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Friends are the family we choose for ourselves. This book is

dedicated to my friends Rômulo, Léo, Moto and Chris, who

kept pushing me to “finish the damn book already”.



I know that two & two make four—and should be

glad to prove it too if I could—though I must say if

by any sort of process I could convert 2 & 2 into five

it would give me much greater pleasure.

—LORD BYRON

1813 letter to his future wife Annabella.

Their daughter Ada Lovelace was the first programmer.
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Everybody in this country should learn
to program a computer, because it
teaches you how to think.

—STEVE JOBS

As computers changed the world with their unprecedented power, a

new science flourished: computer science. It showed how computers

could be used to solve problems. It allowed us to push machines to

their full potential. And we achieved crazy, amazing things.

Computer science is everywhere, but it’s still taught as boring

theory. Many coders never even study it! However, computer sci-

ence is crucial to effective programming. Some friends of mine sim-

ply can’t find a good coder to hire. Computing power is abundant,

but people who can use it are scarce.

This is my humble attempt to help the world, by pushing you

to use computers efficiently. This book presents computer science

concepts in their plain distilled forms. I will keep academic formal-

ities to a minimum. Hopefully, computer science will stick to your

mind and improve your code.

Fig63e ǔ ȈComputer Problemsȉ, courtesy of httpǽ//xkcd.com.

ix

http://xkcd.com
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I4 5hi4 book fo3 me?

If you want to smash problems with efficient solutions, this book

is for you. Little programming experience is required. If you al-

ready wrote a few lines of code and recognize basic programming

statements like for and while, you’ll be OK. If not, online pro-

gramming courses1 cover more than what’s required. You can do

one in a week, for free. For those who studied computer science,

this book is an excellent recap for consolidating your knowledge.

B65 i4n’5 com165e3 4cience j645 fo3 academic4?

This book is for everyone. It’s about computational thinking. You’ll

learn to change problems into computable systems. You’ll use com-

putational thinking on everyday problems. Prefetching and caching

will streamline your packing. Parallelism will speed up your cook-

ing. Plus, your code will be awesome.

May the force be with you,

Wlad

1http://code.energy/coding-courses.

x

http://code.energy/coding-courses
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Basics

Computer science is not about machines, in
the same way that astronomy is not about
telescopes. There is an essential unity of
mathematics and computer science.

—EDSGER DIJKSTRA

C
OMPUTERS NEED US to break down problems into chunks

they can crunch. To do this, we need some math. Don’t

panic, it’s not rocket science—writing good code rarely

calls for complicated equations. This chapter is just a toolbox for

problem solving. You’ll learn to:

Model ideas into flowcharts and pseudocode,

  Know right from wrong with logic,

Count stuff,

Calculate probabilities safely.

With this, you will have what it takes to translate your ideas into

computable solutions.

ǔ.ǔ Idea4

When you’re on a complex task, keep your brain at the top of

its game: dump all important stuff on paper. Our brains’ work-

ing memory easily overflows with facts and ideas. Writing every-

thing down is part of many organizing methods. There are several

ways to do it. We’ll first see how flowcharts are used to represent

processes. We’ll then learn how programmable processes can be

drafted in pseudocode. We’ll also try and model a simple problem

with math.

1
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Flo8cha354

When Wikipedians discussed their collaboration process, they cre-

ated a flowchart that was updated as the debate progressed. Having

a picture of what was being proposed helped the discussion:

Previous page state

Edit the page

Was your edition 

modified by others?

Do you agree with

the other person?

Discuss the

issue with the 

other person

New page state

No

No

Yes

Yes

NoDo you accept that 

modification?

Yes

Fig63e ǔ.ǔ Wiki edition process șadapted from httpǽ//wikipedia.orgȚ.

Like the editing process above, computer code is essentially a pro-

cess. Programmers often use flowcharts for writing down comput-

ing processes. When doing so, you should follow these guidelines1

for others to understand your flowcharts:

• Write states and instruction steps inside rectangles.

• Write decision steps, where the process may go different

ways, inside diamonds.

• Never mix an instruction step with a decision step.

• Connect sequential steps with arrows.

• Mark the start and end of the process.

1There’s even an ISO standard specifying precisely how software systems di-
agrams should be drawn, called UML: http://code.energy/UML.

http://wikipedia.org
http://code.energy/UML
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Let’s see how this works for finding the biggest of three numbers:

Start

Read numbers A, B, C

A > B?

A > C?B > C?

Print B Print C Print A

Stop

Yes

YesNoYes

No

No

Fig63e ǔ.Ǖ Finding the maximum value between three variables.

P4e6docode

Just as flowcharts, pseudocode expresses computational processes.

Pseudocode is human-friendly code that cannot be understood by

a machine. The following example is the same as fig. 1.2. Take a

minute and test it out with some sample values of A, B, and C:2

function maximumΰA, B, Cα

if A > B

if A > C

max ← A

else

max ← C

else

if B > C

max ← B

else

max ← C

print max

2Here, ← is the assignment operator: x ← ͠ reads x is set to 1.
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Notice how this example completely disregards the syntactic rules

of programming languages? When you write pseudocode, you can

even throw in some spoken language! Just as you use flowcharts

to compose general mind maps, let your creativity flow free when

writing pseudocode (fig. 1.3 ).

Fig63e ǔ.ǖ ȈPseudocode in Real Lifeȉ, courtesy of httpǽ//ctpǕǓǓ.com.

Ma5hema5ical Model4

A model is a set of concepts that represents a problem and its char-

acteristics. It allows us to better reason and operate with the prob-

lem. Creating models is so important it’s taught in school. High

school math is (or should be) about modeling problems into num-

bers and equations, and applying tools on those to reach a solution.

Mathematically described models have a great advantage: they

can be adapted for computers using well established math tech-

niques. If your model has graphs, use graph theory. If it has equa-

tions, use algebra. Stand on the shoulders of giants who created

these tools. It will do the trick. Let’s see that in action in a typical

high school problem:

LIVESTOCK FENCE Your farm has two types of livestock.

You have 100 units of barbed wire to make a rectangular

fence for the animals, with a straight division for separating

them. How do you frame the fence in order to maximize

the pasture’s area?

Starting with what’s to be determined, w and l are the pasture’s

dimensions; w × l, the area. Maximizing it means using all the

barbed wire, so we relate w and l with 100:

http://ctp200.com
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A = w × l,

100 = 2w + 3l.

l
w

Pick w and l that maximize the area A.

Plugging l from the second equation (l = 100−2w
3 ) into the first,

A =
100

3
w −

2

3
w2.

That’s a quadratic equation! Its maximum is easily found with the

high school quadratic formula. Quadratic equations are important

for you as a pressure cooking pot is valuable to cooks. They save

time. Quadratic equations help us solve many problems faster. Re-

member, your duty is to solve problems. A cook knows his tools,

you should know yours. You need mathematical modeling. And

you will need logic.

