriters:

Hex Code ASCII Character Hex Code ASCII Character

60 ` 70 p

61 a 71 q

62 b 72 r

63 c 73 s

64 d 74 t

65 e 75 u

66 f 76 v

67 g 77 w

68 h 78 x

69 i 79 y

6A j 7A z

6B k 7B {

6C l 7C |

6D m 7D }

6E n 7E ~

6F o

Notice that this table is missing the last character corresponding to code
7Fh. If you're keeping count, the three tables here show a total of 95
characters. Because ASCII is a 7-bit code, 128 codes are possible, so 33
more codes should be available. I'll get to those shortly.

The text string

Hello, you!

can be represented in ASCII using the hexadecimal codes

48 65 6C 6C 6F 2C 20 79 6F 75 21

Notice the comma (code 2C), the space (code 20) and the exclamation point
(code 21) as well as the codes for the letters. Here's another short sentence:

I am 12 years old.

and its ASCII representation:

49 20 61 6D 20 31 32 20 79 65 61 72 73 20 6F 6C 64 2E

Notice that the number 12 in this sentence is represented by the
hexadecimal numbers 31h and 32h, which are the ASCII codes for the
digits 1 and 2. When the number 12 is part of a text stream, it should not be
represented by the hexadecimal codes 01h and 02h, or the BCD code 12h,
or the hexadecimal code 0Ch. These other codes all mean something else in
ASCII.

A particular uppercase letter in ASCII differs from its lowercase counterpart
by 20h. This fact makes it fairly easy to write some code that (for example)
capitalizes a string of text. Suppose a certain area of memory contains a text
string, one character per byte. The following 8080 subroutine assumes that
the address of the first character in the text string is stored in register HL.
Register C contains the length of that text string, which is the number of
characters:

Capitalize: MOV A,C ; C = number of characters left
 CPI A,00h ; Compare with 0
 JZ AllDone ; If C is 0, we're finished

 MOV A,[HL] ; Get the next character
 CPI A,61h ; Check if it's less than 'a'
 JC SkipIt ; If so, ignore it

 CPI A,7Bh ; Check if it's greater than 'z'
 JNC SkipIt ; If so, ignore it

 SBI A,20h ; It's lowercase, so subtract 20h
 MOV [HL],A ; Store the character

SkipIt: INX HL ; Increment the text address
 DCR C ; Decrement the counter
 JMP Capitalize ; Go back to the top

AllDone: RET

The statement that subtracts 20h from the lowercase letter to convert it to
uppercase can be replaced with this:

ANI A,DFh

The ANI instruction is an AND Immediate. It performs a bitwise AND
operation between the value in the accumulator and the value DFh, which is
11011111 in binary. By bitwise, I mean that the instruction performs an
AND operation between each pair of corresponding bits that make up the
two numbers. This AND operation preserves all the bits in A except the
third from the left, which is set to 0. Setting that bit to 0 also effectively
converts an ASCII lowercase letter to uppercase.

The 95 codes shown above are said to refer to graphic characters because
they have a visual representation. ASCII also includes 33 control characters
that have no visual representation but instead perform certain functions. For
the sake of completeness, here are the 33 ASCII control characters, but
don't worry if they seem mostly incomprehensible. At the time ASCII was
developed, it was intended mostly for teletypewriters, and many of these
codes are currently obscure.

Hex Code Acronym Control Character Name

00 NUL Null (Nothing)

01 SOH Start of Heading

02 STX Start of Text

03 ETX End of Text

04 EOT End of Transmission

05 ENQ Enquiry (i.e., Inquiry)

06 ACK Acknowledge

07 BEL Bell

08 BS Backspace

09 HT Horizontal Tabulation

0A LF Line Feed

0B VT Vertical Tabulation

0C FF Form Feed

0D CR Carriage Return

0E SO Shift-Out

0F SI Shift-In

10 DLE Data Link Escape

11 DC1 Device Control 1

12 DC2 Device Control 2

13 DC3 Device Control 3

14 DC4 Device Control 4

15 NAK Negative Acknowledge

16 SYN Synchronous Idle

17 ETB End of Transmission Block

Hex Code Acronym Control Character Name

18 CAN Cancel

19 EM End of Medium

1A SUB Substitute Character

1B ESC Escape

1C FS File Separator or Information Separator 4

1D GS Group Separator or Information Separator 3

1E RS Record Separator or Information Separator 2

1F US Unit Separator or Information Separator 1

7F DEL Delete

The idea here is that control characters can be intermixed with graphic
characters to do some rudimentary formatting of the text. This is easiest to
understand if you think of a device—such as a teletypewriter or a simple
printer—that types characters on a page in response to a stream of ASCII
codes. The device's printing head normally responds to character codes by
printing a character and moving one space to the right. The most important
control characters alter this normal behavior.

For example, consider the hexadecimal character string

41 09 42 09 43 09

The 09 character is a Horizontal Tabulation code, or Tab for short. If you
think of all the horizontal character positions on the printer page as being
numbered starting with 0, the Tab code usually means to print the next
character at the next horizontal position that's a multiple of 8, like this:

A B C

This is a handy way to keep text lined up in columns.

Even today, many computer printers respond to a Form Feed code (12h) by
ejecting the current page and starting a new page.

The Backspace code can be used for printing composite characters on some
old printers. For example, suppose the computer controlling the

teletypewriter wanted to display a lowercase e with a grave accent mark,
like so: è. This could be achieved by using the hexadecimal codes 65 08 60.

By far the most important control codes are Carriage Return and Line Feed,
which have the same meaning as the similar Baudot codes. On a printer, the
Carriage Return code moves the printing head to the left side of the page,
and the Line Feed code moves the printing head one line down. Both codes
are generally required to go to a new line. A Carriage Return can be used by
itself to print over an existing line, and a Line Feed can be used by itself to
skip to the next line without moving to the left margin.

Although ASCII is the dominant standard in the computing world, it isn't
used on many of IBM's larger computer systems. In connection with the
System/360, IBM developed its own 8-bit character code known as the
Extended BCD Interchange Code, or EBCDIC (pronounced EBB-see-dick),
which was an extension of an earlier 6-bit code known as BCDIC, which
was derived from codes used on IBM punch cards. This style of punch card
—capable of storing 80 characters of text—was introduced by IBM in 1928
and used for over 50 years.

When considering the relationship between punch cards and their associated
8-bit EBCDIC character codes, keep in mind that these codes evolved over
many decades under several different types of technologies. For that reason,
don't expect to discover too much logic or consistency.

A character is encoded on a punch card by a combination of one or more
rectangular holes punched in a single column. The character itself is often
printed near the top of the card. The lower 10 rows are identified by number

and are known as the 0-row, the 1-row, and so forth through the 9-row. The
unnumbered row above the 0-row is called the 11-row, and the top row is
called the 12-row. There is no 10-row.

More IBM punch card terminology: Rows 0 through 9 are known as the
digit rows, or digit punches. Rows 11 and 12 are known as the zone rows,
or zone punches. And some IBM punch card confusion: Sometimes rows 0
and 9 are considered to be zone rows rather than digit rows.

An 8-bit EBCDIC character code is composed of a high-order nibble (4-bit
value) and a low-order nibble. The low-order nibble is the BCD code
corresponding to the digit punches of the character. The high-order nibble is
a code corresponding (in a fairly arbitrary way) to the zone punches of the
character. You'll recall from Chapter 19 that BCD stands for binarycoded
decimal—a 4-bit code for digits 0 through 9.

For the digits 0 through 9, there are no zone punches. That lack of punches
corresponds to a high-order nibble of 1111. The low-order nibble is the
BCD code of the digit punch. Here's a table of EBCDIC codes for the digits
0 through 9:

Hex Code EBCDIC Character

F0 0

F1 1

F2 2

F3 3

F4 4

F5 5

F6 6

F7 7

F8 8

F9 9

For the uppercase letters, a zone punch of just the 12-row is indicated by the
nibble 1100, a zone punch of just the 11-row is indicated by the nibble

1101, and a zone punch of just the 0-row is indicated by the nibble 1110.
The EBCDIC codes for the uppercase letters are

Hex
Code

EBCDIC
Character

Hex
Code

EBCDIC
Character

Hex
Code

EBCDIC
Character

C1 A D1 J

C2 B D2 K E2 S

C3 C D3 L E3 T

C4 D D4 M E4 U

C5 E D5 N E5 V

C6 F D6 O E6 W

C7 G D7 P E7 X

C8 H D8 Q E8 Y

C9 I D9 R E9 Z

Notice the gaps in the numbering of these codes. In some applications,
these gaps can be maddening when you're writing programs using EBCDIC
text.

The lowercase letters have the same digit punches as the uppercase letters
but different zone punches. For lowercase letters a through i, the 12-row
and 0-row are punched, corresponding to the code 1000. For j through r, the
12-row and 11-row are punched. This is the code 1001. For the letters s
through z, the 11-row and 0-row are punched—the code 1010. The
EBCDIC codes for the lowercase letters are

Hex
Code

EBCDIC
Character

Hex
Code

EBCDIC
Character

Hex
Code

EBCDIC
Character

81 a 91 j

82 b 92 k A2 s

83 c 93 l A3 t

84 d 94 m A4 u

85 e 95 n A5 v

86 f 96 o A6 w

87 g 97 p A7 x

88 h 98 q A8 y

89 i 99 r A9 z

Of course, there are other EBCDIC codes for punctuation and control
characters, but it's hardly necessary to do a full-blown exploration of this
system.

It might seem as if each column of an IBM punch card is sufficient to
encode 12 bits of information. Each hole is a bit, right? So it should be
possible to encode ASCII character codes on a punch card using only 7 of
the 12 positions in each column. But in practice, this doesn't work very
well. Too many holes get punched, threatening the physical integrity of the
card.

Many of the 8-bit codes in EBCDIC aren't defined, suggesting that the use
of 7 bits in ASCII makes more sense. At the time ASCII was being
developed, memory was very expensive. Some people felt that ASCII
should be a 6-bit code using a shift character to differentiate between
lowercase and uppercase to conserve memory. Once that idea was rejected,
others believed that ASCII should be an 8-bit code because even at that
time it was considered more likely that computers would have 8-bit
architectures than 7-bit architectures. Of course, 8-bit bytes are now the
standard. Although ASCII is technically a 7-bit code, it's almost universally
stored as 8-bit values.

The equivalence of bytes and characters is certainly convenient because we
can get a rough sense of how much computer memory a particular text
document requires simply by counting the characters. To some, the kilos
and megas of computer storage are more comprehensible when expressed in
terms of text.

For example, a traditional double-spaced typewritten 8½-by-11-inch page
with 1-inch margins has about 27 lines of text. Each line is about 6½ inches
wide with 10 characters per inch, for a total of about 1750 bytes. A
singlespace typewritten page has about double that, or 3.5 kilobytes.

A page in The New Yorker magazine has 3 columns of text with 60 lines
per column and about 40 characters per line. That's 7200 characters (or
bytes) per page.

The New York Times has six columns of text per page. If the entire page is
covered with text without any titles or pictures (which is highly unusual),
each column has 155 lines of about 35 characters each. The entire page has
32,550 characters, or 32 kilobytes.

A hardcover book has about 500 words per page. An average word is about
5 letters—actually 6 characters, counting the space between words. So a
book has about 3000 characters per page. Let's say the average book has
333 pages, which may be a made-up figure but nicely implies that the
average book is about 1 million bytes, or 1 megabyte.

Of course, books vary all over the place:

F. Scott Fitzgerald's The Great Gatsby is about 300 kilobytes.

J. D. Salinger's Catcher in the Rye is about 400 kilobytes.

Mark Twain's The Adventures of Huckleberry Finn is about 540 kilobytes.

John Steinbeck's The Grapes of Wrath is about a megabyte.

Herman Melville's Moby Dick is about 1.3 megabytes.

Henry Fielding's The History of Tom Jones is about 2.25 megabytes.

Margaret Mitchell's Gone with the Wind is about 2.5 megabytes.

Stephen King's complete and uncut The Stand is about 2.7 megabytes.

Leo Tolstoy's War and Peace is about 3.9 megabytes.

Marcel Proust's Remembrance of Things Past is about 7.7 megabytes.

The United States Library of Congress has about 20 million books for a
total of 20 trillion characters, or 20 terabytes, of text data. (It has a bunch of

photographs and sound recordings as well.)

Although ASCII is certainly the most important standard in the computer
industry, it isn't perfect. The big problem with the American Standard Code
for Information Interchange is that it's just too darn American! Indeed,
ASCII is hardly suitable even for other nations whose principal language is
English. Although ASCII includes a dollar sign, where is the British pound
sign? And what about the accented letters used in many Western European
languages? To say nothing of the non-Latin alphabets used in Europe,
including Greek, Arabic, Hebrew, and Cyrillic. Or the Brahmi scripts of
India and Southeast Asia, including Devanagari, Bengali, Thai, and Tibetan.
And how can a 7-bit code possibly handle the tens of thousands of
ideographs of Chinese, Japanese, and Korean and the ten thousand–odd
Hangul syllables of Korean?

Even when ASCII was being developed, the needs of some other nations
were kept in mind, although without much consideration for non-Latin
alphabets. According to the published ASCII standard, ten ASCII codes
(40h, 5Bh, 5Ch, 5Dh, 5Eh, 60h, 7Bh, 7Ch, 7Dh, and 7Eh) are available to
be redefined for national uses. In addition, the number sign (#) can be
replaced by the British pound sign (£), and the dollar sign ($) can be
replaced by a generalized currency sign (¤) if necessary. Obviously,
replacing symbols makes sense only when everyone involved in using a
particular text document containing these redefined codes knows about the
change.

Because many computer systems store characters as 8-bit values, it's
possible to devise an extended ASCII character set that contains 256
characters rather than just 128. In such a character set, codes 00h through
7Fh are defined just as they are in ASCII; codes 80h through FFh can be
something else entirely. This technique has been used to define additional
character codes to accommodate accented letters and non-Latin alphabets.
As an example, here's a 96-character extension of ASCII called the Latin
Alphabet No. 1 that defines characters for codes A0h through FFh. In this
table, the high-order nibble of the hexadecimal character code is shown in
the top row; the low-order nibble is shown in the left column.

 A- B- C- D- E- F-

-0 ° À Ð à ð

-1 ¡ ± Á Ñ á ñ

-2 ¢ ² Â Ò â ò

-3 £ ³ Ã Ó ã ó

-4 ¤ ´ Ä Ô ä ô

-5 ¥ µ Å Õ å õ

-6 ¦ ¶ Æ Ö æ ö

-7 § · Ç × ç ÷

-8 ¨ ¸ È Ø è ø

-9 © ¹ É Ù é ù

-A ª º Ê Ú ê ú

-B « » Ë Û ë û

-C ¬ ¼ Ì Ü ì ü

-D - ½ Í Ý í ý

-E ® ¾ Î Þ î þ

-F - ¿ Ï ß ï ÿ

The character for code A0h is defined as a no-break space. Usually when a
computer program formats text into lines and paragraphs, it breaks each line
at a space character, which is ASCII code 20h. Code A0h is supposed to be
displayed as a space but can't be used for breaking a line. A no-break space
might be used in the text "WW II," for example. Code ADh is defined as a
soft hyphen. This is a hyphen used to separate syllables in the middle of
words. It appears on the printed page only when it's necessary to break a
word between two lines.

Unfortunately, many different extensions of ASCII have been defined over
the decades, leading to much confusion and incompatibility. ASCII has
been extended in a more radical way to encode the ideographs of Chinese,

Japanese, and Korean. In one popular encoding—called Shift-JIS (Japanese
Industrial Standard)—codes 81h through 9Fh actually represent the initial
byte of a 2-byte character code. In this way, Shift-JIS allows for the
encoding of about 6000 additional characters. Unfortunately, Shift-JIS isn't
the only system that uses this technique. Three other standard double-byte
character sets (DBCS) are popular in Asia.

That there are a number of incompatible double-byte character sets is only
one of the problems with them. The other problem is that some characters—
specifically, the normal ASCII characters—are represented by 1-byte codes,
while the thousands of ideographs are represented by 2-byte codes. This
makes it difficult to work with such character sets.

Under the assumption that it's preferable to have just one unambiguous
character encoding system that's suitable for all the world's languages, in
1988 several major computer companies got together and began developing
an alternative to ASCII known as Unicode. Whereas ASCII is a 7-bit code,
Unicode is a 16-bit code. Each and every character in Unicode requires 2
bytes. That means that Unicode has character codes ranging from 0000h
through FFFFh and can represent 65,536 different characters. That's enough
for all the world's languages that are likely to be used in computer
communication, with room for expansion.

Unicode doesn't start from scratch. The first 128 characters of Unicode—
codes 0000h through 007Fh—are the same as the ASCII characters. Also,
Unicode codes 00A0h through 00FFh are the same as the Latin Alphabet
No. 1 extension of ASCII that I described earlier. Other worldwide
standards are also incorporated into Unicode.

While Unicode may be an obvious improvement over existing character
codes, that doesn't guarantee it instant acceptability. ASCII and the myriad
flawed extensions of ASCII have become so entrenched in the computing
world that it will be difficult to dislodge them.

The only real problem with Unicode is that it makes invalid the old
equivalence between one character of text and 1 byte of storage. Encoded in
ASCII, The Grapes of Wrath is about 1 megabyte in size. Encoded in
Unicode, it's about 2 megabytes. But that's a small price to pay for a
universal unambiguous character encoding system.

Chapter 21. Get on the Bus
The processor is certainly the most important component of a computer, but
it's not the only component. A computer also requires random access
memory (RAM) that contains machine-code instructions for the processor
to execute. The computer must also include some way for those instructions
to get into RAM (an input device) and some way for the results of the
program to be observed (an output device). As you'll also recall, RAM is
volatile—it loses its contents when the power is turned off. So another
useful component of a computer is a long-term storage device that can
retain code and data when the computer is turned off.

All the integrated circuits that make up a complete computer must be
mounted on circuit boards. In some smaller machines, all the ICs can fit on
a single board. But it's more usual for the various components of the
computer to be divided among two or more boards. These boards
communicate with each other by means of a bus. A bus is simply a
collection of digital signals that are provided to every board in a computer.
These signals fall into four categories:

Address signals. These are signals generated by the microprocessor and
used mostly to address random access memory. But they're also used to
address other devices attached to the computer.

Data Output signals. These also are signals provided by the
microprocessor. They're used to write data to RAM or to other devices.
Be careful with the terms input and output. A data output signal from the
microprocessor becomes a data input signal to RAM and other devices.

Data Input signals. These are signals that are provided by other parts of
the computer and are read by the microprocessor. The data input signals
most often originate in RAM output; this is how the microprocessor
reads the contents of memory. But other components also provide data
input signals to the microprocessor.

Control signals. These are miscellaneous signals that usually correspond
to the control signals of the particular microprocessor around which the
computer is built. Control signals may originate in the microprocessor or
from other devices to signal the microprocessor. An example of a control

signal is the signal used by the microprocessor to indicate that it needs to
write some data output into a particular memory address.

In addition, the bus supplies power to the various boards that the computer
comprises.

One of the earliest popular busses for home computers was the S-100 bus,
which was introduced in 1975 in the first home computer, the MITS Altair.
Although this bus was based on the 8080 microprocessor, it was later
adapted to other processors such as the 6800. An S-100 circuit board is 5.3
inches by 10 inches. One edge of the circuit board fits into a socket that has
100 connectors (hence the name S-100).

An S-100 computer contains a larger board called a motherboard (or main
board) that contains a number of S-100 sockets (perhaps 12 of them) wired
to one another. These sockets are sometimes called expansion slots. The S-
100 circuit boards (also called expansion boards) fit into these sockets. The
8080 microprocessor and support chips (some of which I mentioned in
Chapter 19) occupy one S-100 board. Random access memory occupies one
or more other boards.

Because the S-100 bus was designed for the 8080 chip, it has 16 address
signals, 8 data input signals, and 8 data output signals. (As you'll recall, the
8080 itself combines the data input and data output signals. These signals
are divided into separate input and output signals by other chips on the
circuit board that contains the 8080.) The bus also includes 8 interrupt
signals. These are signals generated by other devices when they need
immediate attention from the CPU. For example (as we'll see later in this
chapter), a keyboard might generate an interrupt signal when a key is
pressed. A short program run by the 8080 can then determine what that key
was and take some action. The board containing the 8080 also generally
includes a chip called the Intel 8214 Priority Interrupt Control Unit to
handle these interrupts. When an interrupt occurs, this chip generates an
interrupt signal to the 8080. When the 8080 acknowledges the interrupt, the
chip provides a RST (Restart) instruction that causes the microprocessor to
save the current program counter and branch to address 0000h, 0008h,
0010h, 0018h, 0020h, 0028h, 0030h, or 0038h depending on the interrupt.

If you were designing a new computer system that included a new type of
bus, you could choose whether to publish (or otherwise make available) the

specifications of the bus or to keep them secret.

If the specifications of a particular bus are made public, other
manufacturers—so-called third-party manufacturers—can design and sell
expansion boards that work with that bus. The availability of these
additional expansion boards makes the computer more useful and hence
more desirable. More sales of the computer create more of a market for
more expansion boards. This phenomenon is the incentive for designers of
most small computer systems that adhere to the principle of open
architecture, which allows other manufacturers to create peripherals for the
computer. Eventually, a bus might be considered an industry-wide standard.
Standards have been an important part of the personal computer industry.

The most famous open architecture personal computer was the original
IBM PC introduced in the fall of 1981. IBM published a Technical
Reference manual for the PC that contained complete circuit diagrams of
the entire computer, including all the expansion boards that IBM
manufactured for it. This manual was an essential tool that enabled many
manufacturers to make their own expansion boards for the PC and, in fact,
to create entire clones of the PC—computers that were nearly identical to
IBM's and ran all the same software.

The descendants of that original IBM PC now account for about 90 percent
of the market in the desktop computers. Although IBM itself has only a
small share of this market, it could very well be that IBM's share is larger
than if the original PC had a closed architecture with a proprietary design.
The Apple Macintosh was originally designed with a closed architecture,
and despite occasional flirtations with open architecture, that original
decision possibly explains why the Macintosh currently accounts for less
than 10 percent of the desktop market. (Keep in mind that whether a
computer system is designed under the principle of open architecture or
closed architecture doesn't affect the ability of other companies to write
software that runs on the computer. Only the manufacturers of certain video
games have restricted other companies from writing software for their
systems.)

The original IBM PC used the Intel 8088 microprocessor, which can
address 1 megabyte of memory. Although internally the 8088 is a 16-bit
microprocessor, externally it addresses memory in 8-bit chunks. The bus
that IBM designed for the original PC is now called the ISA (Industry

Standard Architecture) bus. The expansion boards have 62 connectors. The
signals include 20 address signals, 8 combined data input and output
signals, 6 interrupt requests, and 3 direct memory access (DMA) requests.
DMA allows storage devices (which I'll describe toward the end of this
chapter) to perform more quickly than would otherwise be possible.
Normally, the microprocessor handles all reading from and writing to
memory. But using DMA, another device can bypass the microprocessor by
taking over the bus and reading from or writing to memory directly.

In an S-100 system, all components are mounted on expansion boards. In
the IBM PC, the microprocessor, some support chips, and some RAM are
located on what IBM called the system board but which is also often called
a motherboard or a main board.

In 1984, IBM introduced the Personal Computer AT, which used the 16-bit
Intel 80286 microprocessor that can address 16 megabytes of memory. IBM
retained the existing bus but added another 36-connector socket that
included 7 more address signals (although only 4 more were needed), 8
more data input and output signals, 5 more interrupt requests, and 4 more
DMA requests.

Busses need to be upgraded or replaced when microprocessors outgrow
them, either in data width (from 8 to 16 to 32 bits) or in the number of
address signals they output. But microprocessors also outgrow busses when
they achieve faster speeds. Early busses were designed for microprocessors
operating at a clock speed of several megahertz rather than several hundred
megahertz. When a bus isn't properly designed for high speeds, it can give
off radio frequency interference (RFI) that causes static or other noise on
nearby radios and television sets.

In 1987, IBM introduced the Micro Channel Architecture (MCA) bus.
Some aspects of this bus had been patented by IBM, so IBM was able to
collect licensing fees from other companies that used the bus. Perhaps for
this reason, the MCA bus did not become an industry standard. Instead, in
1988 a consortium of nine companies (not including IBM) countered with
the 32-bit EISA (Extended Industry Standard Architecture) bus. More
recently, the Intel-designed Peripheral Component Interconnect (PCI) bus
has become common in PC-compatibles.

To understand how the various components of the computer work, it's again
helpful to return to that earlier and simpler era of the mid-1970s. We might
imagine that we're designing boards for the Altair, or perhaps for an 8080 or
6800 computer of our own design. We probably want to design some
memory for the computer and to have a keyboard for input, a TV set for
output, and perhaps some way to save the contents of memory when we
turn off the computer. Let's look at the various interfaces we can design to
add these components to our computer.

You'll recall from Chapter 16 that RAM arrays have address inputs, data
inputs, data outputs, and a signal used to write data into memory. The
number of address inputs indicates the number of separate values that can
be stored in the RAM array:

Number of values in RAM array = 2 Number of address inputs

The number of data input and output signals indicates the size of the stored
values.

One popular memory chip for home computers in the mid-1970s was the
2102:

The 2102 is a member of the MOS (metal-oxide semiconductor) family of
semiconductors, which is the same technology used for the 8080 and 6800
microprocessors themselves. MOS semiconductors can be easily connected
to TTL chips; they generally have a higher density of transistors than TTL
but aren't as fast.

As you can probably figure out by counting the address signals (A0 through

A9) and noting the single data output (DO) and data input (DI) signals, this

chip stores 1024 bits. Depending on the type of 2102 chip you're using, the
read access time—the time it takes for the data output to be valid after a
particular address has been applied to the chip—ranges from 350 to 1000

nanoseconds. The R/ (read/write) signal is normally 1 when you're
reading memory. When you want to write data into the chip, this signal
must be 0 for a period of at least 170 to 550 nsec, again depending on the
type of 2102 chip you're using.

Of particular interest is the signal, which stands for chip select. When
this signal is 1, the chip is deselected, which means that it doesn't respond

to the R/ signal. The signal has another profound effect on the chip,
however, that I'll describe shortly.

Of course, if you're putting together memory for an 8-bit microprocessor,
you want to organize this memory so that it stores 8-bit values rather than 1-
bit values. At the very least, you'll need to wire 8 of these 2102 chips
together to store entire bytes. You can do this by connecting all the

corresponding address signals, the R/ signals, and the signals of eight
2102 chips. The result can be drawn like this:

This is a 1024 x 8 RAM array, or 1 KB of RAM.

From a practical perspective, you need to put the memory chips on a circuit
board. How many can you fit on one board? Well, if you really cram them
close together, you can fit 64 of these chips on a single S-100 board. That
will give you 8 KB of memory. But let's go for a more modest 4 KB using
just 32 chips. Each set of chips that are wired together to store a whole byte
(as illustrated above) is known as a bank. A 4-KB memory board contains
four banks of 8 chips each.

Eight-bit microprocessors such as the 8080 and 6800 have 16-bit addresses
that can address a total of 64 KB of memory. When you wire a 4-KB

memory board containing four banks of chips, the memory board's 16
address signals perform the following functions:

The 10 address signals A0 through A9 are directly wired to the RAM chips.

The address signals A10 and A11 select which of the four banks is being

addressed. The address signals A12 through A15 determine which addresses

apply to this particular board—in other words, the addresses that the board
responds to. The 4-KB memory board we're designing can occupy one of 16
different 4-KB ranges in the entire 64-KB memory space of the
microprocessor:

0000h through 0FFFh, or

1000h through 1FFFh, or

2000h through 2FFFh, or

⋮

F000h through FFFFh.

For example, suppose we decide that this 4-KB memory board will apply to
addresses A000h through AFFFh. This means that addresses A000h
through A3FFh will apply to the first bank of 1-KB chips, addresses A400h
through A7FFh to the second bank, addresses A800h through ABFFh to the
third bank, and addresses AC00h through AFFFh to the fourth bank.

It's common to wire a 4-KB memory board so that you can flexibly specify
at a later time what range of addresses it responds to. To achieve this
flexibility, you use something called a DIP switch. This is a series of tiny
switches (anywhere from 2 through 12) in a dual inline package (DIP) that
can be inserted in a normal IC socket:

You can wire this switch with the high 4 address bits from the bus in a
circuit called a comparator.

As you'll recall, the output of an XOR gate is 1 if either of the two inputs is
1 but not both. Another way to think of this is that the output of an XOR
gate is 0 if the two inputs are the same—either both 0 or both 1.

For example, if we close the switches corresponding to A13 and A15, that

means we want the memory board to respond to memory addresses A000h
through AFFFh. When the address signals A12, A13, A14, and A15 from the

bus are equal to the values set on the switches, the outputs of all four XOR
gates are 0, which means the output from the NOR gate is 1:

You can then combine that Equal signal with a 2-Line-to-4-Line Decoder to

generate signals for each of the four banks of memory:

For example, when A10 is 0 and A11 is 1, that's the third bank.

If you recall the messy details of combining RAM arrays in Chapter 16, you
might assume that we also need eight 4-to-1 Selectors to select the correct
data output signals from the four banks of memory. But we don't, and here's
why.

Normally, the output signals of TTL-compatible integrated circuits are
either greater than 2.2 volts (for a logical 1) or less than 0.4 volts (for a
logical 0). But what happens if you try connecting outputs? If one
integrated circuit has a 1 output and another has a 0 output, and these two
outputs are connected, what will result? You can't really tell, and that's why
outputs of integrated circuits aren't normally connected together.

The data output signal of the 2102 chip is known as a 3-state, or tri-state,
output. Besides a logical 0 and a logical 1, this data output signal can also
be a third state. This state is—lo and behold—nothing at all! It's as if
nothing is connected to the pin of the chip. The data output signal of the

2102 chip goes into this third state when the input is 1. This means that
we can connect the corresponding data output signals of all four banks and
use those eight combined outputs as the eight data input signals of the bus.

I'm emphasizing the concept of the tri-state output because it's essential to
the operation of a bus. Just about everything that's connected to the bus uses
the data input signals of the bus. At any time, only one board connected to
the bus should be determining what those data input signals are. The other
boards must be connected to the bus with deselected tri-state outputs.

The 2102 chip is known as static random access memory, or SRAM
(pronounced ess ram), to differentiate it from dynamic random access
memory, or DRAM (pronounced dee ram). SRAM generally requires 4
transistors per bit of memory (not quite as many transistors as the flip-flops
I used for memory in Chapter 16). DRAM, however, requires only 1
transistor per bit. The drawback of DRAM is that it requires more complex
support circuitry.

An SRAM chip such as the 2102 will retain its contents as long as the chip
has power. If the power goes off, the chip loses its contents. The DRAM is
also similar in that respect, but a DRAM chip requires also that the contents
of the memory be periodically accessed, even if the contents aren't needed.
This is called a refresh cycle, and it must occur several hundred times per

second. It's like periodically nudging someone so that the person doesn't fall
asleep.

Despite the hassle of using DRAM, the ever-increasing capacity of DRAM
chips over the years has made DRAM the standard. In 1975, Intel
introduced a DRAM chip that stored 16,384 bits. In accordance with
Moore's Law, DRAM chips have quadrupled in capacity roughly every
three years. Today's computers usually have sockets for memory right on
the system board. The sockets take small boards called single inline
memory modules (SIMMs) or dual inline memory modules (DIMMs) that
contain several DRAM chips. Today you can buy a DIMM containing 128
megabytes of memory for under $300.

Now that you know how to make memory boards, you don't want to fill up
the entire memory space of your microprocessor with memory. You want to
leave some memory space for your output device.

The cathode-ray tube (CRT)—a familiar sight in homes for the last half
century in its guise as the television set—has become the most common
output device for computers. A CRT attached to a computer is usually
known as the video display, or monitor. The electronic components that
provide the signal to the video display are usually known as the video
display adapter. Often the video display adapter occupies its own board in
the computer, which is known as the video board.

While the two-dimensional image of a video display or a television might
seem complex, the image is actually composed of a single continuous beam
of light that sweeps across the screen very rapidly. The beam begins in the
upper left corner and moves across the screen to the right, whereupon it zips
back to the left to begin the second line. Each horizontal line is known as a
scan line. The movement back to the beginning of each of these lines is
known as the horizontal retrace. When the beam finishes the bottom line, it
zips from the lower right corner of the screen to the upper left corner (the
vertical retrace) and the process begins again. For American television
signals, this happens 60 times a second, which is known as the field rate.
It's fast enough so that the image doesn't appear to be flickering.

Television is complicated somewhat by the use of an interlaced display.
Two fields are required to make up a single frame, which is a complete still
video image. Each field contributes half the scan lines of the entire frame—

the first field has the even scan lines, and the second field has the odd scan
lines. The horizontal scan rate, which is the rate at which each horizontal
scan line is drawn, is 15,750 Hertz. If you divide that number by 60 Hertz,
you get 262.5 lines. That's the number of scan lines in one field. An entire
frame is double that, or 525 scan lines.

Regardless of the mechanics of interlaced displays, the continuous beam of
light that makes up the video image is controlled by a single continuous
signal. Although the audio and video components of a television program
are combined when they're broadcast or transmitted through a cable
television system, they're eventually separated. The video signal that I'll
describe here is identical to the signal that's input to or output from those
jacks labeled Video found on VCRs, camcorders, and some television sets.

For black and white television, this video signal is quite straightforward and
easy to comprehend. (Color gets a bit messier.) Sixty times per second, the
signal contains a vertical sync pulse that indicates the beginning of a field.
This pulse is 0 volts (ground) for about 400 microseconds. A horizontal
sync pulse indicates the beginning of each scan line: The video signal is 0
volts for 5 microseconds 15,750 times per second. Between the horizontal
sync pulses, the signal varies from 0.5 volt for black to 2 volts for white,
with voltages between 0.5 volt and 2 volts to indicate shades of gray.

The image of a television is thus partially digital and partially analog. The
image is divided into 525 lines vertically, but each scan line is a continuous
variation of voltages—an analog of the visual intensity of the image. But
the voltage can't vary indiscriminately. There's an upper limit to how
quickly the television set can respond to the varying signal. This is known
as the television's bandwidth.

Bandwidth is an extremely important concept in communication, and it
relates to the amount of information that can be transferred over a particular
communication medium. In the case of television, bandwidth is the limit to
the speed with which the video signal can change from black to white and
back to black again. For American broadcast television, this is about 4.2
MHz.

If we want to connect a video display to a computer, it's awkward to think
of the display as a hybrid analog and digital device. It's easier to treat it as a
completely digital device. From the perspective of a computer, it's most

convenient to conceive of the video image as being divided into a
rectangular grid of discrete dots known as pixels. (The term comes from the
phrase picture element.)

The video bandwidth enforces a limit to the number of pixels that can fit in
a horizontal scan line. I defined the bandwidth as the speed with which the
video signal can change from black to white and back to black again. A
bandwidth of 4.2 MHz for television sets allows two pixels 4.2 million
times a second, or—dividing 2 x 4,200,000 by the horizontal scan rate of
15,750— 533 pixels in each horizontal scan line. But about a third of these
pixels aren't available because they're hidden from view—either at the far
ends of the image or while the light beam is in the horizontal retrace. That
leaves about 320 useful pixels horizontally.

Likewise, we don't get 525 pixels vertically. Instead, some are lost at the top
and bottom of the screen and during the vertical retrace. Also, it's most
convenient to not rely upon interlace when computers use television sets. A
reasonable number of pixels in the vertical dimension is 200.

We can thus say that the resolution of a primitive video display adapter
attached to a conventional television set is 320 pixels across by 200 pixels
down, or 320 pixels horizontally by 200 pixels vertically, commonly
referred to as 320 by 200 or 320 x 200:

To determine the total number of pixels in this grid, you can count them or
simply multiply 320 by 200 to get 64,000 pixels. Depending on how you've
configured your video adapter (as I'll explain shortly), each pixel can be
either black or white, or each pixel can be a particular color.

Suppose we wanted to display some text on this display. How much can we
fit?

Well, that obviously depends on how many pixels are used for each text
character. Here's one possible approach that uses an 8 x 8 grid (64 pixels)
for each character:

These are the characters corresponding to ASCII codes 20h through 7Fh.
(No visible characters are associated with ASCII codes 00h through 1Fh.)

Each character is identified by a 7-bit ASCII code, but each character is
also associated with 64 bits that determine the visual appearance of the
character. You can also think of these 64 bits of information as codes.

Using these character definitions, you can fit 25 lines of 40 characters each
on the 320 x 200 video display, which (for example) is enough to fit an
entire short poem by Amy Lowell:

A video display adapter must contain some RAM to store the contents of
the display, and the microprocessor must be able to write data into this
RAM to change the display's appearance. Most conveniently, this RAM is
part of the microprocessor's normal memory space. How much RAM is
required for a display adapter like the one I'm describing?

This isn't a simple question! The possible answers can range from 1
kilobyte to 192 kilobytes!

Let's start with the low estimate. One way to reduce the memory
requirements of a video display adapter is to restrict the adapter to text only.
We've already established that we can display 25 rows of 40 characters
each, or a total of 1000 characters. The RAM on the video board need only
store the 7-bit ASCII codes of those 1000 characters. That's 1000 7-bit
values, which is approximately 1024 bytes, or 1 kilobyte.

Such a video adapter board must also include a character generator that
contains the pixel patterns of all the ASCII characters, such as I illustrated
earlier. This character generator is generally read-only memory, or ROM
(pronounced rahm). A ROM is an integrated circuit manufactured so that a
particular address always results in a particular data output. Unlike RAM, a
ROM doesn't have any data input signals.

You can think of ROM as a circuit that converts one code to another. A
ROM that stores 8 x 8 pixel patterns of 128 ASCII characters could have 7
address signals (for the ASCII codes) and 64 data output signals. The ROM
thus converts a 7-bit ASCII code to a 64-bit code that defines the character's
appearance. But 64 data output signals would make the chip quite large! It's
more convenient to have 10 address signals and 8 output signals. Seven of
the address signals specify the particular ASCII character. (These 7 address
bits come from the data output of the RAM on the video board.) The other 3
address signals indicate the row. For example, address bits 000 indicate the
top row and 111 indicate the bottom row. The 8 output bits are the eight
pixels of each row.

For example, suppose the ASCII code is 41h. That's a capital A. There are
eight rows of 8 bits each. This table shows the 10-bit address (a space
separates the ASCII code from the row code) and the data output signals for
a capital A:

Address Data Output

1000001 000 00110000

1000001 001 01111000

1000001 010 11001100

1000001 011 11001100

1000001 100 11111100

1000001 101 11001100

1000001 110 11001100

1000001 111 00000000

Do you see the A drawn with 1s against a background of 0s?

A video display adapter that displays text only must also have logic for a
cursor. The cursor is the little underline that indicates where the next
character you type on the keyboard will appear on the display. The
character row and column position of the cursor is usually stored in two 8-
bit registers on the video board that the microprocessor can write values
into.

If the video adapter board is not restricted to text only, it's referred to as a
graphics board. By writing into the RAM on a graphics video board, a
microprocessor can draw pictures, including text in a multitude of sizes and
styles. Graphics video boards require more memory than text-only boards.
A graphics video board that displays 320 pixels across by 200 pixels down
has 64,000 pixels. If each pixel corresponds to one bit of RAM, such a
board requires 64,000 bits of RAM, or 8000 bytes. This, however, is the
rock-bottom minimum. A correspondence of 1 bit to 1 pixel allows the use
of only two colors—for instance, black and white. A 0 bit might correspond
to a black pixel, and a 1 bit might correspond to a white pixel.

Black-and-white televisions display more than just black and white, of
course. They're also capable of displaying many shades of gray. To display
shades of gray from a graphics board, it's common for each pixel to
correspond to an entire byte of RAM, where 00h is black and FFh is white,
and all the values in between correspond to shades of gray. A 320-by-200
video board that displays 256 gray shades requires 64,000 bytes of RAM.
That's very nearly the entire address space of one of the 8-bit
microprocessors I've been talking about!

Moving up to full gorgeous color requires 3 bytes per pixel. If you use a
magnifying glass to examine a color television or a computer video display,
you'll discover that each color is represented by various combinations of the
primary colors red, green, and blue. To get the full range of color, a byte is
required to indicate the intensity of each of the three primaries. That means
192,000 bytes of RAM. (I'll have more to say about color graphics in the
last chapter of this book.)

The number of different colors that a video adapter is capable of is related
to the number of bits used for each pixel. The relationship might look
familiar because like many codes in this book, it once again involves a
power of 2:

Number of Colors = 2Number of bits per pixel

The 320-by-200 resolution is just about the best you can do on a standard
television set. That's why monitors made specifically for computers have a
much higher bandwidth than television sets. The first monitors sold with the
IBM Personal Computer in 1981 could display 25 lines of 80 characters
each. This is the number of characters found on the CRT displays used with

IBM's large and expensive mainframe computers. To IBM, 80 characters is
a very special number. And why? Because that's the number of characters
on an IBM punch card! Indeed, in the early days the CRT displays attached
to mainframes were often used for viewing the contents of punch cards.
Occasionally, you'll hear an old-timer refer to the lines of a text-only video
display as cards.

Over the years, video display adapters have been characterized by
increasing resolution and color capability. An important milestone was
reached in 1987 when IBM's Personal System/2 series of personal
computers and Apple's Macintosh II both introduced video adapters that did
640 pixels horizontally by 480 pixels vertically. This has remained the
minimum-standard video resolution ever since.

The 640-by-480 resolution was a significant milestone, but you might not
believe that the reason for its importance goes back to Thomas Edison!
Around 1889, when Edison and his engineer William Kennedy Laurie
Dickson were working on the Kinetograph motion picture camera and the
Kinetoscope projector, they decided to make the motion picture image one-
third wider than it was high. The ratio of the width of the image to its height
is called the aspect ratio. The ratio that Edison and Dickson established is
commonly expressed as 1.33 to 1, or 1.33:1, or, to avoid fractions, 4:3. This
aspect ratio was used for most movies for over 60 years, and it was also
used for television. Only in the early 1950s did the Hollywood studios
introduce some widescreen techniques that competed against television by
going beyond the 4:3 aspect ratio.

The aspect ratio of most computer monitors is (like television) also 4:3,
which you can easily prove to yourself using a ruler. The resolution 640 by
480 is also in the ratio 4:3. This means that (for example) a 100-pixel
horizontal line is the same physical length as a 100-pixel vertical line. This
is considered a desirable feature for computer graphics and is known as
square pixels.

Today's video adapters and monitors almost always do 640 by 480 but are
also capable of various additional video modes, often including resolutions
of 800 by 600, 1024 by 768, 1280 by 960, and 1600 by 1200.

Although we normally think of the computer display and the keyboard as
connected in some way—what you type on the keyboard is displayed on the

screen—they're usually physically distinct.

Each key on the keyboard is a simple switch. The switch is closed when the
key is pressed. A keyboard that resembles a typewriter might have as few as
48 keys; keyboards for today's personal computers often have over 100
keys.

A keyboard attached to a computer must include some hardware that
provides a unique code for each key that's pressed. It's tempting to assume
that this code is the ASCII code for the key. But it's not practical nor
desirable to design hardware that figures out the ASCII code. For example,
the A key on the keyboard could correspond to the ASCII code 41h or 61h
depending on whether a user also pressed the Shift key. Also, today's
computer keyboards have many keys that don't correspond to ASCII
characters. The code provided by the keyboard hardware is instead referred
to as a scan code. A short computer program can figure out what ASCII
code (if any) corresponds to a particular key being pressed on the keyboard.

To prevent my diagram of the keyboard hardware from becoming unwieldy,
I'm going to assume that our keyboard has a mere 16 keys. Whenever a key
is pressed, the keyboard hardware should generate a 4-bit code with binary
values ranging from 0000 through 1111.

The keyboard hardware contains components that we've seen before:

The 16 keys of the keyboard are shown as simple switches in the lower left
area of this diagram. A 4-bit counter repetitively and very quickly cycles
through the 16 codes corresponding to the keys. It must be fast enough to
cycle through all the codes faster than a person can press and release a key.

The outputs of the 4-bit counter are the select inputs of both a 2-Line-to-4-
Line Decoder and a 4-Line-to-1-Line Data Selector. If no keys are pressed,
none of the inputs to the selector can be 1. Therefore the output of the
selector isn't 1. But if a particular key is pressed, at a particular 4-bit
counter output the output from the selector will be 1. For example, if the

switch second from the top and right is pressed, and if the counter output is
0110, the output from the selector becomes 1:

That's the code corresponding to that key. When that key is pressed, no
other counter output will cause the output of the selector to be 1. Each key
has its own code.

If your keyboard has 64 keys, you need a 6-bit scan code. That would
involve a 6-bit counter. You could arrange the keys in an 8x8 array, using a
3-to-8 Decoder and a 1-of-8 Selector. If your keyboard has between 65 and
128 keys, you need a 7-bit code. You could arrange the keys in an 8x16
array and use a 4-to-16 Decoder and an 8-to-1 Selector (or a 3-to-8 Decoder
and a 16-to-1 Selector).

What happens next in this circuit depends on the sophistication of the
keyboard interface. The keyboard hardware could include 1 bit of RAM for
each key. The RAM would be addressed by the counter, and the contents of
the RAM could be 0 if the key is up and 1 if the key is down. This RAM
could also be read by the microprocessor to determine the status of each
key.