ǔ.Ǖ Logic

Coders work with logic so much it messes their minds. Still, many

coders don’t really learn logic and use it unknowingly. By learning

formal logic, we can deliberately use it to solve problems.

Fig63e ǔ.Ǘ ȈProgrammer’s Logicȉ, courtesy of httpǽ//programmers.life.

http://programmers.life
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We will start playing around with logical statements using special

operators and special algebra. We’ll then learn to solve problems

with truth tables and see how computers rely on logic.

O1e3a5o34

In common math, variables and operators (+, ×, −,…) are used

to model numerical problems. In mathematical logic, variables and

operators represent the validity of things. They don’t express num-

bers, but True/False values. For instance, the validity of the ex-

pression “if the pool is warm, I’ll swim” is based on the validity of

two things, which can be mapped to logical variables A and B:

A : The pool is warm.

B : I swim.

They’re either True or False.3 A = True means a warm pool;

B = False means no swimming. B can’t be half-true, because

I can’t half swim. Dependency between variables is expressed

with →, the conditional operator. A → B is the idea that

A = True implies B = True:

A → B : If the pool is warm, then I’ll swim.

With more operators, different ideas can be expressed. To negate

ideas, we use !, the negation operator. !A is the opposite of A:

!A : The pool is cold.

!B : I don’t swim.

TӈӅ CӏӎӔӒӁӐӏӓӉӔӉӖӅ Given A → B and I didn’t swim, what can be

said about the pool? A warm pool forces the swimming, so without

swimming, it’s impossible for the pool to be warm. Every condi-

tional expression has a contrapositive equivalent:

for any two variables A and B,

A → B is the same as !B → !A.

3Values can be in between in fuzzy logic, but it won’t be covered in this book.
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Another example: if you can’t write good code, you haven’t read this

book. Its contrapositive is if you read this book, you can write good

code. Both sentences say the same in different ways.4

TӈӅ BӉӃӏӎӄӉӔӉӏӎӁӌ Be careful, saying “if the pool is warm, I’ll swim”

doesn’t mean I’ll only swim in warm water. The statement promises

nothing about cold pools. In other words, A → B doesn’t mean

B → A. To express both conditionals, use the biconditional:

A ↔ B : I’ll swim if and only if the pool is warm.

Here, the pool being warm is equivalent to me swimming: knowing

about the pool means knowing if I’ll swim and vice-versa. Again,

beware of the inverse error: never presume B → A follows

from A → B.

Aӎӄ,OӒ, EӘӃӌӕӓӉӖӅOӒ These logical operators are the most famous,

as they’re often explicitly coded. AND expresses all ideas are True;

OR expresses any idea is True; XOR expresses ideas are of opposing

truths. Imagine a party serving vodka and wine:

A : You drank wine.

B : You drank vodka.

A OR B : You drank.

A AND B : You drank mixing drinks.

A XOR B : You drank without mixing.

Make sure you understand how the operators we’ve seen so far

work. The following table recaps all possible combinations for two

variables. Notice how A → B is equivalent to !A OR B, and

A XOR B is equivalent to !(A ↔ B).

4And by the way, they’re both actually true.
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Table ǔ.ǔ Logical operations for Ǘ possible values ofA andB.

A B !A A → B A ↔ B A AND B A OR B A XOR B

Boolean Algeb3a

As elementary algebra simplifies numerical expressions, boolean

algebra5 simplifies logical expressions.

AӓӓӏӃӉӁӔӉӖӉӔә Parentheses are irrelevant for sequences of AND or

OR operations. As sequences of sums or multiplications in elemen-

tary algebra, they can be calculated in any order.

A AND (B AND C) = (A AND B) AND C.

A OR (B OR C) = (A OR B) OR C.

DӉӓӔӒӉӂӕӔӉӖӉӔә In elementary algebra we factor multiplicative

terms from sums: a × (b + c) = (a × b) + (a × c). Likewise

in logic, ANDing after an OR is equivalent to ORing results of ANDs,

and vice versa:

A AND (B OR C) = (A AND B) OR (A AND C).

A OR (B AND C) = (A OR B) AND (A OR C).

DӅMӏӒӇӁӎ’ӓ 4Ӂӗ6 It can’t be summer and winter at once, so it’s ei-

ther not summer or not winter. And it’s not summer and not winter

if and only if it’s not the case it’s either summer or winter. Following

this reasoning, ANDs can be transformed into ORs and vice versa:

5After George Boole. His 1854 book joined logic and math, starting all this.
6De Morgan was friends with Boole. He tutored the young Ada Lovelace, who

became the first programmer a century before the first computer was constructed.
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!(A AND B) = !A OR !B,

!A AND !B = !(A OR B).

These rules transform logical models, reveal properties, and sim-

plify expressions. Let’s solve a problem:

HOT SERVER A server crashes if it’s overheating while

the air conditioning is off. It also crashes if it’s overheating

and its chassis cooler fails. In which conditions does the

server work?

Modeling it in logical variables, the conditions for the server to

crash can be stated in a single expression:

A : Server overheats.

B : Air conditioning off.

C : Chassis cooler fails.

D : Server crashes.

(A AND B) OR (A AND C) → D.

Using distributivity, we factorize the expression:

A AND (B OR C) → D.

The server works when (!D). The contrapositive reads:

!D → !(A AND (B OR C)).

We use DeMorgan’s Law to remove parentheses:

!D → !A OR !(B OR C).

Applying DeMorgan’s Law again,

!D → !A OR (!B AND !C).

This expression tells us that whenever the server works, either !A

(it’s not overheating), or !B AND !C (both air conditioning and

chassis cooler are working).
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T365h Table4

Another way to analyze logical models is checking what happens

in all possible configurations of its variables. A truth table has a

column for each variable. Rows represent possible combinations

of variable states.

One variable requires two rows: in one the variable is set True,

in the other False. To add a variable, we duplicate the rows. We

set the new variable True in the original rows, and False in the

duplicated rows (fig. 1.5). The truth table size doubles for each

added variable, so it can only be constructed for a few variables.7

V1

V2 V1

V2 V1V3

. . .

V2 V1V3V4

Fig63e ǔ.ǘ Tables listing the configurations of ǔ–ǘ logical variables.

Let’s see how a truth table can be used to analyze a problem.

FRAGILE SYSTEM We have to create a database system

with the following requirements:

I : If the database is locked, we can save data.

II : A database lock on a full write queue cannot happen.

III : Either the write queue is full, or the cache is loaded.

IV : If the cache is loaded, the database cannot be locked.

Is this possible? Under which conditions will it work?