One useful part of a keyboard interface is an interrupt signal. As you'll
recall, the 8080 microprocessor has an input signal that allows an external
device to interrupt what the microprocessor is doing. The microprocessor
responds by reading an instruction from memory. This is usually a RST
instruction and causes the microprocessor to branch to a specific area of
memory where a program to handle the interrupt is located.

The final peripheral I'll describe in this chapter is a long-term storage
device. As you'll recall, random access memory—whether constructed from
relays, tubes, or transistors—loses its contents when the electrical power is
shut off. For this reason, a complete computer also needs something for
long-term storage. One time-honored approach involves punching holes in
paper or cardboard, such as IBM punch cards. In the early days of small
computers, rolls of paper tape were punched with holes to save programs
and data and to later reload them into memory.

One problem with punch cards and paper tape is that the medium isn't
reusable. Once a hole is punched it can't easily be unpunched. Another
problem is that it's not particularly efficient. These days, if you can actually
see a bit, it's probably safe to say that the bit is taking up entirely too much
space!

For these reasons, the type of long-term storage that has become much more
prevalent is magnetic storage. The origins of magnetic storage date back to
1878, when the principles were described by American engineer Oberlin
Smith (1840–1926). The first working device, however, came 20 years later
in 1898 and was built by Danish inventor Valdemar Poulsen (1869–1942).
Poulsen's telegraphone was originally intended as a device to record
telephone messages when the person receiving the call wasn't at home. He
employed an electromagnet—that ubiquitous device we've already
encountered in the telegraph—to record sound along a moving length of
steel wire. The electromagnet magnetizes the wire proportional to the ups
and downs of the waveform of the sound. The magnetized wire can then

induce a current to the same degree as it's moved along the coils of wire in
the electromagnet. The electromagnet used for storing and reading is known
as a head, regardless of the type of magnetic medium it's used with.

In 1928, Austrian inventor Fritz Pfleumer patented a magnetic recording
device based on long lengths of paper tape that had been coated with iron
particles using a technology originally designed for creating metallic bands
on cigarettes. The paper was soon replaced with a stronger cellulose acetate
base, and one of the most enduring and well-known of all recording media
was born. Reels of magnetic tape—now conveniently packaged in plastic
cassettes—still provide an extremely popular medium for recording and
playing back music and video.

The first commercial tape system for recording digital computer data was
introduced by Remington Rand in 1950. At the time, a reel of half-inch tape
could store a few megabytes of data. In the early days of home computers,
people adapted common cassette tape recorders to save information. Small
programs stored the contents of a block of memory to tape and later read it
back from tape into memory. The first IBM PCs had a connector for
cassette tape storage. Tape remains a popular medium today, particularly for
long-term archiving. Tape, however, isn't an ideal medium because moving
quickly to an arbitrary spot on the tape isn't possible. It's usually necessary
to fast-forward or rewind, and that takes time.

A medium geometrically more conducive to fast access is the disk. The disk
itself is spun around its center while one or more heads attached to arms can
be moved from the outside of the disk to the inside. Any area on the disk
can be accessed very quickly.

For recording sounds, the magnetic disk actually predates the magnetic
tape. For storing computer data, however, the first disk drive was invented
at IBM in 1956. The Random Access Method of Accounting and Control
(RAMAC) contained 50 metal disks 2 feet in diameter and could store 5
megabytes of data.

Since then, disks have become much smaller and of higher capacity. Disks
are generally categorized as floppy disks (also called diskettes) or hard
disks (also called fixed disks). Floppy disks are single sheets of coated
plastic inside a protective casing made of cardboard or (more recently)
plastic. (A plastic casing prevents the diskette from bending, so the diskette

is no longer quite as floppy as the older ones, but it's still referred to as a
floppy disk.) Floppy disks must be physically inserted by a person into a
floppy disk drive, which is the component attached to the computer that
writes to and reads from the floppy disk. Early floppy disks were 8 inches
in diameter. The first IBM PC used 5 ¼-inch floppy disks; today the most
common format is 3.5 inches in diameter. That floppy disks can be removed
from the disk drive allows them to be used for transferring data from one
computer to another. Diskettes are also still an important distribution
medium of commercial software.

A hard disk usually contains multiple metal disks permanently built into the
drive. Hard disks are generally faster than floppy disks and can store more
data. But the disks themselves can't be removed.

The surface of a disk is divided into concentric rings called tracks. Each
track is divided like slices of a pie into sectors. Each sector stores a certain
number of bytes, usually 512 bytes. The floppy disk drive on the first IBM
PC used only one side of the 5 ¼-inch disk and divided it into 40 tracks
with 8 sectors per track and 512 bytes per sector. Each floppy disk thus
stored 163,840 bytes, or 160 kilobytes. The 3.5-inch floppy disks used in
PC compatibles today have two sides, 80 tracks per side, 18 sectors per
track, and 512 bytes per sector for a total of 1,474,560 bytes, or 1440
kilobytes.

The first hard disk drive introduced by IBM for the Personal Computer-XT
in 1983 stored ten megabytes. Today, in 1999, a 20-gigabyte hard disk drive
(that's 20 billion bytes of storage) can be purchased for under $400.

A floppy disk or hard disk usually comes with its own electrical interface
and also requires an additional interface between that and the
microprocessor. Several standard interfaces are popular for hard drives,
including SCSI (Small Computer System Interface, pronounced scuzzy),
ESDI (Enhanced Small Device Interface, pronounced ez dee), and IDE
(Integrated Device Electronics). All these interfaces make use of direct
memory access (DMA) to take over the bus and transfer data directly
between random access memory and the disk, bypassing the
microprocessor. These transfers are in increments of the disk sector size,
which is usually 512 bytes.

Many newcomers to home computers hear too much technical talk about
megabytes of this and gigabytes of that, and they get confused about the
difference between semiconductor random access memory and disk storage.
In recent years, a rule of sorts has emerged to help alleviate some confusion
about terminology. The rule is that the word memory is to be used to refer
only to semiconductor random access memory, while the word storage is to
be used for everything else—usually floppy disks, hard disks, and tape. I've
tried to follow that rule (even though we've encountered microprocessor
machine-code instructions named Store that store bytes in RAM).

The most obvious difference between memory and storage is that memory
is volatile; it loses its contents when the power is shut off. Storage is non-
volatile; data stays on the floppy disk or hard disk until it's deliberately
erased or written over. Yet there's another significant difference that you can
appreciate only by understanding what a microprocessor does. When the
microprocessor outputs an address signal, it's always addressing memory,
not storage.

Getting something from disk storage into memory so that it can be accessed
by the microprocessor requires extra steps. It requires that the
microprocessor run a short program that accesses the disk drive so that the
disk drive transfers data from the disk into memory.

The difference between memory and storage can also be understood in a
common analogy: Memory is like the top of your desk. Anything that's on
your desk you can work with directly. Storage is like a file cabinet. If you
need to use something from the file cabinet, you have to get up, walk over
to the file cabinet, pull out the file you need, and bring it back to your desk.
If your desk gets too crowded, you need to take something from your desk
back over to the file cabinet.

This analogy is particularly apt because data stored on disks is actually
stored in entities called files. Storing files and retrieving them is the
province of an extremely important piece of software known as the
operating system.

Chapter 22. The Operating System
We have, at long last, assembled—at least in our imaginations—what seems

to be a complete computer. This computer has a microprocessor, some

random access memory, a keyboard, a video display, and a disk drive. All

the hardware is in place, and we eye with excitement the on/off switch that

will power it up and bring it to life. Perhaps this project has evoked in your

mind the labors of Victor Frankenstein as he assembled his monster, or

Geppetto as he built the wooden puppet that he will name Pinocchio.

But still we're missing something, and it's neither the power of a lightning

bolt nor the purity of a wish upon a star. Go ahead: Turn on this new

computer and tell me what you see.

As the cathode-ray tube warms up, the screen displays an array of perfectly

formed—but totally random—ASCII characters. This is as we expect.

Semiconductor memory loses its contents when the power is off and begins

in a random and unpredictable state when it first gets power. Likewise, all

the RAM that we've constructed for the microprocessor contains random

bytes. The microprocessor begins executing these random bytes as if they

were machine code. This won't cause anything bad to happen—the

computer won't blow up, for instance—but it won't be very productive

either.

What we're missing here is software. When a microprocessor is first turned

on or reset, it begins executing machine code at a particular memory

address. In the case of the Intel 8080, that address is 0000h. In a properly

designed computer, that memory address should contain a machine-code

instruction (most likely the first of many) when the computer is turned on.

How does that machine-code instruction get there? The process of getting

software into a newly designed computer is possibly one of the most

confusing aspects of the project. One way to do it is with a control panel

similar to the one in Chapter 16 used for writing bytes into random access

memory and later reading them:

Unlike the earlier control panel, this one has a switch labeled Reset. The

Reset switch is connected to the Reset input of the microprocessor. As long

as that switch is on, the microprocessor doesn't do anything. When you turn

off the switch, the microprocessor begins executing machine code.

To use this control panel, you turn the Reset switch on to reset the

microprocessor and to stop it from executing machine code. You turn on the

Takeover switch to take over the address signals and data signals on the bus.

At this time, you can use the switches labeled A0 through A15 to specify a

16-bit memory address. The lightbulbs labeled D0 through D7 show you the

8-bit contents of that memory address. To write a new byte into that

address, you set the byte up on switches D0 through D7 and flip the Write

switch on and then off again. After you're finished inserting bytes into

memory, turn the Takeover switch off and the Reset switch off, and the

microprocessor will execute the program.

This is how you enter your first machine-code programs into a computer

that you've just built from scratch. That it's laborious goes without saying.

That you will make little mistakes now and then is a given. That your

fingers will get blisters and your brain will turn to mush is an occupational

hazard.

But what makes it all worthwhile happens when you start to use the video

display to show the results of your programs. The text-only video display

we built in the last chapter has 1 kilobyte of random access memory that's

used to store the ASCII codes of 25 lines of 40 characters each. A program

writes to this memory the same way that it writes to any other memory in

the computer.

But getting program output to the video display isn't as simple as it might

first seem. If, for example, a program that you write does a particular

calculation that results in the value 4Bh, you can't simply write that value to

the video display memory. What you'll see in the screen in that case is the

letter K because that's the letter that corresponds to the ASCII code 4Bh.

Instead, you need to write two ASCII characters to the display: 34h, which

is the ASCII code for 4, and 42h, which is the ASCII code for B. Each

nibble of the 8-bit result is a hexadecimal digit, which must be displayed by

the ASCII code for that digit.

Of course, you'll probably write little subroutines that perform this

conversion. Here's one in 8080 assembly language that converts a nibble in

the accumulator (assumed to be a value between 00h and 0Fh inclusive) to

its ASCII equivalent:

NibbleToAscii: CPI A,0Ah ; Check if it's a letter or number
 JC Number
 ADD A,37h ; A to F converted to 41h to 46h
 RET
Number: ADD A,30h ; 0 to 9 converted to 30h to 39h
 RET

This subroutine calls NibbleToAscii twice to convert a byte in accumulator

A to two ASCII digits in registers B and C:

ByteToAscii: PUSH PSW ; Save accumulator
 RRC ; Rotate A right 4 times...
 RRC
 RRC
 RRC ; ...to get high-order nibble
 CALL NibbleToAscii ; Convert to ASCII code
 MOV B,A ; Move result to register B
 POP PSW ; Get original A back
 AND A,0Fh ; Get low-order nibble
 CALL NibbleToAscii ; Convert to ASCII code
 MOV C,A ; Move result to register C
 RET

These subroutines now let you display a byte in hexadecimal on the video

display. If you want to convert to decimal, it's a bit more work. The process

is actually quite similar to the way a person converts hexadecimal to

decimal—by several divisions by 10.

Remember that you're not actually entering these assembly-language

programs into memory. Instead, you're probably writing them on paper and

then converting them to machine code that you then enter into memory.

This "hand assembling" is something that we'll continue doing until

Chapter 24.

Although the control panel doesn't require a lot of hardware, what it also

lacks is ease of use. The control panel has to be the absolute worst form of

input and output ever devised. It's downright embarrassing that we're clever

enough to build our own computer from scratch, yet we're still keying in

numbers in 0s and 1s. The first priority has to be to get rid of the control

panel.

The key, of course, is the keyboard. We've constructed the computer

keyboard so that every time a key is pressed, an interrupt to the

microprocessor occurs. The interrupt controller chip that we've used in our

computer causes the microprocessor to respond to this interrupt by

executing a RST (Restart) instruction. Let's suppose that this is a RST 1
instruction. This instruction causes the microprocessor to save the current

program counter on the stack and to jump to address 0008h. Beginning at

that address, you'll enter some code (using the control panel) that we'll call

the keyboard handler.

To get this all working right, you'll need some code that's executed when

the microprocessor is reset. This is called initialization code. The

initialization code first sets the stack pointer so that the stack is located in a

valid area of memory. The code then sets every byte in the video display

memory to the hexadecimal value 20h, which is the ASCII space character.

This procedure gets rid of all the random characters on the screen. The

initialization code uses the OUT (Output) instruction to set the position of

the cursor—the underline on the video display that shows you where the

next character you type will be entered—to the first column of the first row.

The next instruction is EI to enable interrupts so that the microprocessor

can respond to the keyboard interrupt. That instruction is followed by a

HLT to halt the microprocessor.

And that's it for the initialization code. From now on, the computer will

mostly be in a halted state resulting from executing the HLT instruction.

The only event that can nudge the computer from the halted state is a Reset

from the control panel or an interrupt from the keyboard.

The keyboard handler is much longer than the initialization code. Here's

where all the really useful stuff takes place.

Whenever a key is pressed on the keyboard, the interrupt signal causes the

microprocessor to jump from the HLT statement at the end of the

initialization code to the keyboard handler. The keyboard handler uses the

IN (Input) instruction to determine the key that has been pressed. The

keyboard handler then does something based on which key has been

pressed (that is, the keyboard handler processes each key) and then executes

a RET (Return) instruction to go back to the HLT statement to await

another keyboard interrupt.

If the pressed key is a letter or a number or a punctuation mark, the

keyboard handler uses the keyboard scan code, taking into account whether

the Shift key is up or down, to determine the appropriate ASCII code. It

then writes this ASCII code into the video display memory at the cursor

position. This procedure is called echoing the key to the display. The cursor

position is then incremented so that the cursor appears in the space after the

character just displayed. In this way, someone can type a bunch of

characters on the keyboard and they'll be displayed on the screen.

If the key pressed is the Backspace key (corresponding to ASCII code 08h),

the keyboard handler erases the character that was last written to the video

display memory. (Erasing the character is simply a matter of writing ASCII

code 20h—the space character—in that memory location.) It then moves

the cursor backward one space.

Usually a person typing at the keyboard types in a line of characters—using

the Backspace key when necessary to correct mistakes—and then presses

the Return key, often labeled Enter on computer keyboards. In the same

way that pressing the Return key on an electric typewriter indicates that the

typist is ready to go to the beginning of the next line, pressing the Enter key

indicates that the typist is finished typing a line of text.

When the keyboard handler processes the Return or Enter key

(corresponding to ASCII code 0Dh), the line of text in the video display

memory is interpreted as a command to the computer, that is, something for

the keyboard handler to do. The keyboard handler includes a command
processor that understands (for example) three commands: W, D, and R.

If the line of text begins with a W, the command means Write some bytes

into memory. The line you type on the screen looks something like this:

W 1020 35 4F 78 23 9B AC 67

This command instructs the command processor to write the hexadecimal

bytes 35, 4F, and so on into the memory addresses beginning at address

1020h. For this job, the keyboard handler needs to convert ASCII codes to

bytes—a reversal of the conversion I demonstrated earlier.

If the line of text begins with a D, the command means Display some bytes

in memory. The line you type on the screen looks like this:

D 1030

The command processor responds by displaying the 11 bytes stored

beginning at location 1030h. (I say 11 bytes because that's how many will

fit on a 40-characterwide display on the same line following the address.)

You can use the Display command to examine the contents of memory.

If the line of text begins with an R, the command means Run. Such a

command looks like this:

R 1000

and means "Run the program that's stored beginning at address 1000h." The

command processor stores 1000h in the register pair HL and then executes

the instruction PCHL, which loads the program counter from register pair

HL, effectively jumping to that address.

Getting this keyboard handler and command processor working is an

important milestone. Once you have it, you no longer need suffer the

indignity of the control panel. Typing bytes in from the keyboard is easier,

faster, and classier.

Of course, you still have the problem of all the code you've entered

disappearing when you turn off the power. For that reason, you'll probably

want to store all this new code in read-only memory, or ROM. In the last

chapter, we obtained a ROM chip that contained all the dot patterns

necessary for displaying ASCII characters on the video display. We

assumed our chip was configured with this data during manufacture. You

can also program ROM chips in the privacy of your home. Programmable
read-only memory (PROM) chips are programmable only once. Erasable

programmable read-only memory (EPROM) chips can be programmed and

reprogrammed after being entirely erased by exposure to ultraviolet light.

As you'll recall, we wired our RAM boards with a DIP switch that allows us

to specify the starting address of the board. If you're working with an 8080

system, initially one of your RAM boards will be set for address 0000h.

After you create a ROM, that ROM will occupy address 0000h and the

RAM board can be switched to a higher address.

The creation of the command processor is an important milestone not only

because it provides a faster means to enter bytes into memory but also

because the computer is now interactive. When you type something on the

keyboard, the computer responds by displaying something on the screen.

Once you have the command processor in ROM, you can start

experimenting with writing data from memory to the disk drive (probably in

chunks that correspond to the sector size of the disk) and reading the data

back into memory. Storing programs and data on the disk is much safer than

storing them in RAM (where they'll disappear if the power fails) and much

more flexible than storing them in ROM.

Eventually you might want to add some new commands to the command

processor. For example, the S command stands for Store:

S 2080 2 15 3

This command indicates that the block of memory beginning at address

2080h is to be stored on the disk on side 2, track 15, and sector 3. (The size

of this memory block is dependent on the sector size of the disk.) Similarly,

you can add a Load command:

L 2080 2 15 3

to load the sector from the disk back into memory.

Of course, you'll have to keep track of what you're storing where. You'll

probably keep a pad and pencil handy for this purpose. Be careful: You

can't just store some code located at one address and then later load it back

into memory at another address and expect it to work. All the Jump and

Call instructions will be wrong because they indicate the old addresses.

Also, you might have a program that's longer than the sector size of your

disk, so you need to store it in several sectors. Because some sectors on the

disk might be occupied by other programs or data and some sectors might

be free, the sectors in which you store a long program might not be

consecutive on the disk.

Eventually, you could decide that the manual clerical work involved in

keeping track of where everything is stored on the disk is just too much. At

this point, you're ready for a file system.

A file system is a method of disk storage in which data is organized into

files. A file is simply a collection of related data that occupies one or more

sectors on the disk. Most important, each file is identified by a name that

helps you remember what the file contains. You can think of the disk as

resembling a file cabinet in which each file has a little tab that indicates the

name of the file.

A file system is almost always part of a larger collection of software known

as an operating system. The keyboard handler and command processor

we've been building in this chapter could certainly evolve into an operating

system. But instead of trudging through that long evolutionary process, let's

take a look instead at a real operating system and get a feel for what it does

and how it works.

Historically, the most important operating system for 8-bit microprocessors

was CP/M (Control Program for Micros), written in the mid-1970s for the

Intel 8080 microprocessor by Gary Kildall (born 1942), who later founded

Digital Research Incorporated (DRI).

CP/M is stored on a disk. In the early days of CP/M, the most common

medium for CP/M was a single-sided 8-inch diskette with 77 tracks, 26

sectors per track, and 128 bytes per sector. (That's a total of 256,256 bytes.)

The first two tracks of the disk contain CP/M itself. I'll describe shortly how

CP/M gets from the disk into the computer memory.

The remaining 75 tracks on the CP/M disk are used for storing files. The

CP/M file system is fairly simple, but it satisfies the two major

requirements: First, each file on the disk is identified by a name. This name

is also stored on the disk; indeed, all the information that CP/M needs to

read these files is stored on the disk along with the files themselves.

Second, files don't have to occupy consecutive sectors on a disk. It often

happens that as files of various sizes are created and deleted, free space on

the disk becomes fragmented. The ability of a file system to store a large

file in nonconsecutive sectors is very useful.

The sectors in the 75 tracks used for storing files are grouped into allocation
blocks. Each allocation block contains 8 sectors, or 1024 bytes. There are

243 allocation blocks on the disk, numbered 0 through 242.

The first two allocation blocks (a total of 2048 bytes) are used for the

directory. The directory is the area of the disk that contains the names and

some crucial information about every file stored on the disk. Each file

stored on the disk requires a directory entry 32 bytes long. Because the total

directory is just 2048 bytes, the diskette is limited to 2048 ÷ 32, or 64, files.

Each 32-byte directory entry contains the following information:

Bytes Meaning

0 Usually set to 0

1–8 Filename

9–11 File type

12 File extent

13–14 Reserved (set to 0)

15 Sectors in last block

16–31 Disk map

The first byte in the directory entry is used only when the file system can be

shared by two or more people at the same time. Under CP/M, this byte is

normally set to 0, as are bytes 13 and 14.

Under CP/M, each file is identified with a two-part name. The first part is

known as the filename and can have up to eight characters stored in bytes 1

through 8 of the directory entry; the second part is known as the file type
and can have up to three characters stored in bytes 9 through 11. There are

several standard file types. For example, TXT indicates a text file (that is, a

file containing only ASCII codes), and COM (which is short for command)

indicates a file containing 8080 machine-code instructions—a program.

When specifying a file, the two parts are separated by a period, like this:

MYLETTER.TXT
CALC.COM

This file-naming convention has come to be known as 8.3 (pronounced

eight dot three), indicating the maximum eight letters before the period and

the three letters after.

The disk map of the directory entry indicates the allocation blocks in which

the file is stored. Suppose the first four entries in the disk map are 14h, 15h,

07h, and 23h, and the rest are zeros. This means that the file occupies four

allocation blocks, or 4 KB of space. The file might actually be a bit shorter.

Byte 15 in the directory entry indicates how many 128-byte sectors are

actually used in the last allocation block.

The disk map is 16 bytes long; that length accommodates a file up to 16,384

bytes. A file longer than 16 KB must use multiple directory entries, which

are called extents. In that case, byte 12 is set to 0 in the first directory entry,

1 in the second directory entry, and so forth.

I mentioned text files. Text files are also called ASCII files, or text-only
files, or pure-ASCII files, or something along those lines. A text file

contains ASCII codes (including carriage return and linefeed codes) that

correspond to text readable by human beings. A file that isn't a text file is

called a binary file. A CP/M COM file is a binary file because it contains

8080 machine code.