7A truth table for 30 variables would have more than a billion rows.
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First we transform each requirement into a logical expression. This

database system can be modeled using four variables:

A : Database is locked.

B : Able to save data.

C : Write queue is full.

D : Cache is loaded.

∣
∣
∣
∣
∣
∣
∣
∣

I : A → B.

II : !(A AND C).
III : C OR D.

IV : D → !A.

We then create a truth table with all possible configurations. Extra

columns are added to check the requirements.

Table ǔ.Ǖ Truth table for exploring the validity of four expressions.

State # A B C D I II III IV All four

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

All requirements are met in states 9–11 and 13–15. In these states,

A = False, meaning the database can’t ever be locked. Notice

the cache will not be loaded only in states 10 and 14.
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To test what you’ve learned, solve the Zebra Puzzle.8 It’s a

famous logic problem wrongly attributed to Einstein. They say only

2% of people can solve it, but I doubt that. Using a big truth table

and correctly simplifying and combining logic statements, I’m sure

you’ll crack it.

Whenever you’re dealing with things that assume one of two

possibilities, remember they can be modeled as logic variables. This

way, it’s easy to derive expressions, simplify them, and draw conclu-

sions. Let’s now see the most impressive application of logic: the

design of electronic computers.

Logic in Com165ing

Groups of logical variables can represent numbers in binary form.9

Logic operations on binary digits can be combined to perform gen-

eral calculations. Logic gates perform logic operations on electric

current. They are used in electrical circuits that can perform calcu-

lations at very high speeds.

A logic gate receives values through input wires, performs its

operation, and places the result on its output wire. There are AND

gates, OR gates, XOR gates, and more. True and False are repre-

sented by electric currents with high or low voltage. Using gates,

complex logical expressions can be computed near instantly. For

example, this electrical circuit sums two numbers:

XOR

AND

XOR

AND

XOR

AND

A0

A1

B0

B1

S0

S1

S2

XOR

Fig63e ǔ.Ǚ A circuit to sum Ǖ-bit numbers given by pairs of logical

variables șA1A0 andB1B0Ț into a ǖ-bit number șS2S1S0Ț.

8http://code.energy/zebra-puzzle.
9True = 1, False = 0. If you have no idea why ͟͠͠ in binary represents

the number 5, check Appendix I for an explanation of number systems.

http://code.energy/zebra-puzzle
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Let’s see how this circuit works. Take a minute to follow the oper-

ations performed by the circuit to realize how the magic happens:

XOR

AND

XOR

AND

XOR1

1

0

1

1

0

1

AND

XOR

Fig63e ǔ.ǚ Calculating 2 + 3 = 5 șin binary, ͟͠ + ͠͠ = ͟͠͠Ț.

To take advantage of this fast form of computing, we transform

numerical problems to their binary/logical form. Truth tables help

model and test circuits. Boolean algebra simplifies expressions and

thus simplifies circuits.

At first, gates were made with bulky, inefficient and expensive

electrical valves. Once valves were replaced with transistors, logic

gates could be produced en masse. And we kept discovering ways

to make transistors smaller and smaller.10 The working principles

of the modern CPU are still based on boolean algebra. A modern

CPU is just a circuit of millions of microscopic wires and logic gates

that manipulate electric currents of information.

ǔ.ǖ Co6n5ing

It’s important to count things correctly—you’ll have to do it many

times when working with computational problems.11 The math in

this section will be more complex, but don’t be scared. Some people

think they can’t be good coders because they think they’re bad at

math. Well, I failed high school math , yet here I am . The

math that makes a good coder is not what’s required in typical math

exams from schools.

10In 2016, researchers created working transistors on a 1 nm scale. For refer-
ence, a gold atom is 0.15 nm wide.

11Counting and Logic belong to an important field to computer science called
Discrete Mathematics.
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Outside school, formulas and step-by-step procedures aren’t

memorized. They are looked up on the Internet when needed. Cal-

culations mustn’t be in pen and paper. What a good coder requires

is intuition. Learning about counting problems will strengthen that

intuition. Let’s now grind through a bunch of tools step by step:

multiplications, permutations, combinations and sums.

M6l5i1lying

If an event happens in n different ways, and a another event hap-

pens in m different ways, the number of different ways both events

can happen is n × m. For example:

CRACKING THE CODE A PIN code is composed of two

digits and a letter. It takes one second to try a PIN. In the

worst case, how much time do we need to crack a PIN?

Two digits can be chosen in 100 ways (00-99) and a letter in 26

ways (A-Z). Therefore, there are 100× 26 = 2, 600 possible PINs.

In the worst case, we have to try every single PIN until we find the

right one. After 2,600 seconds (43 minutes), we’ll have cracked it.

TEAM BUILDING There are 23 candidates who want

to join your team. For each candidate, you toss a coin and

only hire if it shows heads. How many team configurations

are possible?

Before hiring, the only possible team configuration is you alone.

Each coin toss then doubles the number of possible configurations.

This has to be done 23 times, so we compute 2 to the power 23:

2× 2× · · · × 2
︸ ︷︷ ︸

23 times

= 223 = 8, 388, 608 team configurations.

Note that one of these configurations is still you alone.
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Pe3m65a5ion4

If we have n items, we can order them in n factorial (n!) different

ways. The factorial is explosive, it gets to enormous numbers for

small values of n. If you are not familiar,

n! = n× (n− 1)× (n− 2)× · · · × 2× 1.

It’s easy to see n! is the number of ways n items can be ordered. In

how many ways can you choose a first item among n? After the first

item was chosen, in how many ways can you choose a second one?

Afterwards, how many options are left for a third? Think about it,

then we’ll move on to more examples.12

TRAVELING SALESMAN Your truck company delivers to

15 cities. You want to know in what order to serve these

cities to minimize gas consumption. If it takes a microsec-

ond to calculate the length of one route, how long does it

take to compute the length of all possible routes?

Each permutation of the 15 cities is a different route. The factorial

is the number of distinct permutations, so there are 15! = 15 ×
14× · · ·× 1 ≈ 1.3 trillion routes. That in microseconds is roughly

equivalent to 15 days. If instead you had 20 cities, it would take

77 thousand years.

THE PRECIOUS TUNE A musician is studying a scale

with 13 different notes. She wants you to render all possi-

ble melodies that use six notes only. Each note should play

once per melody, and each six-note melody should play for

one second. How much audio runtime is she asking for?

We want to count permutations of six out of the 13 notes. To ignore

permutations of unused notes, we must stop developing the facto-

rial after the sixth factor. Formally, n!/(n−m)! is the number of

possible permutations of m out of n possible items. In our case:

12By convention, 0! = 1. We say there’s one way to order zero items.
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13!

(13− 6)!
=

13× 12× 11× 10× 9× 8× 7!

7!

= 13× 12× 11× 10× 9× 8
︸ ︷︷ ︸

6 factors

= 1, 235, 520 melodies.

That’s over 1.2 million one-second melodies—it would take 343

hours to listen to everything. Better convince the musician to find

the perfect melody some other way.

Pe3m65a5ion4 8i5h Iden5ical I5em4

The factorial n! overcounts the number of ways to order n items

if some are identical. Identical items swapping their positions

shouldn’t count as a different permutation.

In a sequence of n items of which r are identical, there are r!
ways to reorder identical items. Thus, n! counts each distinct per-

mutation r! times. To get the number of distinct permutations, we

need to divide n! by this overcount factor. For instance, the number

of distinct permutations of the letters “CODE ENERGY” is 10!/3!.

PLAYING WITH DNA A biologist is studying a DNA seg-

ment related to a genetic disease. The segment is made

of 23 base pairs, where 9 must be A-T, 14 must be G-C.

She wants to run a simulation task on every possible DNA

segment having these numbers of base pairs. How many

simulation tasks is she looking at?

First we calculate all possible permutations of the 23 base pairs.

Then we divide the result to account for the 9 repeated A-T and

the 14 repeated G-C base pairs:

23!/(9!× 14!) = 817, 190 base pair permutations.

But the problem isn’t over. Considering orientation of base pairs:
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A

T C

G

A

T

isn’t the same as
A

T

C

G A

T

For each sequence of 23 base pairs, there are 223 distinct orienta-

tion configurations. Therefore, the total is:

817, 190× 223 ≈ 7 trillion sequences.

And that’s for a tiny 23 base pair sequence with a known distribu-

tion. The smallest replicable DNA known so far are from the minus-

cule Porcine circovirus, and it has 1,800 base pairs! DNA code and

life are truly amazing from a technological point of view. It’s crazy:

human DNA has about 3 billion base pairs, replicated in each of the

3 trillion cells of the human body.

Combina5ion4

Picture a deck of 13 cards containing all  spades. How many ways

can you deal six cards to your opponent? We’ve seen 13!/(13 −
6)! is the number of permutations of six out of 13 possible items.

Since the order of the six cards doesn’t matter, we must divide this

by 6! to obtain:

13!

6!(13− 6)!
= 1, 716 combinations.

The binomial
(
n

m

)
is the number of ways to select m items out of

a set of n items, regardless of order:

(
n

m

)

=
n!

m!(n−m)!
.

The binomial is read “n choose m”.

CHESS QUEENS You have an empty chessboard and 8

queens, which can be placed anywhere on the board. In

how many different ways can the queens be placed?
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The chessboard has 64 squares in an 8×8 grid. The number of ways

to choose 8 squares out of the available 64 is
(
64
8

)
≈ 4.4 billion.13

S6m4

Calculating sums of sequences occurs often when counting. Sequen-

tial sums are expressed using the capital-sigma (Σ) notation. It

indicates how an expression will be summed for each value of i:

finish i∑

start i

expression of i.

For instance, summing the first five odd numbers is written:

4∑

i=0

(2i+ 1) = 1 + 3 + 5 + 7 + 9.

Note i was replaced by each number between 0 and 4 to obtain 1,

3, 5, 7 and 9. Summing the first n natural numbers is thus:

n∑

i=1

i = 1 + 2 + · · ·+ (n− 1) + n.

When the prodigious mathematician Gauss was ten years old, he

got tired of summing natural numbers one by one and found this

neat trick:

n∑

i=1

i =
n(n+ 1)

2
.

Can you guess how Gauss discovered this? The trick is explained

in Appendix II. Let’s see how we can use it to solve a problem:

FLYING CHEAP  You need to fly to New York City any-

time in the next 30 days. Air ticket prices change unpre-

dictably according to the departure and return dates. How

many pairs of days must be checked to find the cheapest

tickets for flying to NYC and back within the next 30 days?

13Pro tip: Google ͥͣ choose ͧ for the result.
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Any pair of days between today (day 1) and the last day (day 30)

is valid, as long as the return is the same day of later than the de-

parture. Hence, 30 pairs begin with day 1, 29 pairs begin with

day 2, 28 with day 3, and so on. There’s only one pair that be-

gins on day 30. So 30+29+…+2+1 is the total number of pairs

that needs to be considered. We can write this
∑30

i=1 i and use

our handy formula:

30∑

i=1

i =
30(30 + 1)

2
= 465 pairs.

Also, we can solve this using combinations. From the 30 days avail-

able, pick two. The order doesn’t matter: the earlier day is the

departure, the later day is the return. This gives
(
30
2

)
= 435. But

wait! We must count the cases where arrival and departure are the

same date. There are 30 such cases, thus
(
30
2

)
+ 30 = 465.

ǔ.Ǘ P3obabili5y

The principles of randomness will help you understand gambling,

forecast the weather, or design a backup system with low risk of fail-

ure. The principles are simple, yet misunderstood by most people.

Fig63e ǔ.Ǜ ȈRandom numberȉ, courtesy of httpǽ//xkcd.com.

http://xkcd.com
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Let’s start using our counting skills to compute odds. Then we’ll

learn how different event types are used to solve problems. Finally,

we’ll see why gamblers lose everything.

Co6n5ing O65come4

A die roll has six possible outcomes: , , , , and . The

chances of getting are thus 1/6. How about getting an odd num-

ber? It can happen in three ways ( , or ), so the chances are

3/6 = 1/2. Formally, the probability of an event to occur is:

P (event) =
# of ways event can happen

# of possible outcomes
.

This works because each possible outcome is equally likely to hap-

pen: the die is well balanced and the thrower isn’t cheating.

TEAM BUILDING, AGAIN There are 23 candidates who

want to join your team. For each candidate, you toss a coin

and only hire if it shows heads. What are the chances of

hiring nobody?

We’ve seen there are 223 = 8, 388, 608 possible team configu-

rations. The only way to hire nobody is by tossing 23 consecu-

tive tails. The probability of that happening is thus P (nobody) =
1/8, 388, 608. To put things into perspective, the probability that a

given commercial airline flight crashes is about one in five million.

Inde1enden5 E7en54

If you toss a coin and roll a die, the chance of getting heads and

is 1/2 × 1/6 = 1/12 ≈ 0.08, or 8%. When the outcome

of an event does not influence the outcome of another event, they

are independent. The probability that two independent events will

happen is the product of their individual probabilities.

BACKING UP You need to store data for a year. One

disk has a probability of failing of one in a billion. Another

disk costs 20% the price but has a probability of failing of

one in two thousand. What should you buy?
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If you use three cheap disks, you only lose the data if all three

disks fail. The probability of that happening is (1/2, 000)3 =
1/8, 000, 000, 000. This redundancy achieves a lower risk of data

loss than the expensive disk, while costing only 60% the price.