Suppose a file (a very small file) must contain three 16-bit numbers—for

example, 5A48h, 78BFh, and F510h. A binary file with these three numbers

is just 6 bytes long:

48 5A BF 78 10 F5

Of course, that's the Intel format for storing multibyte numbers. The least-

significant byte comes first. A program written for Motorola processors

might be more inclined to create the file this way:

5A 48 78 BF F5 10

An ASCII text file storing these same four 16-bit values contains the bytes

35 41 34 38 68 0D 0A 37 38 42 46 68 0D 0A 46 35 31 30 68 0D 0A

These bytes are ASCII codes for numbers and letters, where each number is

terminated by a carriage return (0Dh) and a linefeed (0A) character. The

text file is more conveniently displayed not as a string of bytes that happen

to be ASCII codes, but as the characters themselves:

5A48h
78BFh
F510h

An ASCII text file that stores these three numbers could also contain these

bytes:

32 33 31 31 32 0D 0A 33 30 39 31 31 0D 0A 36 32 37 33 36 0D 0A

These bytes are the ASCII codes for the decimal equivalents of the three

numbers:

23112
30911
62736

Since the intent of using text files is to make the files easier for humans to

read, there's really no reason not to use decimal rather than hexadecimal

numbers.

As I mentioned, CP/M itself is stored on the first two tracks of a disk. To

run, CP/M must be loaded from the disk into memory. The ROM in a

computer that uses CP/M need not be extensive. All the ROM needs to

contain is a small piece of code known as a bootstrap loader (because that

code effectively pulls the rest of the operating system up by its bootstraps).

The bootstrap loader loads the very first 128-byte sector from the diskette

into memory and runs it. This sector contains code to load the rest of CP/M

into memory. The entire process is called booting the operating system.

Eventually, CP/M arranges itself to occupy the area of RAM with the

highest memory addresses. The entire organization of memory after CP/M

has loaded looks like this:

This diagram isn't to scale. The three components of CP/M—the Basic

Input/ Output System (BIOS), the Basic Disk Operating System (BDOS),

and the Console Command Processor (CCP)—occupy only about 6 KB of

memory in total. The Transient Program Area (TPA)—about 58 KB of

memory in a 64-KB computer—initially contains nothing.

The Console Command Processor is equivalent to the command processor

that we were building earlier. The word console refers to a combination of a

keyboard and a display. The CCP displays a prompt on the display, which

looks like this:

A>

The prompt is your signal to type something in. In computers that have

more than one disk drive, the A refers to the first disk drive, the one from

which CP/M was loaded. You type in commands following the prompt and

press the Enter key. The CCP then executes these commands, which usually

produces information displayed on the screen. When the command has

finished, the CCP displays the prompt again.

The CPP recognizes just a few commands. Possibly the most important is

this one:

DIR

which displays the directory of the disk—that is, a list of all the files stored

on the disk. You can use the special characters ? and * to limit this list to

files of a particular name or type. For example,

DIR *.TXT

displays all text files, while

DIR A???B.*

displays a list of all files that have a five-character name where the first

letter is A and the last letter is B.

Another command is ERA, which is short for Erase. You use this to erase a

file from the disk. For example,

ERA MYLETTER.TXT

erases the file with that name, while

ERA *.TXT

erases all text files. Erasing a file means freeing the directory entry and the

disk space occupied by the file.

Another command is REN, which is short for Rename. You use this

command to change the name of a file. The TYPE command displays the

contents of a text file. Because a text file contains only ASCII codes, this

command allows you to read a file right on the screen, like this:

TYPE MYLETTER.TXT

The SAVE command saves one or more 256-byte memory blocks located in

the Transient Program Area to a disk file with a specified name.

If you type in a command that CP/M doesn't recognize, it assumes you're

specifying the name of a program that's stored as a file on the disk.

Programs always have the file type COM, which stands for Command. The

CCP searches for a file of that name on the disk. If one exists, CP/M loads

the file from disk into the Transient Program Area, which begins at memory

address 0100h. This is how you run programs that are located on the disk.

For example, if you type

CALC

following the CP/M prompt, and if a file named CALC.COM exists on the

disk, the CCP loads that file into memory starting at address 0100h and then

executes the program by jumping to the machine-code instruction located at

address 0100h.

Earlier I explained how you can insert machine-code instructions any-where

into memory and execute them, but in CP/M programs that are stored in

disk files must be designed to be loaded into memory beginning at a

specific memory location, which is 0100h.

CP/M comes with several useful programs, including PIP, the Peripheral

Interchange Program, which allows you to copy files. The ED program is a

text editor that allows you to create and modify text files. Programs such as

PIP and ED, which are small and designed to do simple chores, are often

known as utility programs. If you were running a CP/M system, you would

probably purchase larger application programs, such as word processors or

computer spreadsheets. Or you might write such programs yourself. All

these programs are also stored in files of the COM type.

So far we've seen how CP/M (like most operating systems) provides

commands and utilities that let you perform rudimentary housekeeping

regarding files. We've also seen how CP/M loads program files into

memory and executes them. An operating system also has a third major

function.

A program running under CP/M often needs to write some output to the

video display. Or the program might need to read something that you've

typed on the keyboard. Or the program might need to read a file from the

disk or to write a file to the disk. But in most cases, the CP/M program does

not write its output directly into video display memory. Likewise, the CP/M

program does not access the hardware of the keyboard to see what you've

typed. And the CP/M program definitely does not access the disk drive

hard-ware to read and write disk sectors.

Instead, a program running under CP/M makes use of a collection of

subroutines built into CP/M for performing these common chores. These

subroutines have been specifically designed so that programs can get easy

access to all the hardware of the computer—including the video display,

keyboard, and disk—without worrying programmers about how these

peripherals are actually connected. Most important, a program running

under CP/M doesn't need to know about disk sectors and tracks. That's

CP/M's job. It can instead store whole files on the disk and later read them.

Providing a program with easy access to the hardware of the computer is

the third major function of an operating system. The access that the

operating system provides is called the application programming interface,

or API.

A program running under CP/M uses the API by setting register C to a

particular value (called the function value) and executing the instruction

CALL 5

For example, a program obtains the ASCII code of a key typed on the

keyboard by executing

MVI C,01h
CALL 5

On return, accumulator A contains the ASCII code of the key that was

pressed. Similarly,

MVI C,02h
CALL 5

writes the ASCII character in accumulator A to the video display at the

cursor position and then increments the cursor.

If a program needs to create a file, it sets register pair DE to an area of

memory that basically contains the name of the file. Then it executes the

code:

MVI C,16h
CALL 5

In this case, the CALL 5 instruction causes CP/M to create an empty file on

the disk. The program can then use other functions to write to the file and

eventually close the file, which means it has finished using the file for now.

The same program or another program can later open the file and read its

contents.

What does CALL 5 actually do? The memory location at 0005h is set up by

CP/M to contain a JMP (Jump) instruction, which jumps to a location in the

Basic Disk Operating System (BDOS) of CP/M. This area contains a bunch

of subroutines that execute each of the CP/M functions. The BDOS—as its

name implies—is primarily responsible for maintaining the file system on

the disk. Frequently, the BDOS has to make use of subroutines in the Basic

Input/Output System (BIOS) of CP/M, which is the area that actually

accesses the hardware of the keyboard, the video display, and the disk

drives. In fact, the BIOS is the only section of CP/M that needs to know

about the hardware of the computer. The CCP does everything it needs to

do using BDOS functions, and so do the utilities that come with CP/M.

The API is a device-independent interface to the hardware of the computer.

What this means is that a program written for CP/M doesn't need to know

the actual mechanics of how the keyboard works on a particular machine, or

how the video display works, or how to read and write disk sectors. It

simply uses the CP/M functions to perform tasks that involve the keyboard,

display, and disk. The bonus is that a CP/M program can run on many

different computers that might use very different hardware to access these

peripherals. (All CP/M programs must have an Intel 8080 microprocessor,

however, or a processor that executes 8080 instructions, such as the Intel

8085 or the Zilog Z-80.) Just as long as the computer is running CP/M, the

program uses the CP/M functions to indirectly access this hardware.

Without standard APIs, programs would have to be specifically tailored to

run on different types of computers.

CP/M was once a very popular operating system for the 8080 and remains

historically important. CP/M was the major influence behind a 16-bit

operating system named QDOS (Quick and Dirty Operating System)

written by Tim Paterson of Seattle Computer Products for Intel's 16-bit

8086 and 8088 chips. QDOS was eventually renamed 86-DOS and licensed

by Microsoft Corporation. Under the name MS-DOS (Microsoft Disk

Operating System, pronounced em ess dahs, like the German article das),

the operating system was licensed to IBM for the first IBM Personal

Computer, introduced in 1981. Although a 16-bit version of CP/M (called

CP/M-86) was also available for the IBM PC, MS-DOS quickly became the

standard. MS-DOS (called PC-DOS on IBM's computers) was also licensed

to other manufacturers who created computers compatible with the IBM

PC.

MS-DOS didn't retain CP/M's file system. The file system in MS-DOS

instead used a scheme called the File Allocation Table, or FAT, which had

been originally invented at Microsoft in 1977. The disk space is divided

into clusters, which—depending on the size of the disk—can range in size

from 512 bytes to 16,384 bytes. Each file is a collection of clusters. The

directory entry for a file indicates only that file's starting cluster. The FAT

itself indicates for each cluster on the disk what the next cluster is.

The directory entries on an MS-DOS disk are 32 bytes long and use the

same 8.3 filenaming convention as CP/M. The terminology is a little

different, however: The last three letters are called the filename extension
rather than the file type. The MS-DOS directory entry need not contain a

list of allocation blocks. Instead, the directory includes such useful

information as the date and time the file was last modified, and the size of

the file.

The early versions of MS-DOS were structured much like CP/M. But the

BIOS wasn't required in MS-DOS because the IBM PC itself included a

complete BIOS in ROM. The command processor in MS-DOS is a file

named COMMAND.COM. MS-DOS programs come in two flavors.

Programs with the filename extension COM are limited to 64 KB in size.

Larger programs have the filename extension EXE (pronounced eks-ee, for

executable).

Although MS-DOS initially supported the CALL 5 interface for API

functions, a newer interface was recommended for new programs. The

newer interface used a feature of the 8086 called the software interrupt,
which is similar to a subroutine call except that the program doesn't need to

know the actual address that it's calling. A program calls an MS-DOS API

function by executing the instruction INT 21h (pronounced int twenty—
one, even though it's hexadecimal).

In theory, application programs are supposed to access the hardware of the

computer only through the interfaces provided by the operating system. But

many application programmers who dealt with small computer operating

systems of the 1970s and early 1980s often bypassed the operating system,

particularly in dealing with the video display. Programs that directly wrote

bytes into video display memory ran faster than programs that didn't.

Indeed, for some applications—such as those that needed to display

graphics on the video display—the operating system was totally inadequate.

What many programmers liked most about MS-DOS was that it "stayed out

of the way" and let programmers write programs as fast as the hardware

allowed.

For this reason, popular software that ran on the IBM PC often relied upon

idiosyncrasies of the IBM PC hardware. Manufacturers of machines

intended to be competitive with the IBM PC were often forced to duplicate

these idiosyncrasies; not doing so would cause popular programs to run

poorly, if at all. Such software often included the hardware requirement

"IBM Personal Computer or 100 percent compatible" or something similar.

MS-DOS version 2.0, released in March 1983, was enhanced to

accommodate hard disk drives, which at the time were small (by today's

standards) but which would soon get much larger. The larger a disk drive,

of course, the more files it can store. And the more files a disk can store, the

more confusing it becomes to find a particular file or to impose any type of

organization on the files.

The solution in MS-DOS 2.0 is called a hierarchical file system. This was

added to the existing MS-DOS file system with a minimum number of

changes. As you'll recall, a disk contains an area called a directory, which is

a list of files that includes information about where the files are stored on

the disk. In a hierarchical file system, some of these files might themselves
be directories—that is, they're files that contain a list of other files. Some of

these files might also be directories. The normal directory on the disk is

called the root directory. Directories contained in other directories are

called subdirectories. The directories (sometimes called folders) become a

way to group related files.

The hierarchical file system—and some other features of MS-DOS 2.0—

were borrowed from an operating system named UNIX, which was

developed in the early 1970s at Bell Telephone Laboratories largely by Ken

Thompson (born 1943) and Dennis Ritchie (born 1941). The funny name of

the operating system is a play on words: UNIX was originally written as a

less hardy version of an earlier operating system named Multics (which

stands for Multiplexed Information and Computing Services) that Bell Labs

had been codeveloping with MIT and GE.

Among hard-core computer programmers, UNIX is the most beloved

operating system of all time. While most operating systems are written for

specific computers, UNIX was designed to be portable, which means that it

can be adapted to run on a variety of computers.

Bell Labs was, of course, a subsidiary of American Telephone & Telegraph

at the time UNIX was developed, and therefore subject to court decrees

intended to curb AT&T's monopoly position in the telephone industry.

Originally, AT&T was prohibited from marketing UNIX; the company was

obliged to license it to others. So beginning in 1973, UNIX was extensively

licensed to universities, corporations, and the government. In 1983, AT&T

was allowed back into the computer business and released its own version

of UNIX.

The result is that there's no single version of UNIX. There are, instead, a

variety of different versions known under different names running on

different computers sold by different vendors. Lots of people have put their

fingers into UNIX and left their fingerprints behind. Still, however, a

prevalent "UNIX philosophy" seems to guide people as they add pieces to

UNIX. Part of that philosophy is using text files as a common denominator.

Many UNIX utilities read text files, do something with them, and then write

another text file. UNIX utilities can be strung together in chains that do

different types of processing on these text files.

UNIX was originally written for computers that were too large and too

expensive for just one person to use. Such computers allow multiple users

to interact with them simultaneously through a technique known as time-
sharing. The computer is connected to multiple displays and keyboards

called terminals. By quickly switching attention among all the terminals, an

operating system can make it seem as if the computer is servicing everyone

at the same time.

An operating system that runs multiple programs concurrently is known as

a multitasking operating system, and obviously such an operating system is

more complex than single-tasking operating systems such as CP/M and

MS-DOS. Multitasking complicates the file system because multiple users

might try to use the same files at the same time. It also affects how the

computer allocates memory to the different programs, so some kind of

memory management is required. As the multiple programs running

concurrently need more memory, it's likely that the computer won't have

enough memory to go around. The operating system might need to

implement a technique called virtual memory, in which blocks of memory

are stored in temporary files during periods when the memory blocks aren't

needed and then read back into memory when they are needed.

The most interesting development for UNIX in recent years has been the

Free Software Foundation (FSF) and the GNU project, both founded by

Richard Stallman. GNU (pronounced not like the animal but instead with a

distinct G at the beginning) stands for "GNU's Not UNIX," which, of

course, it's not. Instead, GNU is intended to be compatible with UNIX but

distributed in a manner that prevents the software from becoming

proprietary. The GNU project has resulted in many UNIX-compatible

utilities and tools, and also Linux, which is the core (or kernel) of a UNIX-

compatible operating system. Written largely by Linus Torvalds of Finland,

Linux has become quite popular in recent years.

The most significant trend in operating systems since the mid-1980s,

however, has been the development of large and sophisticated systems, such

as the Apple Macintosh and Microsoft Windows, that incorporate graphics

and a visually rich video display intended to make applications easier to

use. I'll describe this trend in the last chapter of this book.

Chapter 23. Fixed Point, Floating Point
Numbers are numbers, and in most of our daily lives we drift casually
between whole numbers, fractions, and percentages. We buy half a carton of
eggs and pay 8 ¼ percent sales tax with money earned getting time-and-a-
half for working 2 ¾ hours overtime. Most people are fairly comfortable—
if not necessarily proficient—with numbers such as these. We can even hear
a statistic like "the average American house-hold has 2.6 people" without
gasping in horror at the widespread mutilation that must have occurred to
achieve this.

Yet this interchange between whole numbers and fractions isn't so casual
when it comes to computer memory. Yes, everything is stored in computers
in the form of bits, which means that everything is stored as binary
numbers. But some kinds of numbers are definitely easier to express in
terms of bits than others.

We began using bits to represent what mathematicians call the positive
whole numbers and what computer programmers call the positive integers.
We've also seen how two's complements allow us to represent negative
integers in a way that eases the addition of positive and negative numbers.
The table on the following page shows the range of positive integers and
two's-complement integers for 8, 16, and 32 bits of storage.

Number of
Bits

Range of Positive
Integers

Range of Two's-Complement
Integers

8 0 through 255 –128 through 127

16 0 through 65,535 –32,768 through 32,767

32 0 through 4,294,967,295 –2,147,483,648 through 2,147,483,647

But that's where we stopped. Beyond whole numbers, mathematicians also
define rational numbers as those numbers that can be represented as a ratio
of two whole numbers. This ratio is also referred to as a fraction. For
example, ¾ is a rational number because it's the ratio of 3 and 4. We can
also write this number in decimal fraction, or just decimal, form: 0.75.
When we write it as a decimal, it really indicates a fraction, in this case

You'll recall from Chapter 7 that in a decimal number system, digits to the
left of the decimal point are multiples of integral powers of ten. Similarly,
digits to the right of the decimal point are multiples of negative powers of
ten. In Chapter 7, I used the example 42,705.684, showing first that it's
equal to

4 x 10,000 +

2 x 1000 +

7 x 100 +

0 x 10 +

5 x 1 +

6 ÷ 10 +

8 ÷ 100 +

4 ÷ 1000

Notice the division signs. Then I showed how you can write this sequence
without any division:

4 x 10,000 +

2 x 1000 +

7 x 100 +

0 x 10 +

5 x 1 +

6 x 0.1 +

8 x 0.01 +

4 x 0.001

And finally here's the number using powers of ten:

4 x 104 +

2 x 103 +

7 x 102 +

0 x 101 +

5 x 100 +

6 x 10-1 +

8 x 10-2 +

4 x 10-3

Some rational numbers aren't so easily represented as decimals, the most

obvious being ⅓. If you divide 3 into 1, you'll find that ⅓ is equal to

0.33…

and on and on and on. It's common to write this more concisely with a little
bar over the 3 to indicate that the digit repeats forever:

Even though writing ⅓ as a decimal fraction is a bit awkward, it's still a

rational number because it's the ratio of two integers. Similarly, is

0.1428571428571428571428571428571428571428571428571428571…

or

Irrational numbers are monsters such as the square root of 2. This number
can't be expressed as the ratio of two integers, which means that the decimal
fraction continues indefinitely without any repetition or pattern:

The square root of 2 is a solution of the following algebraic equation:

x2 – 2 = 0

If a number is not a solution of any algebraic equation with whole number
coefficients, it's called a transcendental. (All transcendental numbers are
irrational, but not all irrational numbers are transcendental.) Transcendental
numbers include π, which is the ratio of the circumference of a circle to its
diameter and which is approximately

3.1415926535897932846264338327950288419716939937511…

Another transcendental number is e, which is the number that this
expression approaches:

as n gets very large, or approximately

2.71828182845904523536028747135266249775724709369996…

All the numbers we've been talking about so far—rational numbers and
irrational numbers—are called real numbers. This designation distinguishes
them from the imaginary numbers, which are square roots of negative
numbers. Complex numbers are combinations of imaginary numbers and
real numbers. Despite their name, imaginary numbers do show up in the
real world and are used (for example) in solving some advanced problems
in electronics.

We're accustomed to thinking of numbers as continuous. If you give me two
rational numbers, I can give you a number between those two numbers. In
practice, all I have to do is take an average. But digital computers can't deal
with continuums. Bits are either 0 or 1, with nothing in between. So by their
very nature, digital computers must deal with discrete values. The number
of discrete values you can represent is directly related to the number of bits
you have available. For example, if you choose to store positive integers
using 32 bits, the values that you can store are the whole numbers from 0
through 4,294,967,295. If you need to store the value 4.5, you must rethink
your approach and do something different.

Can fractional values be represented in binary? Yes they can. The easiest
approach is probably binary-coded decimal (BCD). As you might
remember from Chapter 19, BCD is a binary coding of decimal numbers.
Each decimal digit (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) requires 4 bits, as shown
in the following table:

Decimal Digit Binary Value

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

BCD is particularly useful in computer programs that work with money
amounts in dollars and cents. Banks and insurance companies are just two
obvious industries that deal with money a lot; in computer programs used
by these sorts of companies, many of the fractional numbers require just
two decimal places.

It's common to store two BCD digits in 1 byte, a system that's sometimes
called packed BCD. Two's complements aren't used with BCD. For this
reason, packed BCD also usually requires an extra bit to indicate whether
the number is positive or negative. This is called the sign bit. Because it's
convenient to have a particular BCD number stored in a whole number of
bytes, that one little sign bit usually involves sacrificing 4 bits or 8 bits of
storage.

Let's look at an example. Suppose the amounts of money that your
computer program needs to work with never get as high as $10 million in
either the positive or negative direction. In other words, you only need to
represent money values ranging from –9,999,999.99 through 9,999,999.99.
You can do that by using 5 bytes for every dollar amount you need to store
in memory. For example, the amount –4,325,120.25 is represented by the 5
bytes

00010100 00110010 01010001 00100000 00100101

or, in hexadecimal:

14h 32h 51h 20h 25h

Notice the nibble at the far left is 1 to indicate a negative value. That's the
sign bit. It would be 0 if the number were positive. All the digits in the
number require 4 bits each, and you can read them directly from the
hexadecimal values.

If you needed instead to represent values from –99,999,999.99 through
99,999,999.99, you'd need 6 bytes—5 bytes for the 10 digits and a whole
byte just for the sign bit.

This type of storage and notation is also called fixed-point format because
the decimal point is always fixed at a particular number of places—in our
example, at two decimal places. Notice that there's nothing actually stored
along with the number that indicates the position of the decimal point.
Programs that work with numbers in fixed-point format must know where
the decimal point is. You can create fixed-point numbers with any number
of decimal places, and you can mix and match these numbers in the same
computer program. But any part of the program that does arithmetic on the
numbers has to know where the decimal points are.

Fixed-point format works well only if you know that numbers aren't going
to get too large for the memory location that you've mapped out and that
you won't need more decimal places. Where fixed-point format utterly fails
is in situations in which numbers can get very large or very small. Suppose
you need to reserve an area of memory where you can store certain
distances in units of feet. The problem is that these distances can range all
over the place. The distance from the earth to the sun is 490,000,000,000
feet, and the radius of the hydrogen atom is 0.00000000026 feet. You'd
need 12 bytes of fixed-point storage to accommodate values that can get as
large and as small as these.