M656ally Excl64i7e E7en54

A die roll cannot simultaneously yield and an odd number. The

probability to get either or an odd number is thus 1/6 + 1/2 =
2/3. When two events cannot happen simultaneously, they are mu-

tually exclusive. If you need any of the mutually exclusive events

to happen, just sum their individual probabilities.

SUBSCRIPTION CHOICE  Your website offers three plans:

free, basic, or pro. You know a random new customer has

a probability of 70% of choosing the free plan, 20% for the

basic, and 10% for the pro. What are the chances a new

user will sign up for a paying plan?

The events are mutually exclusive: a user can’t choose both the

basic and pro plans at the same time. The probability the user will

pay is 0.2 + 0.1 = 0.3.

Com1lemen5a3y E7en54

A die roll cannot simultaneously yield a multiple of three ( , )

and a number not divisible by three, but it must yield one of them.

The probability to get a multiple of three is 2/6 = 1/3, so the

probability to get a number not divisible by three is 1−1/3 = 2/3.

When two mutually exclusive events cover all possible outcomes,

they are complementary. The sum of individual probabilities of

complementary events is thus 100%.

TOWER DEFENSE GAME Your castle is defended by five

towers. Each tower has a 20% probability of disabling an

invader before he reaches the gate. What are the chances

of stopping him?
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There’s 0.2 + 0.2 + 0.2 + 0.2 + 0.2 = 1, or a 100% chance of

hitting the enemy, right? Wrong! Never sum the probabilities of

independent events, that’s a common mistake. Use complementary

events twice:

• The 20% chance of hitting is complementary to the

80% chance of missing. The probability that all towers

miss is: 0.85 ≈ 0.33.

• The event “all towers miss” is complementary to “at

least one tower hits”. The probability of stopping the

enemy is: 1− 0.33 = 0.67.

The Gamble3’4 Fallacy

If you flip a normal coin ten times, and you get ten heads, then

on the 11th flip, are you more likely to get a tail? Or, by playing

the lottery with the numbers 1 to 6, are you less likely to win than

playing with more evenly spaced numbers?

Don’t be a victim of the gambler’s fallacy. Past events never

affect the outcome of an independent event. Never. Ever. In a

truly random lottery drawing, the chances of any specific numbers

being chosen is the same as any other. There’s no “hidden law”

that forces numbers that weren’t frequently chosen in the past to

be chosen more often in the future.

Ad7anced P3obabili5ie4

There’s far more to probability than we can cover here. Always

remember to look for more tools when tackling complex problems.

For example:

TEAM BUILDING, AGAIN AND AGAIN There are 23 can-

didates who want to join your team. For each candidate,

you toss a coin and only hire if it shows heads. What are

the chances of hiring seven people or less?

Yes, this is hard. Googling around will eventually lead you to the

“binomial distribution”. You can visualize this on Wolfram Alpha14

by typing: Bΰ͢͡,͠/͡α <= ͦ.
14http://wolframalpha.com.

http://wolframalpha.com
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Concl64ion

In this chapter, we’ve seen things that are intimately related to prob-

lem solving, but do not involve any actual coding. Section 1.1

explains why and how we should write things down. We create

models for our problems, and use conceptual tools on the models

we create. Section 1.2 provides a toolbox for handling logic, with

boolean algebra and truth tables.

Section 1.3 shows the importance of counting possibilities and

configurations of various problems. A quick back-of-the-envelope

calculation can show you if a computation will be straightforward

or fruitless. Novice programmers often lose time analyzing way

too many scenarios. Finally, section 1.4 explains the basic rules of

counting odds. Probability is very useful when developing solutions

that must interact with our wonderful but uncertain world.

With this, we’ve outlined many important aspects of what aca-

demics call Discrete Mathematics. Many more fun theorems can be

picked up from the references below or navigating Wikipedia. For

instance, you can use the “Pigeonhole Principle” to prove at least

two people in New York City have exactly the same number of hairs!

Some of what we learned here will be especially relevant in

the next chapter, where we’ll discover perhaps the most important

aspect of computer science.

Refe3ence

• Discrete Mathematics and its Applications, 7th Edition

– Get it at https://code.energy/rosen

• Prof. Jeannette Wing’s slides on computational thinking

– Get it at https://code.energy/wing

https://code.energy/rosen
https://code.energy/wing
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Complexity

In almost every computation, a variety of arrangements
for the processes is possible. It is essential to choose
that arrangement which shall tend to minimize the
time necessary for the calculation.

—ADA LOVELACE

H
OW MUCH TIME does it take to sort 26 shuffled cards? If

instead you had 52 cards, would it take twice as long?

How much longer would it take for a thousand decks of

cards? The answer is intrinsic to the method used to sort the cards.

A method is a list of unambiguous instructions for achieving a

goal. A method that always requires a finite series of operations

is called an algorithm. For instance, a card-sorting algorithm is a

method that will always specify some operations to sort a deck of

26 cards per suit and per rank.

Less operations need less computing power. We like fast so-

lutions, so we monitor the number of operations in our algorithms.

Many algorithms require a fast-growing number of operations when

the input grows in size. For example, our card-sorting algorithm

could take few operations to sort 26 cards, but four times more

operations to sort 52 cards!

To avoid bad surprises when our problem size grows, we find

the algorithm’s time complexity. In this chapter, you’ll learn to:

Count and interpret time complexities,

Express their growth with fancy Big-O’s,

Run away from exponential algorithms,

Make sure you have enough computer memory.

But first, how do we define time complexity?

25
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Time complexity is written T(n). It gives the number of oper-

ations the algorithm performs when processing an input of size n.

We also refer to an algorithm’sT(n) as its running cost. If our card-

sorting algorithm follows T(n) = n2, we can predict how much

longer it takes to sort a deck once we double its size: T(2n)
T(n) = 4.

Ho1e fo3 5he be45, 13e1a3e fo3 5he 8o345

Isn’t it faster to sort a pile of cards that’s almost sorted already?

Input size isn’t the only characteristic that impacts the number of

operations required by an algorithm. When an algorithm can have

different values of T(n) for the same value of n, we resort to cases:

• BEST CASE: when the input requires the minimum number of

operations for any input of that size. In sorting, it happens

when the input is already sorted.

• WORST CASE: when the input requires the maximum num-

ber of operations for any input of that size. In many sorting

algorithms, that’s when the input was given in reverse order.

• AVERAGE CASE: refers to the average number of operations

required for typical inputs of that size. For sorting, an input

in random order is usually considered.

In general, the most important is the worst case. From there, you

get a guaranteed baseline you can always count on. When nothing

is said about the scenario, the worst case is assumed. Next, we’ll

see how to analyze a worst case scenario, hands on.

Fig63e Ǖ.ǔ ȈEstimating Timeȉ, courtesy of httpǽ//xkcd.com.

http://xkcd.com
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Ǖ.ǔ Co6n5ing Time

We find the time complexity of an algorithm by counting the num-

ber of basic operations it requires for a hypothetical input of size n.

We’ll demonstrate it with Selection Sort, a sorting algorithm that

uses a nested loop. An outer for loop updates the current position

being sorted, and an inner for loop selects the item that goes in

the current position:1

function selection_sortΰlistα

for current ← ͠ … list.length - ͠

smallest ← current

for i ← current + ͠ … list.length

if list[i] < list[smallest]

smallest ← i

list.swap_itemsΰcurrent, smallestα

Let’s see what happens with a list of n items, assuming the worst

case. The outer loop runs n − 1 times and does two operations

per run (one assignment and one swap) totaling 2n−2 operations.

The inner loop first runs n−1 times, then n−2 times, n−3 times,

and so on. We know how to sum these types of sequences:2

# of inner

loop runs
=

n−1 total runs of the outer loop.
︷ ︸︸ ︷

n− 1

1st pass of outer loop

+ n− 2

2nd pass of outer loop

+ · · · + 2 + 1

=

n−1∑

i=1

i =
(n− 1)(n)

2
=

n2 − n

2
.

In the worst case, the if condition is always met. This means the

inner loop does one comparison and one assignment (n2 − n)/2
times, hence n2−n operations. In total, the algorithm costs 2n−2
operations for the outer loop, plus n2 − n operations for the inner

loop. We thus get the time complexity:

T(n) = n2 + n− 2.

1To understand an new algorithm, run it on paper with a small sample input.
2From sec. 1.3,

∑
n

i=1
i = n(n+ 1)/2.
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Now what? If our list size was n = 8 and we double it, the sorting

time will be multiplied by:

T(16)

T(8)
=

162 + 16− 2

82 + 8− 2
≈ 3.86.

If we double it again we will multiply time by 3.90. Double it over

and over and find 3.94, 3.97, 3.98. Notice how this gets closer and

closer to 4? This means it would take four times as long to sort two

million items than to sort one million items.

Unde345anding G3o85h

Say the input size of an algorithm is very large, and we increase it

even more. To predict how the execution time will grow, we don’t

need to know all terms of T(n). We can approximate T(n) by its

fastest-growing term, called the dominant term.

INDEX CARDS Yesterday, you knocked over one box of

index cards. It took you two hours of Selection Sort to fix

it. Today, you spilled ten boxes. How much time will you

need to arrange the cards back in?

We’ve seen Selection Sort follows T(n) = n2 + n− 2. The fastest-

growing term is n2, therefore we can write T(n) ≈ n2. Assuming

there are n cards per box, we find:

T(10n)

T(n)
≈

(10n)2

n2
= 100.

It will take you approximately 100×(2 hours) = 200 hours! What

if we had used a different sorting method? For example, there’s

one called “Bubble Sort” whose time complexity is T(n) = 0.5n2+
0.5n. The fastest-growing term then gives T(n) ≈ 0.5n2, hence:

T(10n)

T(n)
≈

0.5× (10n)2

0.5× n2
= 100.



Complexity | Ǖǜ

Fig63e Ǖ.Ǖ Zooming out n2, n2 + n − 2, and 0.5n2 + 0.5n,
as n gets larger and larger.

The 0.5 coefficient cancels itself out! The idea that n2 − n − 2
and 0.5n2 + 0.5n both grow like n2 isn’t easy to get. How does

the fastest-growing term of a function ignore all other numbers and

dominate growth? Let’s try to visually understand this.

In fig. 2.2, the two time complexities we’ve seen are compared

to n2 at different zoom levels. As we plot them for larger and larger

values of n, their curves seem to get closer and closer. Actually, you

can plug any numbers into the bullets of T(n) = • n2 + • n+ •,

and it will still grow like n2.

Remember, this effect of curves getting closer works if the

fastest-growing term is the same. The plot of a function with a lin-

ear growth (n) never gets closer and closer to one with a quadratic

growth (n2), which in turn never gets closer and closer to one

having a cubic growth (n3).

That’s why with very big inputs, algorithms with a quadratically

growing cost perform a lot worse than algorithms with a linear cost.

However they perform a lot better than those with a cubic cost. If

you’ve understood this, the next section will be easy: we will just

learn the fancy notation coders use to express this.
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Ǖ.Ǖ The Big-O No5a5ion

There’s a special notation to refer to classes of growth: the Big-O

notation. A function with a fastest-growing term of 2n or weaker is

O(2n); one with a quadratic or weaker growth is O(n2); growing

linearly or less, O(n), and so on. The notation is used for expressing

the dominant term of algorithms’ cost functions in the worst case—

that’s the standard way of expressing time complexity.3

Fig63e Ǖ.ǖ Diferent orders of growth oten seen insideO.

Both Selection Sort and Bubble Sort are O(n2), but we’ll soon dis-

cover O(n logn) algorithms that do the same job. With our O(n2)
algorithms, 10× the input size resulted in 100× the running cost.

Using a O(n logn) algorithm, 10× the input size results in only

10 log 10 ≈ 34× the running cost.

When n is a million, n2 is a trillion, whereas n logn is just a few

million. Years running a quadratic algorithm on a large input could

be equivalent to minutes if aO(n logn) algorithm was used. That’s

why you need time complexity analysis when you design systems

that handle very large inputs.

When designing a computational system, it’s important to an-

ticipate the most frequent operations. Then you can compare the

Big-O costs of different algorithms that do these operations.4 Also,

3We say ‘oh’, e.g., “that sorting algorithm is oh-n-squared”.
4For the Big-O complexities of most algorithms that do common tasks, see

http://code.energy/bigo.

http://code.energy/bigo
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most algorithms only work with specific input structures. If you

choose your algorithms in advance, you can structure your input

data accordingly.

Some algorithms always run for a constant duration regardless

of input size—they’re O(1). For example, checking if a number

is odd or even: we see if its last digit is odd and boom, problem

solved. No matter how big the number. We’ll see more O(1) al-

gorithms in the next chapters. They’re amazing, but first let’s see

which algorithms are not amazing.

Ǖ.ǖ Ex1onen5ial4

We say O(2n) algorithms are exponential time. From the graph of

growth orders (fig. 2.3), it doesn’t seem the quadratic n2 and the

exponential 2n are much different. Zooming out the graph, it’s ob-

vious the exponential growth brutally dominates the quadratic one:

Fig63e Ǖ.Ǘ Diferent orders of growth, zoomed out. The linear and

logarithmic curves grow so little they aren’t visible anymore.