We can probably work out a better way of storing numbers such as these if
we recall that scientists and engineers enjoy specifying numbers using a
system called scientific notation. Scientific notation is particularly useful
for representing very large and very small numbers because it incorporates

a power of ten that allows us to avoid writing out long strings of zeros. In
scientific notation, the number

490,000,000,000

is written

4.9 x 1011

and the number

0.00000000026

is written

2.6 x 10-10

In these two examples, the numbers 4.9 and 2.6 are called the fraction part,
or the characteristic, or sometimes (although this word is more properly
used in conjunction with logarithms) the mantissa. But to be more in tune
with the terminology used with computers, I'm going to call this part of
scientific notation the significand.

The exponent part is the power to which 10 is raised. In the first example,
the exponent is 11; and in the second example, the exponent is –10. The
exponent tells you how many places the decimal point has been moved in
the significand.

By convention, the significand is always greater than or equal to 1 and less
than 10. Although the following numbers are the same,

4.9 x 1011 = 49 x 1010 = 490 x 109 = 0.49 x 1012 = 0.049 x 1013

the first is preferred. That's sometimes called the normalized form of
scientific notation.

Notice that the sign of the exponent indicates only the magnitude of the
number and not whether the number itself is negative or positive. Here are
two examples of negative numbers in scientific notation:

–5.8125 x 107

is equal to

–58,125,000

and

–5.8125 x 10-7

is equal to

–0.00000058125

In computers, the alternative to fixed-point notation is called floating-point
notation, and the floating-point format is ideal for storing small and large
numbers because it's based on scientific notation. But the floating-point
format as used in computers employs binary numbers written in scientific
notation. The first thing we have to figure out is what fractional numbers
look like in binary.

This is actually easier than it might first seem. In decimal notation, digits to
the right of the decimal point represent negative powers of ten. In binary
notation, digits to the right of the binary point (which is simply a period and
looks just like a decimal point) represent negative powers of two. For
example, this binary number

101.1101

can be converted to decimal using this formula:

1 x 4 +

0 x 2 +

1 x 1 +

1 ÷ 2 +

1 ÷ 4 +

0 ÷ 8 +

1 ÷ 16

The division signs can be replaced with negative powers of two:

1 x 22 +

0 x 21 +

1 x 20 +

1 x 2-1 +

1 x 2-2 +

0 x 2-3 +

1 x 2-4

Or the negative powers of two can be calculated by starting at 1 and
repeatedly dividing by 2:

1 x 4+

0 x 2+

1 x 1+

1 x 0.5+

1 x 0.25+

0 x 0.125+

1 x 0.0625

By this calculation, the decimal equivalent of 101.1101 is 5.8125.

In decimal scientific notation, the normalized significand should be greater
than or equal to 1 but less than 10. Similarly, the normalized significand of
numbers in binary scientific notation is always greater than or equal to 1 but
less than binary 10, which is 2 in decimal. So in binary scientific notation,
the number

101.1101

is expressed as

1.011101 x 22

One interesting implication of this rule is that a normalized binary floating-
point number always has a 1 and nothing else at the left of the binary point.

Most contemporary computers and computer programs that deal with
floating-point numbers use a standard established by the IEEE (the Institute
of Electrical and Electronics Engineers) in 1985, a standard also recognized
by ANSI (the American National Standards Institute). ANSI/IEEE Std 754-
1985 is called the IEEE Standard for Binary Floating-Point Arithmetic. It's
not very lengthy as standards go—just 18 pages—but gives the basics of
encoding binary floating-point numbers in a convenient manner.

The IEEE floating-point standard defines two basic formats: single
precision, which requires 4 bytes, and double precision, which requires 8
bytes.

Let's look at the single-precision format first. It has three parts: a 1-bit sign
(0 for positive and 1 for negative), an 8-bit exponent, and a 23-bit
significand fraction arranged like this, with the least-significant bits on the
right:

s = 1-Bit Sign e = 8-Bit Exponent f = 23-Bit Significand Fraction

That's a total of 32 bits, or 4 bytes. Because the significand of a normalized
binary floating-point number always has a 1 to the left of the binary point,
that bit is not included in the storage of floating-point numbers in the IEEE
format. The 23-bit fractional part of the significand is the only part stored.
So even though only 23 bits are used to store the significand, the precision
is said to be 24 bits. We'll get a feel for what 24-bit precision means in a
moment.

The 8-bit exponent part can range from 0 through 255. This is called a
biased exponent, which means that you must subtract a number—called the
bias—from the exponent in order to determine the signed exponent that
actually applies. For single-precision floating-point numbers, this bias is
127.

The exponents 0 and 255 are used for special purposes that I'll describe
shortly. If the exponent ranges from 1 through 254, the number represented
by particular values of s (the sign bit), e (the exponent), and f (the
significand fraction) is

(–1)s x 1.f x 2e-127

That negative 1 to the s power is a mathematician's annoyingly clever way
of saying, "If s is 0, the number is positive (because anything to the 0 power
equals 1); and if s is 1, the number is negative (because –1 to the 1 power is
–1)."

The next part of the expression is 1.f, which means a 1 followed by a binary
point, followed by the 23 bits of the significand fraction. This is multiplied
by 2 to a power. The exponent is the 8-bit biased exponent stored in
memory minus 127.

Notice that I haven't mentioned any way to express a very common number
that we seem to have forgotten about, namely 0. That's one of the special
cases, which are these:

If e equals 0, and f equals 0, the number is 0. Generally, all 32 bits are
set to 0 to signify 0. But the sign bit can be 1, in which case the number
is interpreted as a negative 0. A negative 0 can indicate a very small
number that can't be represented with the available digits and exponents
in single-precision format but which is still less than 0.

If e equals 0 and f doesn't equal 0, the number is valid, but it's not
normalized. The number equals

(–1)s x 0.f x 2-127

Notice that the significand has a 0 to the left of the binary point.

If e equals 255 and f equals 0, the number is positive or negative infinity,
depending on the sign s.

If e equals 255 and f doesn't equal 0, the value is considered to be not a
number, which is abbreviated NaN. A NaN could indicate an unknown
number or the result of an invalid operation.

The smallest normalized positive or negative binary number that can be
represented in single-precision floating-point format is

1.00000000000000000000000TWO x 2-126

That's 23 binary zeros following the binary point. The largest normalized
positive or negative number is that can be represented in single-precision
floating-point format is this:

1.11111111111111111111111TWO x 2127

In decimal, these two numbers are approximately 1.175494351 x 10-38 and
3.402823466 x 1038. That's the effective range of single-precision floating-
point notation.

You might recall that 10 binary digits are approximately the same as 3
decimal digits. By that I mean that 10 bits set to 1, which is 3FFh in
hexadecimal and 1023 in decimal, is approximately equal to 3 decimal
digits set to 9, or 999. Or

210 ≈ 103

This relationship implies that the 24-bit binary number stored in single-
precision floating-point format is roughly the equivalent of 7 decimal digits.

For this reason, it's said that the single-precision floating-point format offers
a precision of 24 bits, or about 7 decimal digits. What does this mean?

When we were looking at fixed-point numbers, it was obvious how accurate
the numbers were. For amounts of money, for example, a fixed-point
number with two decimal places is obviously accurate to the nearest penny.
But with floating-point numbers, we can't say something like that.
Depending on the value of the exponent, sometimes a floating-point number
can be accurate to a tiny fraction of a penny, and sometimes it's not even
accurate to the nearest dollar.

It's more appropriate to say that a single-precision floating-point number is
accurate to 1 part in 224, or 1 part in 16,777,216, or about 6 parts in a
million. But what does this really mean?

For one thing, it means that if you try to represent both 16,777,216 and
16,777,217 as single-precision floating-point numbers, they'll end up being
identical! Moreover, any number between those two (such as 16,777,216.5)
is also considered to be identical. All three of these decimal numbers are
stored as the 32-bit single-precision floating-point value

4B800000h

which, divided into the sign, exponent, and significand bits, looks like this:

0 10010111 00000000000000000000000

which is the number

1.00000000000000000000000TWO x 224.

The next-highest significand is the binary floating-point number that
represents 16,777,218 or

1.00000000000000000000001TWO x 224

It might or might not be a problem that two different decimal numbers end
up being stored as identical floating-point values.

But if you were writing a program for a bank, and you were using single-
precision floating-point arithmetic to store dollars and cents, you probably
would be deeply disturbed to discover that $262,144.00 is the same as
$262,144.01. Both these numbers are

1.00000000000000000000000TWO x 218.

That's one reason why fixed-point is preferred when dealing with dollars
and cents. When you work with floating-point numbers, you could also
discover other little quirks that can drive you mad. Your program will do a
calculation that should yield the result 3.50 and instead you get
3.499999999999. This type of thing tends to happen in floating-point
calculations, and there isn't a whole lot you can do about it.

If floating-point notation is what you want to use but single-precision
doesn't quite hack it, you'll probably want to use double-precision floating-
point format. These numbers require 8 bytes of storage, arranged like this:

s = 1-Bit Sign e = 11-Bit Exponent f = 52-Bit Significand Fraction

The exponent bias is 1023, or 3FFh, so the number stored in such a format
is

(–1)s x 1.f x 2e-1023

Similar rules as those we encountered with single-precision format apply
for 0, infinity, and NaN.

The smallest positive or negative double-precision floating-point number is

1.00TWO x 2-1022

That's 52 zeros following the binary point. The largest is

1.11TWO x 21023

The range is decimal in approximately 2.2250738585072014 x 10-308 to
1.7976931348623158 x 10308. Ten to the 308th power is a very big number.
It's 1 followed by 308 decimal zeros.

The 53 bits of the significand (including the 1 bit that's not included) is a
resolution approximately equivalent to 16 decimal digits. This is much
better than single-precision floating-point format, but it still means that
eventually some number will equal some other number. For example,
140,737,488,355,328.00 is the same as 140,737,488,355,328.01. These two
numbers are both stored as the 64-bit double-precision floating-point value

42E0000000000000h

which decodes as

1.00TWO x 247

Of course, developing a format for storing floating-point numbers in
memory is only a small part of actually using these numbers in your
assembly-language programs. If you were indeed developing a desert-island
computer, you would now be faced with the job of writing a collection of
functions that add, subtract, multiply, and divide floating-point numbers.
Fortunately, these jobs can be broken down into smaller jobs that involve
adding, subtracting, multiplying, and dividing integers, which you already
know how to do.

For example, floating-point addition basically requires that you add two
significands; the tricky part is using the two exponents to figure out how the
two significands mesh. Suppose you needed to perform the following
addition:

(1.1101 x 25) + (1.0010 x 22)

You need to add 11101 and 10010, but not exactly like that. The difference
in exponents indicates that the second number must be offset from the first.
The integer addition really requires that you use 11101000 and 10010. The
final sum is

1.1111010 x 25

Sometimes the exponents will be so far apart that one of the two numbers
won't even affect the sum. This would be the case if you were adding the
distance to the sun and the radius of the hydrogen atom.

Multiplying two floating-point numbers means multiplying the two
significands as if they were integers and adding the two integer exponents.
Normalizing the significand could result in your decrementing the new
exponent once or twice.

Another layer of complexity in floating-point arithmetic involves the
calculation of fun stuff such as roots and exponents and logarithms and
trigonometric functions. But all of these jobs can be done with the four
basic floating-point operations: addition, subtraction, multiplication, and
division.

For example, the sine function in trigonometry can be calculated with a
series expansion, like this:

The x argument must be in radians. There are 2π radians in 360 degrees.
The exclamation point is a factorial sign. It means to multiply together all
the integers from 1 through the indicated number. For example, 5! equals 1
x 2 x 3 x 4 x 5. That's just a multiplication. The exponent in each term is
also a multiplication. The rest is just division, addition, and subtraction. The
only really scary part is the ellipsis at the end, which means to continue the
calculations forever. In reality, however, if you restrict yourself to the range
0 through π/2 (from which all other sine values can be derived), you don't
have to go anywhere close to forever. After about a dozen terms, you're
accurate to the 53-bit resolution of double-precision numbers.

Of course, computers are supposed to make things easy for people, so the
chore of writing a bunch of routines to do floating-point arithmetic seems at
odds with the goal. That's the beauty of software, though. Once somebody
writes the floating-point routines for a particular machine, other people can
use them. Floating-point arithmetic is so important to scientific and
engineering applications that it's traditionally been given a very high
priority. In the early days of computers, writing floating-point routines was
always one of the first software jobs when a new type of computer was
built.

In fact, it even makes sense to implement computer machine-code
instructions that perform floating-point arithmetic directly! Obviously, that's
easier to say than to do. But that's how important floating-point calculations
are. If you can implement floating-point arithmetic in hardware—similar to
the multiply and divide instructions in 16-bit microprocessors—all floating-
point calculations done on the machine will be faster.

The first commercial computer that included floating-point hardware as an
option was the IBM 704 in 1954. The 704 stored all numbers as 36-bit
values. For floating-point numbers, that broke down to a 27-bit significand,
an 8-bit exponent, and a sign bit. The floating-point hardware could do
addition, subtraction, multiplication, and division. Other floating-point
functions had to be implemented in software.

Hardware floating-point arithmetic came to the desktop in 1980, when Intel
released the 8087 Numeric Data Coprocessor chip, a type of integrated
circuit usually referred to these days as a math coprocessor or a floating-
point unit (FPU). The 8087 is called a coprocessor because it couldn't be
used by itself. It could be used only in conjunction with the 8086 and 8088,
Intel's first 16-bit microprocessors.

The 8087 is a 40-pin chip that uses many of the same signals as the 8086
and 8088 chips. The microprocessor and the math coprocessor are
connected by means of these signals. When the CPU reads a special
instruction—called ESC for Escape—the coprocessor takes over and
executes the next machine code, which indicates one of 68 instructions that
include trigonometry, exponents, and logarithms. Data types are based on
the IEEE standard. At the time, the 8087 was considered to be the most
sophisticated integrated circuit ever made.

You can think of the coprocessor as a little self-contained computer. In
response to a particular floating-point machine code instruction (for
example, FSQRT to calculate a square root), the coprocessor internally
executes its own series of instructions coded in ROM. These internal
instructions are called microcode. The instructions generally loop, so the
result of the calculation isn't immediately available. Still, however, the math
coprocessor is usually at least 10 times faster than the equivalent routines
done in software.

The motherboard of the original IBM PC had a 40-pin socket for an 8087
chip right next to the 8088 chip. Unfortunately, this socket was empty.
Users who needed the extra floating-point speed had to buy an 8087
separately and install it themselves. Even after installation of the math
coprocessor, not all applications could be expected to run faster. Some
applications—such as word processors—have very little need for floating-
point arithmetic. Others, such as spreadsheet programs, can use floating-
point calculation much more, and these programs should run faster, but not
all of them did.

You see, programmers had to write specific code for the coprocessor that
used the coprocessor's machine-code instructions. Because a math
coprocessor wasn't a standard piece of hardware, many programmers didn't
bother to do so. After all, they had to write their own floating-point
subroutines anyway (because most people didn't have a math coprocessor

installed), so it became extra work—not less work—to support the 8087
chip. Eventually, programmers learned to write their applications to use the
math coprocessor if it was present on the machine their programs were
running on and to emulate it if it wasn't there.

Over the years, Intel also released a 287 math coprocessor for the 286 chip,
and a 387 for the 386. But with the release of the Intel 486DX in 1989, the
FPU was built right into the CPU itself. No longer was it an option!
Unfortunately, in 1991 Intel released a lower-cost 486SX that did not have
the built-in FPU and instead offered a 487SX math coprocessor as an
option. With the 1993 release of the Pentium, however, the built-in FPU
became standard again, perhaps for all time. Motorola integrated an FPU
with its 68040 microprocessor, which was released in 1990. Previously
Motorola sold 68881 and 68882 math coprocessors to support the earlier
microprocessors in the 68000 family. The PowerPC chips also have built-in
floating-point hardware.

Although hardware for floating-point arithmetic is a nice gift for the
beleaguered assembly-language programmer, it's a rather minor historical
advance when compared with some other work that began in the early
1950s. Our next stop: computer languages.

Chapter 24. Languages High and Low
Programming in machine code is like eating with a toothpick. The bites are
so small and the process so laborious that dinner takes forever. Likewise,
the bytes of machine code perform the tiniest and simplest of imaginable
computing tasks—loading a number from memory into the processor,
adding it to another, storing the result back to memory—so that it's difficult
to imagine how they contribute to an entire meal.

We have at least progressed from that primitive era at the beginning of
Chapter 22, in which we were using switches on a control panel to enter
binary data into memory. In that chapter, we discovered how we could write
simple programs that let us use the keyboard and the video display to enter
and examine hexadecimal bytes of machine code. This was certainly better,
but it's not the last word in improvements.

As you know, the bytes of machine code are associated with certain short
mnemonics, such as MOV, ADD, CALL, and HLT, that let us refer to the
machine code in something vaguely resembling English. These mnemonics
are often written with operands that further indicate what the machine-code
instruction does. For example, the 8080 machine-code byte 46h causes the
microprocessor to move into register B the byte stored at the memory
address referenced by the 16-bit value in the register pair HL. This is more
concisely written as

MOV B,[HL]

Of course, it's much easier to write programs in assembly language than in
machine code, but the microprocessor can't understand assembly language.
I've explained how you'd write assembly-language programs on paper. Only
when you thought you were ready to run an assembly-language program on
the microprocessor would you hand-assemble it, which means that you'd
convert the assembly-language statements to machine-code bytes and enter
them into memory.

What's even better is for the computer to do this conversion for you. If you
were running the CP/M operating system on your 8080 computer, you'd
already have all the tools you need. Here's how it works.

First you create a text file to contain your program written in assembly
language. You can use the CP/M program ED.COM for this job. This
program is a text editor, which means that it allows you to create and
modify text files. Let's suppose you create a text file with the name
PROGRAM1.ASM. The ASM file type indicates that this file contains an
assembly-language program. The file might look something like this:

 ORG 0100h
 LXI DE, Text
 MVI C,9
 CALL 5
 RET
Text: DB 'Hello!$'
 END

This file has a couple of statements we haven't seen before. The first one is
an ORG (for origin) statement. This statement does not correspond to an
8080 instruction. Instead, it indicates that the address of the next statement
is to begin at address 0100h, which you'll recall is the address where CP/M
loads programs into memory.

The next statement is an LXI (Load Extended Immediate) instruction,
which loads a 16-bit value into the register pair DE. In this case, that 16-bit
value is given as the label Text. That label is located near the bottom of the
program in front of a DB (Data Byte) statement, something else we haven't
seen before. The DB statement can be followed by several bytes separated
by commas or (as I do here) by some text in single quotation marks.

The MVI (Move Immediate) statement moves the value 9 into register C.
The CALL 5 statement makes a CP/M function call. Function 9 means to
display a string of characters beginning at the address given by the DE
register pair and stop when a dollar sign is encountered. (You'll notice that
the text in the last line of the program ends with a dollar sign. The use of a
dollar sign to signify the end of a character string is quite odd, but that's the
way CP/M happens to work.) The final RET statement ends the program
and returns control to CP/M. (That's actually one of several ways to end a
CP/M program.) The END statement indicates the end of the assembly-
language file.

So we have a text file containing seven lines of text. The next step is to
assemble it, which means to convert it to machine code. Previously we've
done this by hand. But since we're running CP/M, we can use a program

included with CP/M named ASM.COM. This is the CP/M assembler. We
run ASM.COM from the CP/M command line this way:

ASM PROGRAM1.ASM

The ASM program looks at the file PROGRAM1.ASM and creates a new
file named PROGRAM1.COM that contains the machine code
corresponding to the assembly-language statements that we wrote.
(Actually there's another step in the process, but it's not important in this
account of what happens.) Now you can run PROGRAM1.COM from the
CP/M command line. It displays the text "Hello!" and then ends.

The PROGRAM1.COM file contains the following 16 bytes:

11 09 01 OE 09 CD 05 00 C9 48 65 6C 6C 6F 21 24

The first 3 bytes are the LXI instruction, the next 2 the MVI instruction, the
next 3 the CALL instruction, and the next the RET instruction. The last 7
bytes are the ASCII characters for the five letters of "Hello," the
exclamation point, and the dollar sign.

What an assembler such as ASM.COM does is read an assembly-language
program (often called a source-code file) and write out a file containing
machine code—an executable file. In the grand scheme of things,
assemblers are fairly simple programs because there's a one-to-one
correspondence between the assembly-language mnemonics and machine
code. The assembler works by separating each line of text into mnemonics
and arguments and then comparing these small words and letters with a list
that the assembler contains of all the possible mnemonics and arguments.
These comparisons reveal which machine-code instructions correspond to
each statement.

Notice how the assembler figures out that the LXI instruction must set the
register pair DE to the address 0109h. If the LXI instruction itself is located
at 0100h (as it is when CP/M loads the program into memory to run),
address 0109h is where the text string begins. Generally a programmer
using an assembler doesn't need to worry about the specific addresses
associated with different parts of the program.

The first person to write the first assembler had to hand-assemble the
program, of course. A person who writes a new (perhaps improved)
assembler for the same computer can write it in assembly language and then

use the first assembler to assemble it. Once the new assembler is assembled,
it can assemble itself.

Every time a new microprocessor comes out, a new assembler is needed.
The new assembler, however, can first be written on an existing computer
using that computer's assembler. This is called a cross-assembler. The
assembler runs on Computer A but creates code that runs on Computer B.

Although an assembler eliminates the less-creative aspects of assembly-
language programming (the hand-assembling part), assembly language still
has two major problems. The first problem (which you've perhaps already
surmised) is that it can be very tedious. You're working down on the level
of the microprocessor chip, and you have to worry about every little thing.

The second problem is that assembly language isn't portable. If you write an
assembly-language program for the Intel 8080, it's not suitable for the
Motorola 6800. You must rewrite the program in 6800 assembly language.
This probably won't be as difficult as writing the original program because
you've already solved the major organizational and algorithmic problems.
But it's still a lot of work.

I explained in the last chapter how modern microprocessors have built-in
machine-code instructions that do floating-point arithmetic. This is certainly
convenient, but it doesn't go quite far enough. It would be preferable to
abandon entirely those processor-dependent machine-code instructions that
perform individual rudimentary arithmetic operations, and instead express
multiple mathematical operations using a time-honored algebraic notation.
Here's an example:

A x Sin (2 x PI + B) / C

where A, B, and C are numbers and PI is equal to 3.14159.

Well, why not? If such a statement were in a text file, it should be possible
to write an assembly-language program that reads the text file and converts
the algebraic expression to machine code.

If you needed to calculate such an algebraic expression only once, you
could do it by hand or with a calculator. It's likely you're considering a
computer solution because you need to calculate that expression with many
different values of A, B, and C. For this reason, the algebraic expression

will probably not appear in isolation. You should also consider some kind of
context for the expression that allows it to be evaluated for different values.

What you're on the verge of creating here is known as a high-level
programming language. Assembly language is considered a low-level
language because it's very close to the hardware of the computer. Although
the term high-level is used to describe any programming language other
than assembly language, some languages are considered to be higher level
than others. If you were the president of a company and you could sit at
your computer and type in (or better yet, just prop your feet up and dictate),
"Calculate all the profits and losses for this year, write up an annual report,
print off a couple thousand copies, and send them to all our stockholders,"
you would be working with a very high-level language indeed! In the real
world, programming languages don't come anywhere close to that ideal.

Human languages are usually the result of hundreds and thousands of years
of complex influences, random changes, and adaptations. Even artificial
languages such as Esperanto betray their origins in real language. High-
level computer languages are, however, more deliberate conceptions. The
challenge of inventing a programming language is quite appealing to some
people because the language defines how a person conveys instructions to
the computer. It was estimated in 1993 that there had been over 1000 high-
level languages invented and implemented since the beginning of the 1950s.

Of course, it's not enough to simply define a high-level language (which
involves developing a syntax to express all the things you want to do with
the language); you must also write a compiler, which is the program that
converts the statements of your high-level language to machine code. Like
an assembler, a compiler must read through a source-code file character by
character and break it down into short words and symbols and numbers. A
compiler, however, is much more complex than an assembler. An assembler
is simplified somewhat because of the one-to-one correspondence between
assembly-language statements and machine code. A compiler usually must
translate a single statement of a high-level language into many machine-
code instructions. Compilers aren't easy to write. Whole books are devoted
to their design and construction.

High-level languages have advantages and disadvantages. A primary
advantage is that high-level languages are usually easier to learn and to
program in than assembly languages. Programs written in high-level

languages are often clearer and more concise. High-level languages are
often portable—that is, they aren't dependent on a particular processor as
are assembly languages. Thus, they let a programmer work without
knowing about the underlying structure of the machine on which the
program will be running. Of course, if you need to run the program on more
than one processor, you need compilers that generate machine code for
those processors. The actual executable files are still specific to individual
processors.

On the other hand, it's almost always the case that a good assembly-
language programmer can write better code than a compiler can. What this
means is that an executable produced from a program written in a high-
level language will be larger and slower than a functionally identical
program written in assembly language. (In recent years, however, this has
become less obvious as microprocessors have become more complex and
compilers have also become more sophisticated in optimizing code.)

Also, although a high-level language might make a processor easy to use, it
doesn't make it more powerful. Anything that a processor is capable of you
can exploit in assembly language. Because a high-level language must be
translated into machine code, a high-level language can only reduce the
capabilities of a processor. Indeed, if a high-level language is truly portable,
it can't use features specific to certain processors.

An example: Many processors have bit-shifting instructions. As you'll
recall, these instructions shift the bits of the accumulator to the right or left.
But almost no high-level programming languages include such operations.
If you have a programming job that could use bit shifting, you'll have to
mimic it by multiplying or dividing by 2. (Not that this is bad: Indeed,
many modern compilers use a processor's bit-shifting instructions to
implement multiplication or division by powers of two.) Many languages
also don't include Boolean operations on bits.

In the early days of home computers, most application programs were
written in assembly language. These days, however, assembly language is
rarely used except for special purposes. As hardware has been added to
processors that implements pipelining—the progressive execution of
several instruction codes simultaneously—assembly language has become
trickier and more difficult. At the same time, compilers have become more
sophisticated. The larger storage and memory capacity of today's computers

has also played a role in this trend: Programmers no longer feel the need to
create code that runs in a small amount of memory and fits on a small
diskette.

Although designers of many early computers attempted to formulate
problems for them in algebraic notation, the first real working compiler is
generally considered to be the A-0 for the UNIVAC created by Grace
Murray Hopper (1906–1992) at Remington-Rand in 1952. Dr. Hopper got
an early start with computers when she worked for Howard Aiken on the
Mark I in 1944. In her eighties, she was still working in the computer
industry doing public relations for Digital Equipment Corporation (DEC).

The oldest high-level language still in use today (although extensively
revised over the years) is FORTRAN. Many computer languages have
made-up names that are written in uppercase because they're acronyms of
sorts. FORTRAN is a combination of the first three letters of FORmula and
the first four letters of TRANslation. It was developed at IBM for the 704
series of computers in the mid-1950s. For many years, FORTRAN was
considered the language of choice for scientists and engineers. It has very
extensive floating-point support and even supports complex numbers
(which, as I explained in the last chapter, are combinations of real and
imaginary numbers).

All programming languages have their defenders and detractors, and people
can get passionate about their favorites. In an attempt to assume a neutral
position, I've chosen a language to serve as an archetype for this account of
programming concepts that almost no one uses anymore. Its name is
ALGOL (which stands for ALGOrithmic Language, but ALGOL the
language also shares its name with the second brightest star in the
constellation Perseus). ALGOL is also appropriate for this exploration into
the nature of high-level programming languages because it's in many ways
a seminal language, the direct ancestor of many popular general-purpose
languages of the past 40 years. Even today, people refer to "ALGOL-like"
programming languages.

The first version of the language, known as ALGOL 58, was designed by an
international committee in 1957 and 1958. It was improved two years later
in 1960, and the revised version was named ALGOL 60. Eventually, there
was an ALGOL 68, but for this chapter I'll be using the version of ALGOL

as described by the document "Revised Report on the Algorithmic
Language ALGOL 60" finalized in 1962 and first published in 1963.

Let's write some ALGOL code. We'll assume we have an ALGOL compiler
named ALGOL.COM that runs under CP/M or perhaps MS-DOS. Our first
ALGOL program is a text file named FIRST.ALG. Notice the ALG file
type.

An ALGOL program must be enclosed within the words begin and end.
Here's a program that displays a line of text:

begin
 print ('This is my fist ALGOL program!');
ende

You can run the ALGOL compiler by specifying the FIRST.ALG program
like this:

ALGOL FIRST.ALG

The ALGOL compiler will probably respond by displaying something
similar to the following:

Line 3: Unrecognized keyword 'ende'.

A compiler is pickier about spelling than an old-fashioned English teacher. I
misspelled the word end when I was typing the program, so the compiler
tells me that the program has a syntax error. At the time it encountered
ende, it expected to find a keyword, which is a word that it recognizes.

After fixing the problem, you can run the ALGOL compiler again.
Sometimes a compiler will create an executable directly (named
FIRST.COM, or perhaps FIRST.EXE under MS-DOS); sometimes you
need to perform another step. Regardless, you'll soon be able to run the
FIRST program from the command line:

FIRST

The FIRST program responds by displaying

This is my fist ALGOL program!

Oops! Another spelling error. This is one that the compiler could not be
expected to find. For that reason it's called a run-time error—an error that's
apparent only when you run the program.

As is probably obvious, the print statement in our first ALGOL program
displays something on the screen, in this case a line of text. (The program is
thus the ALGOL equivalent of the CP/M assembly-language program
shown earlier in this chapter.) The print statement isn't actually part of the
official specification of the ALGOL language, but I'm assuming that the
particular ALGOL compiler we're using includes such a facility, sometimes
called a built-in function. Most ALGOL statements (but not begin and end)
must be followed by a semicolon. The indenting of the print statement isn't
required, but indenting is often used to make the structure of the program
clearer.

Let's assume now that you want to write a program that multiplies two
numbers. Every programming language includes the concepts of variables.
In a program, a variable's name is a letter, a short sequence of letters, or
even a short word. In reality, the variable corresponds to a memory location,
but in the program it's referenced by means of a name, not a numeric
memory address. This program has three variables named a, b, and c:

begin
 real a, b, c;

 a := 535.43;
 b := 289.771;
 c := a x b;

 print ('The product of ', a, ' and ', b, ' is ', c);
end

The real statement is called a declaration statement. It indicates that you
want to declare the presence of variables in your program. In this case, the
variables are named a, b, and c and are real or floating-point numbers.
(ALGOL also supports the keyword integer to declare integer variables.)
Usually programming languages require that variable names begin with a
letter. Variable names can also contain numbers, just as long as the first
character is a letter, but they must not contain spaces or most other
characters. Often compilers place limits on the length of a variable name.
I'll just use single letters in the example in this chapter.

If the particular ALGOL compiler we happen to be using supports the IEEE
floating-point standard, the three variables in the program each require 4
bytes of storage (for single-precision numbers) or 8 bytes of storage (for
double-precision numbers).

The next three statements are assignment statements. In ALGOL, you can
always recognize an assignment statement because it's designated by a
colon followed by the equal sign. (In most computer languages, only the
equal sign is required for an assignment statement.) On the left is a variable.
On the right is an expression. The variable is set to the number that results
from an evaluation of the expression. The first two assignment statements
indicate that both a and b are assigned particular values. The third
assignment statement in the program assigns the variable c to the product of
variables a and b.

These days, the familiar x multiplication symbol is usually not allowed in
programming languages because it's not part of the ASCII and EBCDIC
character sets. Most programming languages use an asterisk to indicate
multiplication. While ALGOL uses a slash (/) for division, the language
also includes a division sign (÷) for integer division, which indicates how
many times the divisor is contained in the dividend. ALGOL also defines an
arrow (↑), another non-ASCII character, for exponentiation.

Finally the print statement displays everything. It combines text and
variables separated by commas. Displaying ASCII characters is probably
not a major chore for the print statement, but here the function must also
convert the floating-point numbers to ASCII:

The product of 535.43 and 289.771 is 155152.08653

The program then terminates and returns control to the operating system.

If you want to multiply a couple of other numbers, you'll need to edit the
program, change the numbers, recompile it, and run it again. You can avoid
this frequent recompiling by taking advantage of another built-in function
named read.

begin
 real a, b, c;

 print ('Enter the first number: ');
 read (a);

 print ('Enter the second number: ');
 read (b);

 c := a x b;

 print ('The product of ', a, ' and ', b, ' is ', c);
end

The read statements read ASCII characters that you type at the keyboard
and convert them to floating-point values.

A very important construction in high-level languages is the loop. The loop
allows you to write a program that does the same thing for many different
values of a variable. Suppose you want to write a program that calculates
the cubes of 3, 5, 7, and 9. You can do it like this:

begin
 real a, b;

 for a := 3, 5, 7, 9 do
 begin
 b := a x a x a;
 print ('The cube of ', a, ' is ', b);
 end
end

The for statement sets the variable a first to the value 3 and then executes
the statement that follows the do keyword. If there's more than one
statement that must be executed (as is the case here), the multiple
statements must be included between begin and end statements. These two
keywords define a block of statements. The for statement then executes
those same statements for the variable a set to 5, 7, and 9.

Here's another version of the for statement. This one calculates the cubes of
odd numbers from 3 through 99:

begin
 real a, b;

 for a := 3 step 2 until 99 do
 begin
 b := a x a x a;
 print ('The cube of ', a, ' is ', b);
 end
end

The for statement initially sets the variable a to 3 and executes the block
following the for statement. Then a is increased by the number following
the step keyword, which is 2. The new value of a, which is 5, is used to
execute the block. The variable a will continue to be increased by 2. When
it exceeds 99, the for loop is completed.

Programming languages usually have a very strict syntax. In Algol 60, for
example, the keyword for can be followed by only one type of thing—a
variable name. In English, however, the word for can be followed by all
sorts of different words, such as example in the previous sentence. While
compilers aren't simple programs to write, they're obviously much easier
than programs that must interpret human languages.

Another important feature of most programming languages is the
conditional. This is a statement that causes another statement to execute
only if a particular condition is true. Here's an example that uses the
ALGOL built-in function sqrt, which calculates a square root. The sqrt
function doesn't work for negative numbers, so this program avoids that
occurrence:

begin
 real a, b;

 print ('Enter a number: ');
 read (a);

 if a < 0 then
 print ('Sorry, the number was negative.');
 else
 begin
 b = sqrt(a);
 print ('The square root of ', a, ' is ', b);
 end
end

The left angle bracket (<) is a less than sign. If the user of this program
types in a number that is less than 0, the first print statement is executed. If
not—that is, if the number is greater than or equal to 0—the block
containing the other print statement is executed.

So far, the variables shown in the programs in this chapter store only one
value each. Often it's convenient for the same variable to store many values.
This is known as an array. An array is declared in an ALGOL program like
this:

real array a[1:100];

In this case, we've indicated that we want to use this variable to store 100
different floating-point values, called elements of the array. The first one is
referenced by a[1], the second by a[2], and the last by a[100]. The number
in brackets is called the index of the array.

This program calculates all the square roots of 1 through 100 and stores
them in an array. Then it prints them out:

begin
 real array a[1:100];
 integer i;

 for i := 1 step 1 until 100 do
 a[i] := sqrt(i);

 for i := 1 step 1 until 100 do
 print ('The square root of ', i, ' is ', a[i]);
end

This program also shows an integer variable named i (which is a traditional
name for an integer variable because it's the first letter of the word). In the
first for loop, each element of the array is assigned the square root of its
index. In the second for loop, these are printed out.

In addition to real and integer, variables can also be declared as Boolean.
(Remember George Boole from Chapter 10?) A Boolean variable has only
two possible values, which are true and false. I make use of a Boolean array
(and almost every other feature we've learned about so far) in the final
program of this chapter—a program that implements a famous algorithm
for finding prime numbers called the Sieve of Eratosthenes. Eratosthenes
(circa 276–196 BCE) was the librarian of the legendary library at
Alexandria and is best remembered today for accurately calculating the
circumference of the earth.

Prime numbers are those whole numbers that are divisible without a
remainder only by themselves and 1. The first prime number is 2 (the only
even prime number), and the primes continue with 3, 5, 7, 11, 13, 17, and so
forth.

Eratosthenes' technique begins with a list of the positive whole numbers
beginning with 2. Because 2 is a prime number, cross out all the numbers
that are multiples of 2. (That's all the even numbers except 2.) Those
numbers aren't primes. Because 3 is a prime number, cross out all the
numbers that are multiples of 3. We already know 4 isn't a prime number
because it has been crossed out. The next prime is 5, so cross out all the
multiples of 5. Continue in this way. What you have left are the prime
numbers.

An ALGOL program to determine all the prime numbers through 10,000
can implement this algorithm by declaring a Boolean array with indices
from 2 through 10,000:

begin
 Boolean array a[2:10000];
 integer i, j;

 for i := 2 step 1 until 10000 do
 a[i] := true;

 for i := 2 step 1 until 100 do
 if a[i] then
 for j := 2 step 1 until 10000 ÷ i do
 a[i x j] := false;

 for i := 2 step 1 until 10000 do
 if a[i] then
 print (i);
end

The first for loop sets all the array elements to the Boolean value true. Thus,
the program starts by assuming that all the numbers are prime. The second
for loop goes from 1 through 100 (the square root of 10,000). If the number
is prime, which means that a[i] is true, another for loop sets all the multiples
of that number to false. Those numbers aren't prime. The final for loop
prints out all the prime numbers, which are the values of i where a[i] is true.

Sometimes people squabble over whether programming is an art or a
science. On the one hand, you have college curricula in Computer Science,
and on the other hand, you have books such as Donald Knuth's famous The
Art of Computer Programming series. "Rather," wrote physicist Richard
Feynman, "computer science is like engineering—it is all about getting
something to do something."

If you ask 100 different people to write a program that prints out prime
numbers, you'll get 100 different solutions. Even those programmers who
use the Sieve of Eratosthenes won't implement it in precisely the same way
that I did. If programming truly were a science, there wouldn't be so many
possible solutions, and incorrect solutions would be more obvious.
Occasionally, a programming problem incites flashes of creativity and
insight, and that's the "art" part. But programming is mostly a designing and
building process not unlike erecting a bridge.

Many of the early programmers were scientists and engineers who could be
expected to formulate their problems in the mathematical algorithms
required by FORTRAN and ALGOL. Throughout the history of
programming languages, however, people have tried creating languages that
could be used by a wider range of people.

One of the first successful languages designed for businesspeople and
business problems was COBOL (the COmmon Business Oriented
Language), still widely used today. A committee that combined American
industries and the defense department created COBOL beginning in 1959,
influenced by Grace Hopper's early compilers. In part, COBOL was
designed so that managers, while probably not doing the actual coding,
could at least read the program code and check that it was doing what it was
supposed to be doing. (In real life, however, this rarely occurs.)

COBOL has extensive support for reading records and generating reports.
Records are collections of information organized in a consistent manner.
For example, an insurance company might maintain large files containing
information on all the policies it has sold. Each policy would be a separate
record. The record would include the person's name, a birth date, and other
information. Many early COBOL programs were written to deal with 80-
column records stored on IBM punch cards. To use as little space as
possible on these cards, calendar years were often coded as two digits rather
than four, leading to the most common (but least publicized) instances of
the infamous "millennium bug" as the year 2000 approached.

In the mid-1960s, IBM, in connection with its System/360 project,
developed a language named PL/I. (The I is actually a Roman numeral and
pronounced one, so PL/I really stands for Programming Language Number
One.) PL/I was intended to incorporate the block structure of ALGOL, the
scientific and mathematics functions of FORTRAN, and the record and
report capabilities of COBOL. But the language never quite achieved the
popularity of FORTRAN and COBOL.

Although versions of FORTRAN, ALGOL, COBOL, and PL/I were
available for home computers, none of them had quite the impact on small
machines that BASIC had.

BASIC (Beginner's All-purpose Symbolic Instruction Code) was developed
in 1964 by John Kemeny and Thomas Kurtz, of the Dartmouth

Mathematics Department, in connection with Dartmouth's time-sharing
system. Most students at Dartmouth weren't math or engineering majors and
hence couldn't be expected to mess around with punch cards and difficult
program syntax. A Dartmouth student sitting at a terminal could create a
BASIC program by simply typing BASIC statements preceded by numbers.
The numbers indicated the order of the statements in the program.
Statements not preceded by numbers were commands to the system such as
SAVE (save the BASIC program to disk), LIST (display the lines in order),
and RUN (compile and run the program). The first BASIC program in the
first published BASIC instruction manual was

10 LET X = (7 + 8) / 3
20 PRINT X
30 END

Unlike ALGOL, BASIC didn't require the programmer to specify whether a
variable was to be stored as an integer or a floating-point value. Most
numbers were stored as floating-point values without the programmer
needing to worry about it.

Many subsequent implementations of BASIC have been in the form of
interpreters rather than compilers. As I explained earlier, a compiler reads a
source-code file and creates an executable file. An interpreter, however,
reads source code and executes it directly as it's reading it without creating
an executable file. Interpreters are easier to write than compilers, but the
execution time of the interpreted program tends to be slower than that of a
compiled program. On home computers, BASIC got an early start when
buddies Bill Gates (born 1955) and Paul Allen (born 1953) wrote a BASIC
interpreter for the Altair 8800 in 1975 and jump-started their company,
Microsoft Corporation.

The Pascal programming language, which inherited much of its structure
from ALGOL but included record handling from COBOL, was designed in
the late 1960s by Swiss computer science professor Niklaus Wirth (born
1934). Pascal was quite popular for IBM PC programmers, but in a very
specific form—the product Turbo Pascal, introduced by Borland
International in 1983 for the bargain price of $49.95. Turbo Pascal (written
by Danish student Anders Hejlsberg, born in 1960) was a version of Pascal
that came complete with an integrated development environment. The text
editor and the compiler were combined in a single program that facilitated

very fast programming. Integrated development environments had been
popular on large mainframe computers, but Turbo Pascal heralded their
arrival on small machines.

Pascal was also a major influence on Ada, a language developed for use by
the United States Department of Defense. The language was named after
Augusta Ada Byron, whom I mentioned in Chapter 18 as the chronicler of
Charles Babbage's Analytical Engine.

And then there's C, a much-beloved programming language created
between 1969 and 1973 largely by Dennis M. Ritchie at Bell Telephone
Laboratories. People often ask why the language is called C. The simple
answer is that it was derived from an early language called B, which was a
simplified version of BCPL (Basic CPL), which was derived from CPL
(Combined Programming Language).

I mentioned in Chapter 22 that the UNIX operating system was designed to
be portable. Most operating systems at the time were written in assembly
language for a specific processor. In 1973, UNIX was written (or rather,
rewritten) in C, and since then the operating system and the language have
been closely identified.

C is generally a very terse language. For example, instead of the words
begin and end used in ALGOL and Pascal to delimit blocks, C uses the
curly braces { and }. Here's another example. It's very common for a
programmer to add a constant amount to a variable:

i = i + 5;

In C, you can shorten this to

i += 5;

If you only need to add 1 to the variable (that is, to increment it), you can
shorten the statement even further:

i++;

On 16-bit or 32-bit microprocessors, such a statement can be carried out by
a single machine-code instruction.

I mentioned earlier that most high-level languages don't include bit-shifting
operations or Boolean operations on bits, which are features supported by
many processors. C is the exception to this rule. In addition, an important
feature of C is its support of pointers, which are essentially numeric

memory addresses. Because C has operations that parallel many common
processor instructions, C is sometimes categorized as a high-level assembly
language. More than any ALGOL-like language, C closely mimics common
processor instruction sets.

Yet all ALGOL-like languages—which really means most commonly used
programming languages—were designed based on von Neumann
architecture computers. Breaking out of the von Neumann mind-set when
designing a computer language isn't easy, and getting other people to use
such a language is even harder. One such non–von Neumann language is
LISP (which stands for List Processing), which was designed by John
McCarthy in the late 1950s and is useful for work in the field of artificial
intelligence. Another language that's just as unusual but nothing like LISP
is APL (A Programming Language), developed in the late 1950s by
Kenneth Iverson. APL uses a collection of odd symbols that perform
operations on whole arrays of numbers at once.

While ALGOL-like languages have retained their dominance, in recent
years they've picked up certain enhancements that have resulted in what are
called object-oriented languages. These languages are useful for working
with the graphical operating systems that I'll describe in the next (and last)
chapter.

Chapter 25. The Graphical Revolution
Readers of the September 10, 1945, issue of Life magazine encountered
mostly the usual eclectic mix of articles and photographs: stories about the
end of the Second World War, an account of dancer Vaslav Nijinsky's life in
Vienna, a photo essay on the United Auto Workers. Also included in that
issue was something unexpected: a provocative article by Vannevar Bush
(1890–1974) about the future of scientific research. Van Bush (as he was
called) had already made his mark in the history of computing by designing
one of the most significant analog computers—the differential analyzer—
between 1927 and 1931 while an engineering professor at MIT. At the time
of the Life article in 1945, Bush was serving as Director of the Office of
Scientific Research and Development, which had been responsible for
coordinating U.S. scientific activities during the war, including the
Manhattan Project.

Condensed somewhat from its first appearance two months earlier in The
Atlantic Monthly, Bush's Life article "As We May Think" described some
hypothetical inventions of the future ostensibly for the scientist and
researcher who must deal with an ever-increasing number of technical
journals and articles. Bush saw microfilm as the solution and imagined a
device he called the Memex to store books, articles, records, and pictures
inside a desk. The Memex also allowed the user to establish thematic
connections among these works, according to the associations normally
made by the human mind. He even imagined a new professional group of
people who would forge these trails of association through massive bodies
of information.