Exponential time grows so much, we consider these algorithms “not

runnable”. They run for very few input types, and require huge

amounts of computing power if inputs aren’t tiny. Optimizing ev-

ery aspect of the code or using supercomputers doesn’t help. The

crushing exponential always dominates growth and keeps these al-

gorithms unviable.



ǖǕ | CͧͥͨͭͬEͪ ͫCIEͦCE ͜IͫͬILL͜͝

To illustrate the explosiveness of exponential growth, let’s

zoom out the graph even more and change the numbers (fig. 2.5).

The exponential was reduced in power (from 2 to 1.5) and had its

growth divided by a thousand. The polynomial had its exponent

increased (from 2 to 3) and its growth multiplied by a thousand.

Fig63e Ǖ.ǘ No exponential can be beaten by a polynomial. At this

zoom level, even the n logn curve grows too little to be visible.

Some algorithms are even worse than exponential time algorithms.

It’s the case of factorial time algorithms, whose time complexities

are O(n!). Exponential and factorial time algorithms are horrible,

but we need them for the hardest computational problems: the fa-

mous NP-complete problems. We will see important examples of

NP-complete problems in the next chapter. For now, remember

this: the first person to find a non-exponential algorithm to a NP-

complete problem gets a million dollars 5 from the Clay Mathe-

matics Institute.

It’s important to recognize the class of problem you’re dealing

with. If it’s known to be NP-complete, trying to find an optimal

solution is fighting the impossible. Unless you’re shooting for that

million dollars.

5It has been proven a non-exponential algorithm for any NP-complete prob-
lem could be generalized to all NP-complete problems. Since we don’t know if
such an algorithm exists, you also get a million dollars if you prove an NP-complete
problem cannot be solved by non-exponential algorithms!
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Ǖ.Ǘ Co6n5ing Memo3y

Even if we could perform operations infinitely fast, there would still

be a limit to our computing power. During execution, algorithms

need working storage to keep track of their ongoing calculations.

This consumes computer memory, which is not infinite.

The measure for the working storage an algorithm needs is

called space complexity. Space complexity analysis is similar to

time complexity analysis. The difference is that we count computer

memory, and not computing operations. We observe how space

complexity evolves when the algorithm’s input size grows, just as

we do for time complexity.

For example, Selection Sort (sec. 2.1) just needs working stor-

age for a fixed set of variables. The number of variables does not

depend on the input size. Therefore, we say Selection Sort’s space

complexity is O(1): no matter what the input size, it requires the

same amount of computer memory for working storage.

However, many other algorithms need working storage that

grows with input size. Sometimes, it’s impossible to meet an al-

gorithm’s memory requirements. You won’t find an appropriate

sorting algorithm with O(n logn) time complexity and O(1) space

complexity. Computer memory limitations sometimes force a trade-

off. With low memory, you’ll probably need an algorithm with slow

O(n2) time complexity because it has O(1) space complexity. In

future chapters, we’ll see how clever data handling can improve

space complexity.

Concl64ion

In this chapter, we learned algorithms can have different types of vo-

racity for consuming computing time and computer memory. We’ve

seen how to assess it with time and space complexity analysis. We

learned to calculate time complexity by finding the exact T(n) func-

tion, the number of operations performed by an algorithm.

We’ve seen how to express time complexity using the Big-O no-

tation (O). Throughout this book, we’ll perform simple time com-

plexity analysis of algorithms using this notation. Many times, cal-
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culating T(n) is not necessary for inferring the Big-O complexity

of an algorithm. We’ll see easier ways to calculate complexity in

the next chapter.

We’ve seen the cost of running exponential algorithms explode

in a way that makes these algorithms not runnable for big inputs.

And we learned how to answer these questions:

• Given different algorithms, do they have a significant differ-

ence in terms of operations required to run?

• Multiplying the input size by a constant, what happens with

the time an algorithm takes to run?

• Would an algorithm perform a reasonable number of opera-

tions once the size of the input grows?

• If an algorithm is too slow for running on an input of a given

size, would optimizing the algorithm, or using a supercom-

puter help?

In the next chapter, we’ll focus on exploring how strategies under-

lying the design of algorithms are related to their time complexity.

Refe3ence

• The Art of Computer Programming, Vol. 1, by Knuth

– Get it at https://code.energy/knuth

• The Computational Complexity Zoo, by hackerdashery

– Watch it at https://code.energy/pnp

https://code.energy/knuth
https://code.energy/pnp
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Strategy

If you find a good move, look for a better one.

—EMANUEL LASKER

H
ISTORY REMEMBERS GENERALS who use sound strategy to

achieve grand results. Excelling at problem solving re-

quires being a good strategist. This chapter covers the

main strategies for algorithm design. You will learn to:

Handle repetitive tasks through iteration,

Iterate elegantly using recursion,

Use brute force when you’re lazy but powerful,

Test bad options and then backtrack,

Save time with heuristics for a reasonable way out,

Divide and conquer your toughest opponents,

Identify old issues dynamically not to waste energy again,

Bound your problem so the solution doesn’t escape.

There are a lot of tools we will see here, but don’t worry. We’ll

start with simple problems and progressively build better solutions

as new techniques are uncovered. Soon enough, you will overcome

your computational problems with sound and eloquent solutions.

ǖ.ǔ I5e3a5ion

The iterative strategy consists in using loops (e.g. for, while)

to repeat a process until a condition is met. Each step in a loop

is called an iteration. It’s great for running through an input and

applying the same operations on every part of it. For example:

35
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FISH REUNION You’re given a list of saltwater fish and

a list of freshwater fish, both in alphabetical order. How do

you create a list featuring all the fish in alphabetical order?

We can iteratively compare the top items of the two lists as follows:

Cod
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Herring
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Herring
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Carp

Cod

Herring

Ide

Marlin

Trout

Fig63e ǖ.ǔ Merging two sorted lists into a third sorted list.

The process can be written in a single while loop:

function mergeΰsea, freshα

result ← List.new

while not ΰsea.empty and fresh.emptyα

if sea.top_item > fresh.top_item

fish ← sea.remove_top_item

else

fish ← fresh.remove_top_item

result.appendΰfishα

return result
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It loops over all names in the inputs, performing a fixed number of

operations for each name.1 Hence the merge algorithm is O(n).

Ne45ed Loo14 and 5he Po8e3 Se5

In the previous chapter, we’ve seem how selection_sort uses a

loop nested inside another one. Now we’ll learn how to use a nested

loop for computing power sets. Given a collection of objects S, the

power set of S is the set containing all subsets of S.2

EXPLORING SCENTS Floral fragrances are made combin-

ing scents from flowers. Given a set of flowers F , how do

you list all fragrances that can be made?

Any fragrance is made from a subset of F , so its power set contains

all possible fragrances. We can compute this power set iteratively.

For zero flowers only one fragrance is possible: the one having no

scent. For considering an additional flower, we duplicate the fra-

grances we already have, adding the new flower to the duplicated

fragrances. It’s easier to understand that visually:

Fig63e ǖ.Ǖ Iteratively listing all fragrances using four flowers.

The process can be described using loops. An outer loop keeps track

of the next flower to consider. An inner loop duplicates the fra-

grances, adding the current flower to the duplicates.

1The input size is the number of items in both input lists combined. The
while loop does three operations for each of these items, hence T(n) = 3n.

2See Appendix III if you need a better explanation of sets.
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function power_setΰflowersα

fragrances ← Set.new

fragrances.addΰSet.newα

for each flower in flowers

new_fragrances ← copyΰfragrancesα

for each fragrance in new_fragrances

fragrance.addΰflowerα

fragrances ← fragrances + new_fragrances

return fragrances

A single extra flower causes fragrances to double in size, indicat-

ing exponential growth (2k+1 = 2× 2k ). Algorithms that require

double the operations if the input size increases by a single item are

exponential, with O(2n) time complexity.

Generating power sets is equivalent to generating truth tables

(sec. 1.2). If we map each flower to a boolean variable, any fra-

grance is representable as True/False values of these variables.

In these variables’ truth table each row represents a possible fra-

grance formula.

ǖ.Ǖ Rec634ion

We say there’s recursion when a function delegates work to clones

of itself. A recursive algorithm will naturally come to mind for

solving a problem defined in terms of itself. For example, take

the famous Fibonacci sequence. It starts with two ones, and

each subsequent number is the sum of the two previous numbers:

1, 1, 2, 3, 5, 8, 13, 21,… How do you code a function that returns

the nth Fibonnacci number?

function fibΰnα

if n ≤ ͡

return ͠

return fibΰn - ͠α + fibΰn - ͡α

Using recursion requires creativity for seeing how a problem can

be stated in terms of itself. Checking if a word is palindrome3 is

3Palindromes are read backwards like they read normally, e.g., Ada, racecar.
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fib(6)

fib(4)

fib(2)fib(3)

fib(1)fib(2)

fib(5)

fib(3)fib(4)

fib(2)fib(3)

fib(1)fib(2)

fib(1)fib(2)

Fig63e ǖ.ǖ Calculating the Ǚᵗʰ Fibonacci number recursively.

checking if the word changes if it’s reversed. But also a word is

palindrome if its first and last characters are equal and the sub-

word between those characters is a palindrome:

function palindromeΰwordα

if word.length ≤ ͠

return True

if word.first_char ≠ word.last_char

return False

w ← word.remove_first_and_last_chars

return palindromeΰwα

palindrome('racecar')

palindrome('aceca')

palindrome('cec')

palindrome('e')

Fig63e ǖ.Ǘ Checking if ȉracecarȉ is palindrome recursively.
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Recursive algorithms have base cases, when the input is too small

to be further reduced. Base cases for fib are numbers 1 and 2; for

palindrome, they’re words with one or zero characters.

Rec634ion 74. I5e3a5ion

Recursive algorithms are generally simpler and shorter than itera-

tive ones. Compare this recursive algorithm with previous section’s

power_set, which doesn’t use recursion:

function recursive_power_setΰitemsα

ps ← copyΰitemsα

for each e in items

ps ← ps.removeΰeα

ps ← ps + recursive_power_setΰpsα

ps ← ps.addΰeα

return ps

This simplicity comes at a price. Recursive algorithms spawn nu-

merous clones of themselves when they run, introducing a compu-

tational overhead. The computer must keep track of unfinished

recursive calls and their partial calculations, requiring more mem-

ory. And extra CPU cycles are spent to switch from a recursive call

to the next and back.

This potential problem can be visualized in recursion trees:

a diagram showing how the algorithm spawns more calls as it

delves deeper in calculations. We’ve seen recursion trees for cal-

culating Fibonacci numbers (fig. 3.3) and checking palindrome

words (fig. 3.4).

If performance must be maximized, we can avoid this overhead

by rewriting recursive algorithms in a purely iterative form. Doing

so is always possible. It’s a trade: the iterative code generally runs

faster but it’s also more complex and harder to understand.

ǖ.ǖ B365e Fo3ce

The brute force strategy solves problems by inspecting all of the

problem’s possible solution candidates. Also known as exhaustive

search, this strategy is usually naive and unskilled: even when there
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are billions of candidates, it relies on the computer’s sheer force for

checking every single one.

Fig63e ǖ.ǘ Courtesy of httpǽ//geek-and-poke.com.

Let’s see how we can use it to solve this problem:

BEST TRADE You have the daily prices of gold for a

interval of time. You want to find two days in this interval

such that if you had bought then sold gold at those dates,

you’d have made the maximum possible profit.

Buying at the lowest price and selling at the highest one isn’t always

possible: the lowest price could happen after the highest, and time

travel isn’t an option. A brute force approach finds the answer eval-

uating all possible day pairs. For each pair it finds the profit trading

those days, comparing it to the best trade seen so far. We know

http://geek-and-poke.com
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the number of pairs of days in an interval increases quadratically

as the interval increases.4 Without writing the code, we’re already

sure it must be O(n2).
Other strategies can be applied for solving the Best Trade prob-

lem with a better time complexity—we’ll soon explore those. But in

some cases, the brute force approach gives indeed the best possible

time complexity. That’s the case of the next problem:

KNAPSACK You have a knapsack to carry products for

selling. It holds up to a certain weight, not enough for

carrying all your products—you must choose which ones to

carry. Knowing the weight and sales value of each product,

which choice of products gives the highest revenue?

The power set of your products5 contains all possible product se-

lections. A brute force approach simply checks all these selections.

Since we already know how to compute power sets, the brute force

algorithm is easy:

function knapsackΰitems, max_weightα

best_value ← ͟

for each candidate in power_setΰitemsα

if total_weightΰcandidateα ≤ max_weight

if sales_valueΰcandidateα > best_value

best_value ← sales_valueΰcandidateα

best_candidate ← candidate

return best_candidate

For n products there are 2n product selections. For each, we check

if its total weight doesn’t exceed the knapsack capacity and if its

sales value is higher than best found so far. That’s a fixed number of

operations per product selection, meaning the algorithm is O(2n).
However, not every product selection must be checked. Many

leave the knapsack half empty, hinting there are better approaches.6

Next we’ll learn strategies to optimize our search for a solution, ef-

ficiently discarding as many solution candidates as possible.

4From sec. 1.3, there are n(n+ 1)/2 pairs of days in an interval of n days.
5Again, for an explanation of power sets, see