Although articles about the delights of the future have been common
throughout the twentieth century, "As We May Think" is different. This isn't
a story about household laborsaving devices or futuristic transportation or
robots. This is a story about information and how new technology can help
us successfully deal with it.

Through the six and a half decades since the first relay calculators were
built, computers have become smaller, faster, and cheaper all at the same
time. This trend has changed the very nature of computing. As computers
get cheaper, each person can have his or her own. As computers get smaller

and faster, software can become more sophisticated and the machines can
assume more and more work.

One way in which this extra power and speed can be put to good use is in
improving the most crucial part of the computer system, which is the user
interface—the point at which human and computer meet. People and
computers are very different animals, and unfortunately it's easier to
persuade people to make adjustments to accommodate the peculiarities of
computers than the other way around.

In the early days, digital computers weren't interactive at all. Some of them
were programmed using switches and cables, while others used punched
paper tape or film. By the 1950s and 1960s (and even continuing into the
1970s), computers had evolved to the point where batch processing was the
norm: Programs and data were punched on cards, which were then read into
computer memory. The program analyzed the data, drew some conclusions,
and printed the results on paper.

The earliest interactive computers used teletypewriters. Setups such as the
Dartmouth time-sharing system (dating from the early 1960s) that I
described in the preceding chapter supported multiple teletypewriters that
could be used at the same time. In such a system, a user types a line at the
teletypewriter, and the computer replies with one or more lines in response.
The exchange of information between teletypewriter and computer consists
entirely of streams of ASCII (or another character set), which are almost
entirely character codes with some simple control codes, such as the
carriage return and linefeed. The transaction proceeds only in one direction
down the roll of paper.

The cathode-ray tube (which became more common during the 1970s)
shouldn't have such restrictions, however. Software can instead treat the
entire screen in a more flexible manner—as a two-dimensional platform for
information. Yet, possibly in an attempt to keep the display output logic of
an operating system generalized, much early software written for small
computers continued to treat the CRT as a "glass teletypewriter"—
displaying output line by line going down the screen and scrolling the
contents of the screen up when the text reached the bottom. All the utilities
in CP/M and most utilities in MS-DOS used the video display in a
teletypewriter mode. Perhaps the archetypal teletypewriter operating system
is UNIX, which still proudly upholds that tradition.

Interestingly enough, the ASCII character set isn't entirely inadequate in
dealing with the cathode-ray tube. When ASCII was originally designed,
the code 1Bh was labeled Escape and was specifically intended for handling
extensions of the character set. In 1979, the American National Standards
Institute (ANSI) published a standard entitled "Additional Controls for Use
with American National Standard Code for Information Interchange." The
purpose of this standard was "to accommodate the foreseeable needs for
input/output control of two-dimensional character-imaging devices,
including interactive terminals of both the cathode ray tube and printer
types…"

Of course, the Escape code 1Bh is just 1 byte and can mean only one thing.
The Escape code works by prefacing variable-length sequences that
perform a variety of functions. For example, the sequence

1Bh 5Bh 32h 4Ah

which is the Escape code followed by the characters [2J, is defined to erase
the entire screen and move the cursor to the upper left corner. This isn't
something that can be done on a teletypewriter. The sequence

1Bh 5Bh 35h 3Bh 32h 39h 48h

which is the Escape code followed by the characters [5;29H, moves the
cursor to row 5 and column 29.

A combined keyboard and CRT that responds to ASCII codes (and possibly
to a collection of Escape sequences) coming from a remote computer is
sometimes called a dumb terminal. Such terminals are faster than
teletypewriters and somewhat more flexible, but they're not quite fast
enough for real innovations in the user interface. Such innovations came
with small computers in the 1970s that—like the hypothetical computer we
built in Chapter 21—included the video display memory as part of the
microprocessor's address space.

The first indication that home computers were going to be much different
from their larger and more expensive cousins was probably the application
VisiCalc. Designed and programmed by Dan Bricklin (born 1951) and Bob
Frankston (born 1949) and introduced in 1979 for the Apple II, VisiCalc
used the screen to give the user a two-dimensional view of a spreadsheet.
Prior to VisiCalc, a spreadsheet (or worksheet) was a piece of paper with
rows and columns generally used for doing series of calculations. VisiCalc

replaced the paper with the video display, allowing the user to move around
the spreadsheet, enter numbers and formulas, and recalculate everything
after a change.

What was amazing about VisiCalc is that it was an application that could
not be duplicated on larger computers. A program such as VisiCalc needs to
update the screen very quickly. For this reason, it wrote directly to the
random access memory used for the Apple II's video display. This memory
is part of the address space of the microprocessor. The interface between a
large time-shared computer and a dumb terminal is simply not fast enough
to make a spreadsheet program usable.

The faster a computer can respond to the keyboard and alter the video
display, the tighter the potential interaction between user and computer.
Most of the software written in the first decade of the IBM Personal
Computer (through the 1980s) wrote directly to video display memory.
Because IBM set a hardware standard that other computer manufacturers
adhered to, software manufacturers could bypass the operating system and
use the hardware directly without fear that their programs wouldn't run right
(or at all) on some machines. If all the PC clones had different hardware
interfaces to their video displays, it would have been too difficult for
software manufacturers to accommodate all the different designs.

For the most part, early applications for the IBM PC used only text output
and not graphics. The use of text output also helped the applications run as
fast as possible. When a video display is designed like the one described in
Chapter 21, a program can display a particular character on the screen by
simply writing the character's ASCII code into memory. A program using a
graphical video display usually needs to write 8 or more bytes into memory
to draw the image of the text character.

The move from character displays to graphics was, however, an extremely
important step in the evolution of computers. Yet the development of
computer hardware and software that work with graphical images rather
than just text and numbers evolved very slowly. As early as 1945, John von
Neumann envisioned an oscilloscope-like display that could graph pictorial
information. But it wasn't until the early 1950s that computer graphics were
ready to become a reality when MIT (with help from IBM) set up the
Lincoln Laboratory to develop computers for the Air Force's air defense
system. This project was known as SAGE (Semi-Automatic Ground

Environment) and included graphics display screens to help the operators
analyze large amounts of data.

The early video displays used in systems such as SAGE weren't like those
we use today on personal computers. Today's common PC displays are
known as raster displays. Much like a TV, the total image is composed of a
series of horizontal raster lines drawn by an electron gun shooting a beam
that moves very rapidly back and forth across the screen. The screen can be
visualized as a large rectangular array of dots called pixels (picture
elements). Within the computer, a block of memory is devoted to the video
display and contains 1 or more bits for each pixel on the screen. The values
of these bits determine whether pixels are illuminated and what color they
are.

For example, most computer displays nowadays have a resolution of at least
640 pixels horizontally and 480 pixels vertically. The total number of pixels
is the product of these two numbers: 307,200. If only 1 bit of memory is
devoted to each pixel, each pixel is limited to just two colors, usually black
and white. A 0 pixel could be black and a 1 pixel could be white, for
example. Such a video display requires 307,200 bits of memory, or 38,400
bytes.

Increasing the number of possible colors necessitates more bits per pixel
and increases the memory requirements of the display adapter. For example,
a byte could be used for each pixel to encode gray shades. In such an
arrangement, the byte 00h is black, FFh is white, and the values in between
are shades of gray.

Color on a CRT is achieved by means of three electron guns, one for each
of the three additive primary colors, red, green, and blue. (You can examine
a television or color computer screen with a magnifying glass to convince
yourself that this is true. Printing uses a different set of primaries.) The
combination of red and green is yellow, the combination of red and blue is
magenta, the combination of green and blue is cyan, and the combination of
all three primary colors is white.

The simplest type of color graphics display adapter requires 3 bits per pixel.
The pixels could be encoded like this with 1 bit per primary color:

Bits Color

000 Black

001 Blue

010 Green

011 Cyan

100 Red

101 Magenta

110 Yellow

111 White

But such a scheme would be suitable only for simple cartoonlike images.
Most real-world colors are combinations of various levels of red, green, and
blue. If you were willing to devote 2 bytes per pixel, you could allocate 5
bits for each primary color (with 1 bit left over). That gives you 32 levels of
red, green, and blue and a total of 32,768 different colors. This scheme is
often referred to as high color or thousands of colors.

The next step is to use 3 bytes per pixel, or 1 byte for each primary. This
encoding scheme results in 256 levels of red, green, and blue for a total of
16,777,216 different colors, often referred to as full color or millions of
colors. If the resolution of the video display is 640 pixels horizontally by
480 pixels vertically, the total amount of memory required is 921,600 bytes,
or nearly a megabyte.

The number of bits per pixel is sometimes referred to as the color depth or
color resolution. The number of different colors is related to the number of
bits per pixel in this way:

Number of colors = 2Number of bits per pixel

A video adapter board has only a certain amount of memory, so it's limited
in the combinations of resolutions and color depths that are possible. For
example, a video adapter board that has a megabyte of memory can do a
640-by-480 resolution with 3 bytes per pixel. But if you want to use a
resolution of 800 by 600, there's not enough memory for 3 bytes per pixel.
Instead, you'll need to use 2 bytes per pixel.

Although raster displays seem very natural to us now, in the early days they
were not quite practical because they required what was then a great deal of
memory. Instead, the SAGE video displays were vector displays, more like
an oscilloscope than a TV. The electron gun could be electrically positioned
to point to any part of the display and draw lines and curves directly. The
persistence of the image on the screen allowed assembling these lines and
curves into rudimentary pictures.

The SAGE computers also supported light pens that let the operators alter
images on the display. Light pens are peculiar devices that look like a stylus
with a wire attached to one end. If the proper software is running, the
computer can detect where the light pen is pointing on the screen and alter
an image in response to the pen's movements.

How does this work? Even technological sophisticates are sometimes
puzzled when they first encounter a light pen. The key is that a light pen
doesn't emit light—it detects light. The circuitry that controls the
movements of the electron gun in the CRT (regardless of whether a raster or
vector display is used) can also determine when the light from the electron
gun hits the light pen and hence where the light pen is pointing on the
screen.

One of the first people to envision a new era of interactive computing was
Ivan Sutherland (born 1938), who in 1963 demonstrated a revolutionary
graphics program he had developed for the SAGE computers named
Sketchpad. Sketchpad could store image descriptions in memory and
display the images on the video display. In addition, you could use the light
pen to draw images on the display and change them, and the computer
would keep track of it all.

Another early visionary of interactive computing was Douglas Engelbart
(born 1925), who read Vannevar Bush's article "As We May Think" when it
was published in 1945 and five years later began a lifetime of work
developing new ideas in computer interfaces. In the mid-1960s, while at the
Sanford Research Institute, Engelbart completely rethought input devices
and came up with a five-pronged keyboard for entering commands (which
never caught on) and a smaller device with wheels and a button that he
called a mouse. The mouse is now almost universally accepted for moving a
pointer around the screen to select on-screen objects.

Many of the early enthusiasts of interactive graphical computing (although
not Engelbart) came together at Xerox, fortunately at a time when raster
displays became economically feasible. Xerox had founded the Palo Alto
Research Center (PARC) in 1970 in part to help develop products that
would allow the company to enter the computer industry. Perhaps the most
famous visionary at PARC was Alan Kay (born 1940), who encountered
Van Bush's microfilm library (in a short story by Robert Heinlein) when he
was 14, and who had already conceived of a portable computer he called
the Dynabook.

The first big project at PARC was the Alto, designed and built between
1972 and 1973. By the standards of those years, it was an impressive piece
of work. The floor-standing system unit had 16-bit processing, two 3-MB
disk drives, 128 KB of memory (expandable to 512 KB), and a mouse with
three buttons. Because the Alto preceded the availability of 16-bit single-
chip microprocessors, the Alto processor had to be built from about 200
integrated circuits.

The video display was one of the several unusual aspects of the Alto. The
screen was approximately the size and shape of a sheet of paper—8 inches
wide and 10 inches high. It ran in a raster graphics mode with 606 pixels
horizontally by 808 pixels vertically, for a total of 489,648 pixels. One bit
of memory was devoted to each pixel, which meant that each pixel could be
either black or white. The total amount of memory devoted to the video
display was 64 KB, which was part of the address space of the processor.

By writing into this video display memory, software could draw pictures on
the screen or display text in different fonts and sizes. By rolling the mouse
on the desk, the user of the Alto could position a pointer on the screen and
interact with on-screen objects. Rather than treating the video display in the
same way as the teletypewriter—linearly echoing user input and writing out
program output—the screen became a two-dimensional high-density array
of information and a more direct source of user input.

Over the remainder of the 1970s, programs written for the Alto developed
some very interesting characteristics. Multiple programs were put into
windows and displayed on the same screen simultaneously. The video
graphics of the Alto allowed software to go beyond text and truly mirror the
user's imagination. Graphical objects (such as buttons and menus and little
pictures called icons) became part of the user interface. The mouse was

used for selecting windows or triggering the graphical objects to perform
program functions.

This was software that went beyond the user interface into user intimacy,
software that facilitated the extension of the computer into realms beyond
those of simple number crunching. This was software that was designed—
to quote the title of a legendary paper written by Douglas Engelbart in 1963
—"for the Augmentation of Man's Intellect."

What PARC developed in the Alto was the beginnings of the graphical user
interface, or GUI (pronounced gooey). But Xerox didn't sell the Alto (one
would have cost over $30,000 if they had), and over a decade passed before
the ideas in the Alto would be embodied in a successful consumer product.

In 1979, Steve Jobs and a contingent from Apple Computer visited PARC
and were quite impressed with what they saw. But it took them over three
years to introduce a computer that had a graphical interface. This was the
ill-fated Apple Lisa in January 1983. A year later, however, Apple
introduced the much more successful Macintosh.

The original Macintosh had a Motorola 68000 microprocessor, 64 KB of
ROM, 128 KB of RAM, a 3½-inch diskette drive (storing 400 KB per
diskette), a keyboard, a mouse, and a video display capable of displaying
512 pixels horizontally by 342 pixels vertically. (The CRT itself measured
only 9 inches diagonally.) That's a total of 175,104 pixels. Each pixel was
associated with 1 bit of memory and could be colored either black or white,
so about 22 KB were required for the video display RAM.

The hardware of the original Macintosh was elegant but hardly
revolutionary. What made the Mac so different from other computers
available in 1984 was the Macintosh operating system, generally referred to
as the system software at the time and later known as the Mac OS.

A text-based single-user operating system such as CP/M or MS-DOS isn't
very large and doesn't have an extensive application programming interface
(API). As I explained in Chapter 22, mostly what's required in these text-
based operating systems is a way for applications to use the file system. A
graphical operating system such as the Mac OS, however, is much larger
and has hundreds of API functions. Each of them is identified by a name
that describes what the function does.

While a text-based operating system such as MS-DOS provides a couple of
simple API functions to let application programs display text on the screen
in a teletypewriter manner, a graphical operating system such as the Mac
OS must provide a way for programs to display graphics on the screen. In
theory, this can be accomplished by implementing a single API function
that lets an application set the color of a pixel at a particular horizontal and
vertical coordinate. But it turns out that this is inefficient and results in very
slow graphics.

It makes more sense for the operating system to provide a complete
graphics programming system, which means that the operating system
includes API functions to draw lines, rectangles, and ellipses (including
circles) as well as text. Lines can be either solid or composed of dashes or
dots. Rectangles and ellipses can be filled with various patterns. Text can be
displayed in various fonts and sizes and with effects such as boldfacing and
underlining. The graphics system is responsible for determining how to
render these graphical objects as a collection of dots on the display.

Programs running under a graphical operating system use the same APIs to
draw graphics on both the computer's video display and the printer. A word
processing application can thus display a document on the screen so that it
looks very similar to the document later printed, a feature known as
WYSIWYG (pronounced wizzy wig). This is an acronym for "What you
see is what you get," the contribution to computer lingo of the comedian
Flip Wilson in his Geraldine persona.

Part of the appeal of a graphical user interface is that different applications
work roughly the same and leverage a user's experience. This means that
the operating system must also support API functions that let applications
implement the various components of the user interface, such as buttons
and menus. Although the GUI is generally viewed as an easy environment
for users, it's also just as importantly an environment for programmers.
Programmers can implement a modern user interface without reinventing
the wheel.

Even before the introduction of the Macintosh, several companies had
begun to create a graphical operating system for the IBM PC and
compatibles. In one sense, the Apple developers had an easier job because
they were designing the hardware and software together. The Macintosh
system software had to support only one type of diskette drive, one type of

video display, and two printers. Implementing a graphical operating system
for the PC, however, required supporting many different pieces of
hardware.

Moreover, although the IBM PC had been introduced just a few years
earlier (in 1981), many people had grown accustomed to using their favorite
MS-DOS applications and weren't ready to give them up. It was considered
very important for a graphical operating system for the PC to run MS-DOS
applications as well as applications designed expressly for the new
operating system. (The Macintosh didn't run Apple II software primarily
because it used a different microprocessor.)

In 1985, Digital Research (the company behind CP/M) introduced GEM
(the Graphical Environment Manager), VisiCorp (the company marketing
VisiCalc) introduced VisiOn, and Microsoft released Windows version 1.0,
which was quickly perceived as being the probable winner in the "windows
wars." It wasn't until the May 1990 release of Windows 3.0, however, that
Windows began to attract a lot of users. Its popularity has increased since
then, and today Windows is the operating system used on about 90 percent
of small computers. Despite the similar appearances of the Macintosh and
Windows, the APIs for the two systems are very different.

In theory, aside from the graphics display, a graphical operating system
doesn't require much more in the way of hardware than a text-based
operating system. In theory, not even a hard disk drive is required: The
original Macintosh didn't have one, and Windows 1.0 didn't require one.
Windows 1.0 didn't even require a mouse, although everyone agreed that it
was much easier to use with a mouse.

Still, however, it's not surprising that graphical user interfaces have become
more popular as microprocessors have grown faster and as memory and
storage have become more plentiful. As more and more features are added
to graphical operating systems, they have grown large. Today's graphical
operating systems generally require a couple hundred megabytes of hard
disk space and upwards of 32 megabytes of memory.

Applications for graphical operating systems are almost never written in
assembly language. In the early days, the popular language for Macintosh
applications was Pascal. For Windows applications, it was C. But once
again, PARC had demonstrated a different approach. Beginning about 1972,

the researchers at PARC were developing a language named Smalltalk that
embodied the concept of object-oriented programming, or OOP
(pronounced oop).

Traditionally, high-level programming languages differentiate between code
(which is statements generally beginning with a keyword such as set or for
or if) and data, which is numbers represented by variables. This distinction
no doubt originates from the architecture of von Neumann computers, in
which something is either machine code or is data acted upon by machine
code.

In object-oriented programming, however, an object is a combination of
code and data. The actual way in which the data in an object is stored is
understood only by code associated with the object. Objects communicate
with one another by sending and receiving messages, which give
instructions to an object or ask for information from it.

Object-oriented languages are often helpful for programming applications
for graphical operating systems because the programmer can treat objects
on the screen (such as windows and buttons) in much the same way that a
user perceives them. A button is an example of an object in an
objectoriented language. A button has a certain dimension and position on
the screen and displays some text or a little picture, all of which is data
associated with the object. Code associated with the object determines when
the user "presses" the button with the keyboard or the mouse and sends a
message indicating the button has been triggered.

The most popular object-oriented languages for small computers, however,
are extensions of traditional ALGOL-like languages, such as C and Pascal.
The most popular object-oriented extension of C is called C++. (As you
might recall, two plus signs in C is an increment operator.) Largely the
brainchild of Bjarne Stroustrup (born 1950) of Bell Telephone Laboratories,
C++ was implemented first as a translator that converted a program written
in C++ to one written in C (although very ugly and virtually unreadable C).
The C program could then be compiled normally.

Object-oriented languages can't do anything more than traditional languages
can do, of course. But programming is a problem-solving activity, and
object-oriented languages allow the programmer to consider different
solutions that are often structurally superior. It's also possible—although not

exactly easy—to write a single program using an object-oriented language
that can be compiled to run either on the Macintosh or under Windows.
Such a program doesn't refer to the APIs directly but rather uses objects that
in turn call the API functions. Two different object definitions are used to
compile the program for the Macintosh or Windows API.

Most programmers working on small computers no longer run a compiler
from a command line. Instead, programmers use an integrated development
environment (IDE), which combines all the tools they need in one
convenient program that runs like other graphical applications.
Programmers also take advantage of a technique called visual
programming, in which windows are designed interactively by using the
mouse to assemble buttons and other components.

In Chapter 22, I described text files, which are files that contain only ASCII
characters and which are readable by human beings like you and me. Back
in the days of text-based operating systems, text files were ideal to
exchange information among applications. One big advantage of text files is
that they're searchable—that is, a program can look at many text files and
determine which of them contains a particular text string. But once you
have a facility in the operating system to display text using various fonts
and sizes and effects such as italics, boldfacing, and underlining, the text
file suddenly seems woefully inadequate. Indeed, most word processing
programs save documents in a proprietary binary format. Text files are also
not suitable for pictorial information.

But it's possible to encode information (such as font specifications and
paragraph layout) along with text and still have a readable text file. The key
is to choose an escape character to denote this information. In the Rich Text
Format (RTF) designed by Microsoft as a means to exchange formatted text
among applications, the curly brackets { and } and the backslash character \
are used to enclose information that indicates how the text is to be
formatted.

PostScript is a text file format that takes this concept to extremes. Designed
by John Warnock (born 1940), cofounder of Adobe Systems, PostScript is
an entire general-purpose graphics programming language used today
mostly to draw text and graphics on high-end computer printers.

The incorporation of graphical images into the personal computing
environment is the direct result of better and cheaper hardware. As
microprocessors have become faster, as memory has become cheaper, as
video displays and printers have increased in resolution and blossomed in
full color, that power has been exploited through computer graphics.

Computer graphics comes in two flavors, which are referred to by the same
words I used earlier to differentiate graphical video displays: vector and
raster.

Vector graphics involves creating images algorithmically using straight
lines, curves, and filled areas. This is the province of the computer-assisted
drawing (or CAD) program. Vector graphics finds its most important
application in engineering and architectural design. A vector graphics
image can be stored in a file in a format referred to as a metafile. A metafile
is simply a collection of vector graphics drawing commands usually
encoded in binary form.

The use of lines, curves, and filled areas of vector graphics is entirely
appropriate when you're designing a bridge but hopelessly inadequate when
you want to show what the actual constructed bridge looks like. That bridge
is a real-world image. It's simply too complex to be represented by vector
graphics.

Raster graphics (also known as bitmap graphics) comes to the rescue. A
bitmap encodes an image as a rectangular array of bits that correspond to
the pixels of an output device. Just like a video display, a bitmap has a
spatial dimension (or resolution), which is the width and height of the
image in pixels. Bitmaps also have a color dimension (or color resolution,
or color depth), which is the number of bits associated with each pixel.
Each pixel in a bitmap has the same number of bits.

Although a bitmap image is two dimensional, the bitmap itself is just a
single stream of bytes—usually the top row of pixels, followed by the
second row, followed by the third row, and so on.

Some bitmap images are created "manually" by someone using a paint
program designed for a graphical operating system. Other bitmap images
are created algorithmically by computer code. These days, however,
bitmaps are very often used for images from the real world (such as
photographs), and there are several different pieces of hardware that allow

you to move images from the real world into the computer. These devices
generally use something called a charge-coupled device (CCD), which is a
semiconductor that releases an electrical charge when exposed to light. One
CCD cell is required for each pixel to be sampled.

The scanner is the oldest of these devices. Much like a photocopy machine,
it uses a row of CCDs that sweep along the surface of a printed image, such
as a photograph. The CCDs generate electrical charges based on the
intensity of light. Software that works with the scanner translates the image
into a bitmap that's stored in a file.

Video camcorders use a two-dimensional array of CCD cells to capture
images. Generally these images are recorded on videotape. But the video
output might be fed directly into a video frame grabber, which is a board
that converts an analog video signal to an array of pixel values. These frame
grabbers can be used with any common video source, such as that from a
VCR or a laser disc player, or even directly from a cable television box.

Most recently, digital cameras have become financially viable for the home
user. These often look very much like normal cameras. But instead of film,
an array of CCDs is used to capture an image that's stored directly in
memory within the camera and later transferred into the computer.

A graphical operating system often supports the storage of bitmaps in files
in a particular format. The Macintosh uses the Paint format, the name of
which is a reference to the MacPaint program that inaugurated the format.
(The Macintosh PICT format that combines bitmaps and vector graphics is
actually the preferred format.) In Windows, the native format is referred to
as BMP, which is the filename extension used for bitmaps.

Bitmaps can be quite large, and it's beneficial to figure out some way to
make them smaller. This effort falls under an area of computer science
known as data compression.

Suppose we were dealing with an image with 3 bits per pixel such as I
described earlier. You have a picture of sky and a house and a lawn. This
picture probably has large patches of blue and green. Maybe the very top
row of the bitmap has 72 blue pixels in a row. The bitmap file could be
made smaller if there were some way to actually encode the number 72 in
the file to mean that the blue pixel repeats 72 times. This type of
compression is known as run-length encoding, or RLE.

The common office fax machine uses RLE compression to reduce the size
of an image before sending it over the telephone line. Because a fax
interprets an image as black and white with no gray shades or colors, there
are generally long stretches of white pixels.

A bitmap file format that's been popular for over a decade is the Graphics
Interchange Format, or GIF (pronounced jif like the peanut butter),
developed by CompuServe in 1987. GIF files use a compression technique
called LZW, which stands for its creators, Lempel, Ziv, and Welch. LZW is
more powerful than RLE because it detects patterns of differently valued
pixels rather than just consecutive strings of same-value pixels.

Both RLE and LZW are referred to as lossless compression techniques
because the original file can be entirely recreated from the compressed data.
In other words, the compression is reversible. It's fairly easy to prove that
reversible compression doesn't work for every type of file. In some cases,
the "compressed" file is actually larger than the original file!

In recent years, lossy compression techniques have become popular. A
lossy compression isn't reversible because some of the original data is
effectively discarded. You wouldn't want to use lossy compression on your
spreadsheets or word processing documents. Presumably every number and
word is important. But you probably wouldn't mind lossy compression for
images, just as long as the data that's discarded doesn't make much of a
difference in the overall picture. That's why lossy compression techniques
are based on psychovisual research that investigates human vision to
determine what's important and what's not.

The most significant lossy compression techniques used for bitmaps are
collectively referred to as JPEG (pronounced jay peg). JPEG stands for the
Joint Photography Experts Group and actually describes several
compression techniques, some lossless and some lossy.

It's fairly straightforward to convert a metafile to a bitmap. Because video
display memory and bitmaps are conceptually identical, if a program knows
how to draw a metafile in video display memory, it knows how to draw a
metafile on a bitmap.

But converting a bitmap to a metafile isn't so easy, and for some complex
images might well be impossible. One technique related to this job is
optical character recognition, or OCR. OCR is used when you have a

bitmap of some text (from a fax machine, perhaps, or scanned from typed
pages) and need to convert it to ASCII character codes. The OCR software
needs to analyze the patterns of bits and determine what characters they
represent. Due to the algorithmic complexity of this job, OCR software is
usually not 100 percent accurate. Even less accurate is software that
attempts to convert handwriting to ASCII text.

Bitmaps and metafiles are the digital representations of visual information.
Audio information can also be converted to bits and bytes.

Digitized sound made a big consumer splash in 1983 with the compact disc,
which became the biggest consumer electronics success story ever. The CD
was developed by Philips and Sony to store 74 minutes of digitized sound
on one side of a disk 12 centimeters in diameter. The length of 74 minutes
was chosen so that Beethoven's Ninth Symphony could fit on one CD.

Sound is encoded on a CD using a technique called pulse code modulation,
or PCM. Despite the fancy name, PCM is conceptually a fairly simple
process.

Sound is vibration. Human vocal cords vibrate, a tuba vibrates, a tree falling
in a forest vibrates, and these objects cause air molecules to move. The air
alternately pushes and pulls, compresses and thins, back and forth some
hundreds of times or thousands of times a second. The air in turn vibrates
our eardrums, and we sense sound.

Analogous to these waves of sound are the little hills and valleys in the
surface of the tin foil cylinder used to record and play back sound in
Thomas Edison's first phonograph in 1877. Until the compact disc, this
technique of recording sound barely changed, although cylinders were
replaced by disks, and tin foil by wax and eventually plastic. Early
phonographs were entirely mechanical, but eventually electrical
amplification was used to strengthen the sound. The variable resistor in a
microphone converts sound to electricity, and the electromagnet in a
loudspeaker converts electricity back to sound.

An electrical current that represents sound isn't like the on-off digital
signals that we've encountered throughout this book. Sound waves vary
continuously, and so does the voltage of such a current. The electrical
current is an analog of the sound waves. A device known as an analog-to-
digital converter (ADC)—generally implemented in a chip—converts an

analog voltage to a binary number. The output of an ADC is a certain
number of digital signals—usually 8, 12, or 16—that together indicate the
relative level of the voltage. A 12-bit ADC, for example, converts a voltage
to a number between 000h and FFFh and can differentiate 4096 different
voltage levels.

In the technique known as pulse code modulation, the voltage representing
a sound wave is converted to digital values at a constant rate. These
numbers are stored on the CD in the form of little holes carved into the
surface of the disc. They're read with a laser light reflected from the surface
of the CD. During playback, the numbers are converted to an electrical
current again using a digital-to-analog converter, or DAC. (A DAC is also
used in color graphics boards to convert a pixel value to analog color
signals that go to the monitor.)

The voltage of the sound wave is converted to numbers at a constant rate,
known as the sampling rate. In 1928, Harry Nyquist of Bell Telephone
Laboratories showed that a sampling rate must be at least twice the
maximum frequency that needs to be recorded and played back. It's
commonly assumed that humans hear sounds ranging from 20 Hz to 20,000
Hz. The sampling frequency used for CDs is a bit more than double that
maximum, specifically 44,100 samples per second.

The number of bits per sample determines the dynamic range of the CD,
which is the difference between the loudest and the softest sound that can
be recorded and played back. This is somewhat complicated: As the
electrical current varies back and forth as an analog of the sound waves, the
peaks it hits represent the waveform's amplitude. What we perceive as the
intensity of the sound is proportional to twice the amplitude. A bel (which
is three-quarters of Alexander Graham Bell's last name) is a tenfold increase
in intensity; a decibel is one-tenth of a bel. One decibel represents
approximately the smallest increase in loudness that a person can perceive.

It turns out that the use of 16 bits per sample allows a dynamic range of 96
decibels, which is approximately the difference between the threshold of
hearing (below which we can't hear anything) and the threshold of pain. The
compact disk uses 16 bits per sample.

So for each second of sound, a compact disk contains 44,100 samples of 2
bytes each. But you probably want stereo as well. So double that for a total

of 176,400 bytes per second. That's 10,584,000 bytes per minute of sound.
(Now you know why digital recording of sound wasn't common before the
1980s.) The full 74 minutes of stereo sound on the CD requires 783,216,000
bytes.

Digitized sound has many well-known advantages over analog sound. In
particular, whenever analog sound is copied (for example, when a
phonograph record is created from a master recording tape) some fidelity is
lost. Digitized sound is numbers, however, and numbers can always be
faithfully transcribed and copied. It used to be that the longer a telephone
signal had to travel in a wire, the worse it would sound. This is no longer
the case. Because much of the telephone system is now digital, calls from
across the country sound as clear as those from across the street.

CDs can store data as well as sound. When used exclusively for data,
they're called CD-ROM (CD Read-Only Memory). A CD-ROM is
generally limited to about 660 megabytes. Most computers these days have
CD-ROM drives installed, and much application and game software is
distributed on CD-ROM.

The introduction of sound, music, and video into the personal computer was
known as multimedia just a decade ago and is now so common that it
doesn't need a special name. Most home computers sold these days have a
sound board that includes an ADC for digitally recording sound through a
microphone and a DAC for playing back recorded sound through speakers.
Sounds can be stored on a disk in waveform files.

Because you don't always need CD quality sound when recording and
playing back sound on home computers, the Macintosh and Windows offer
lower sampling rates, specifically 22,050 Hz, 11,025 Hz, and 8000 Hz; a
lower sample size of 8 bits; and monophonic recording. Sound can be
recorded using as few as 8000 bytes per second, which is 480,000 bytes per
minute.

Everybody knows from science fiction movies and television shows that
computers of the future converse with their users in spoken English. Once a
computer is equipped with hardware to digitally record and play back
sound, everything else involved in this goal is a software problem.

There are a couple of ways that computers can be made to talk in
recognizable words and sentences. One approach is to have a human being

record sentence fragments, phrases, words, and numbers that can then be
stored in files and strung together in different ways. This approach is often
used for information systems accessed over the telephone, and it works fine
when there are only a limited number of combinations of words and
numbers that must be played back.

A more general form of voice synthesis involves a process that converts
arbitrary ASCII text to waveform data. Because English spelling, for
example, isn't always consistent, such a software system uses a dictionary
or complex algorithms to determine the actual pronunciation of words.
Basic vocal sounds (called phonemes) are combined to form whole words.
Often the software must make other adjustments. For example, if a sentence
is followed by a question mark, the sound of the last word must be
increased in frequency.

Voice recognition—the conversion of waveform data to ASCII text—is a
much more complex problem. Indeed, many humans have problems
understanding regional variations in spoken language. While dictation
software for the personal computer is available, it usually requires some
training so that it can reasonably transcribe what a particular person is
saying. Far beyond the conversion to ASCII text is the problem of
programming the computer so that it actually "understands" what is said.
Such a problem is in the realm of the field of artificial intelligence.

The sound boards in today's computers are also supplied with small
electronic music synthesizers that can imitate the sounds of 128 different
musical instruments and 47 different percussion instruments. These are
referred to as MIDI (pronounced middy) synthesizers. MIDI is the Musical
Instrument Digital Interface, a specification developed in the early 1980s by
a consortium of manufacturers of electronic music synthesizers to connect
these electronic instruments to one another and to computers.

Various types of MIDI synthesizers use a variety of methods for
synthesizing instrument sounds, some of which are more realistic than
others. The overall quality of a particular MIDI synthesizer is quite outside
the province of the MIDI specification. All that's required is that the
synthesizer respond to short messages—usually 1, 2, or 3 bytes in length—
by playing sounds. MIDI messages mostly indicate what instrument is
desired, that a particular note should begin playing, or that a note currently
playing should stop playing.

A MIDI file is a collection of MIDI messages with timing information. A
MIDI file usually contains an entire musical composition that can be played
back on the computer's MIDI synthesizer. A MIDI file is usually much
smaller than a waveform file containing the same music. In terms of relative
size, if a waveform file is like a bitmap file, a MIDI file is like a vector
graphics metafile. The downside is that the music encoded in a MIDI file
could sound great on one MIDI synthesizer and quite horrid on another.

Another feature of multimedia is digitized movies. The apparent motion of
movie and television images is achieved by quickly displaying a sequence
of individual still images. These individual images are called frames.
Movies proceed at the rate of 24 frames per second, North American
television at 30 frames per second, and television in most other places in the
world at 25 frames per second.

A movie file on a computer is simply a series of bitmaps with sound. But
without compression, a movie file requires a huge amount of data. For
example, consider a movie with each frame the size of a 640-by-480-pixel
computer screen with 24-bit color. That's 921,600 bytes per frame. At 30
frames per second, we're up to 27,648,000 bytes per second. Keep
multiplying and you get 1,658,880,000 bytes per minute, and
199,065,600,000 bytes—just about 200 gigabytes—for a two-hour movie.
This is why most movies displayed on the personal computer are short,
small, and jumpy.

Just as JPEG compression is used to reduce the amount of data required to
store still images, MPEG compression is used for movies. MPEG
(pronounced em peg) stands for Moving Pictures Expert Group.
Compression techniques for moving images take advantage of the fact that
a particular frame usually contains much information that's duplicated from
the previous frame.

There are different MPEG standards for different media. MPEG-2 is for
high-definition television (HDTV) and for digital video discs (DVDs), also
called digital versatile discs. DVDs are the same size as CDs, but they can
be recorded on both sides and in two layers per side. On DVDs, video is
compressed by a factor of about 50, so a two-hour movie requires only 4
gigabytes, which can fit on one layer of one side. The use of both layers and
both sides increases the capacity of DVDs to about 16 gigabytes, which is

about 25 times the capacity of a CD. It's expected that DVD-ROM will
eventually replace CD-ROM for the distribution of software.

Are CD-ROM and DVD-ROM the modern day realization of Vannevar
Bush's Memex? He originally conceived of Memex as using microfilm, but
CD-ROM and DVD-ROM make much more sense for such a device.
Electronic media have an advantage over physical media by being easily
searchable. Unfortunately, few people have simultaneous access to multiple
CD or DVD drives. The closest that we've come to Bush's concept doesn't
involve storing all the information you'll need at your desk. It involves
interconnecting computers to give them the ability to share information and
use storage much more efficiently.

The first person to publicly operate a computer from a remote location was
George Stibitz, the same man who designed the Bell Labs relay computer in
the 1930s. The remote operation of a relay computer occurred at a
demonstration at Dartmouth in 1940.

The telephone system is built to transmit sound, not bits, over wires.
Sending bits over telephone wires requires that the bits be converted to
sound and then back again. A continuous sound wave of a single frequency
and a single amplitude (called a carrier) doesn't convey any substantial
information at all. But change something about that sound wave—in other
words, modulate that sound wave between two different states—and you
can represent 0s and 1s. The conversion between bits and sound occurs in a
device called the modem (which stands for modulator/demodulator). The
modem is a form of serial interface because the individual bits in a byte are
sent one after another rather than all at once. (Printers are often connected
to computers with a parallel interface: Eight wires allow an entire byte to be
transmitted at the same time.)

In early modems, a technique called frequency-shift keying (FSK) was
used. A modem operating at 300 bits per second (for example) might
convert a 0 bit to a frequency of 1070 Hz and a 1 bit to a frequency of 1270
Hz. Each byte is prefaced by a start bit and concluded with a stop bit, so
each byte requires 10 bits. At 300 bits per second, the transmission speed is
only 30 bytes per second. More modern modems use more sophisticated
techniques to achieve speeds over 100 times that.

An early home computer enthusiast could set up a computer and a modem
as a bulletin board system (BBS), to which other computers could call in
and download files, which means transferring files from a remote computer
to one's own computer. This concept was extended into large information
services such as CompuServe. In most cases, communication was entirely
in the form of ASCII text.

The Internet is qualitatively different from these early efforts because it's
decentralized. The Internet really exists as a collection of protocols for
computers to talk to one another. Of major importance is TCP/IP, which
consists of the Transmission Control Protocol and the Internet Protocol.
Rather than just sending ASCII characters through the wires, TCP/IP-based
transmitters divide larger blocks of data into smaller packets, which are sent
separately over the transmission line (often a telephone line) and
reassembled on the other end.

The popular graphical part of the Internet is the World Wide Web, which
makes use of HTTP, the Hypertext Transfer Protocol. The actual data
viewed on Web pages is defined by a text format called HTML, or
Hypertext Markup Language. The hypertext part of these names is a word
used to describe the linking of associated information, much like that
proposed by Vannevar Bush for the Memex. An HTML file can contain
links to other Web pages that can be easily invoked.

HTML is similar to the Rich Text Format that I described earlier, in that it
contains ASCII text with formatting information. HTML also allows
referencing pictures in the form of GIF files, PNG (Portable Network
Graphics) files, and JFIF (JPEG File Interchange Format) files. Most World
Wide Web browsers allow you to look at the HTML files, which is an
advantage of their text format. Another advantage of defining HTML as a
text file is that it's more easily searchable. Despite its name, HTML isn't
really a programming language such as we've explored in Chapters
Chapter 19 and Chapter 24. The Web browser reads the HTML file and
formats the text and graphics accordingly.

It's sometimes helpful if some special program code runs while you are
viewing and working with particular Web pages. Such code can run on
either the server (which is the computer on which the original Web pages
are stored) or the client, which is your computer. On the server side, usually
all necessary work (such as interpreting online forms that a client fills out)

can be handled with Common Gateway Interface (CGI) scripts. On the
client side, HTML files can contain a simple programming language known
as JavaScript. Your Web browser interprets the JavaScript statements just as
it interprets HTML text.

Why can't a Web site simply provide an executable program that can run on
your computer? Well, for one thing, what is your computer? If it's a
Macintosh, it needs an executable that contains PowerPC machine code and
uses the Mac OS API. A PC-compatible needs an executable that contains
Intel Pentium machine code and probably uses the Windows API. But there
are other computers and other graphical operating systems as well.
Moreover, you don't want to be indiscriminately downloading executable
files. They could originate from an untrustworthy source and might be
malicious in some way.

An answer to these problems was provided by Sun Microsystems in the
language Java (not to be confused with JavaScript). Java is a full-fledged
object-oriented programming language much like C++. In the preceding
chapter, I explained the difference between compiled languages (which
result in an executable that contains machine code), and interpreted
languages (which don't). Java is somewhere in between. Java programs
must be compiled, but the result of the compilation usually isn't machine
code. It's instead Java byte codes. These are similar in structure to machine
code, but they're for an imaginary computer called the Java virtual machine
(JVM). A computer running the compiled Java program emulates the JVM
by interpreting the Java byte codes. The Java program uses whatever
graphical operating system is on the machine, thus allowing platform-
independent programming.

While much of this book has focused on using electricity to send signals
and information through a wire, a more efficient medium is light
transmitted through optical fiber—thin tubes made of glass or polymer that
guide the light around corners. Light passing through such optical fibers can
achieve data transmission rates in the gigahertz region—some billion of bits
per second.

So it seems that photons, not electrons, will be responsible for delivering
much of the information of the future into our homes and offices; they'll be
like faster dots and dashes of Morse code and those careful pulses of

blinking light we once used to communicate late-night wisdom to our best
friend across the way.

Appendix A. Acknowledgments
Code was conceived in 1987. It rattled around in my head for nearly a

decade and was finally committed to a Microsoft Word file between

January 1996 and July 1999. I offer many thanks:

to the readers of early drafts of Code who contributed comments, criticisms,

and suggestions: Sheryl Canter, Jan Eastlund, Peter Goldeman, Lynn

Magalska, and Deirdre Sinnott;

to my agent, Claudette Moore of Moore Literary Agency, and to everyone

at Microsoft Press who helped make Code a reality, particularly those

whose names are listed on the copyright page of this book and on the

colophon, following the index;

to my mother, who never held me back;

to Little Cat, who shared my apartment with me from 1982 through May

1999, and who inspired many cat references in my writing;

to Web sites such as Bibliofind (www.bibliofind.com) and Advanced Book

Exchange (www.abebooks.com) that offer convenient access to used books,

and to the staff of the Science, Industry, and Business Library (SIBL)

branch of the New York Public Library (www.nypl.org);

to my friends in the rooms, without whose support none of this would be

possible;

and again to Deirdre, my ideal reader and so much more.

Charles Petzold

July 15, 1999

http://www.bibliofind.com/
http://www.abebooks.com/
http://www.nypl.org/

Appendix B. Bibliography
An annotated bibliography for this book is available on the World Wide

Web site www.charlespetzold.com/code.

http://www.charlespetzold.com/code

About the Author
Charles Petzold wrote the classic Programming Windows®, which is

currently in its fifth edition and one of the best-known and widely used

programming books of all time. He was honored in 1994 with the Windows

Pioneer Award, presented by Microsoft® founder Bill Gates and Windows

Magazine. He has been programming with Windows since first obtaining a

beta Windows 1.0 SDK in the spring of 1985, and he wrote the very first

magazine article on Windows programming in 1986. Charles is an MVP for

Client Application Development and the author of several other books

including Code: The Hidden Language of Computer Hardware and

Software.

Colophon
The manuscript for this book was prepared using Microsoft Word 2000.

Pages were composed using Adobe PageMaker 6.52, with text and display

type in Sabon and math fonts in Syntax. Composed pages were delivered to

the printer as electronic prepress files.

Dust Jacket and Cover Graphic Designer

Greg Hickman

Interior Book Design

Jimmie Young and Sally Slevin

Illustrator

Joel Panchot

Compositor

Elizabeth Hansford

Principal Proofreader/Copy Editor

Shawn Peck

Indexer

Liz Cunningham

	Code: The Hidden Language of Computer Hardware and Software
	Preface to the Paperback Edition
	1. Best Friends
	2. Codes and Combinations
	3. Braille and Binary Codes
	4. Anatomy of a Flashlight
	5. Seeing Around Corners
	6. Telegraphs and Relays
	7. Our Ten Digits
	8. Alternatives to Ten
	9. Bit by Bit by Bit
	10. Logic and Switches
	11. Gates (Not Bill)
	12. A Binary Adding Machine
	13. But What About Subtraction?
	14. Feedback and Flip-Flops
	15. Bytes and Hex
	16. An Assemblage of Memory
	17. Automation
	18. From Abaci to Chips
	19. Two Classic Microprocessors
	20. ASCII and a Cast of Characters
	21. Get on the Bus
	22. The Operating System
	23. Fixed Point, Floating Point
	24. Languages High and Low
	25. The Graphical Revolution
	A. Acknowledgments
	B. Bibliography
	About the Author
	Colophon

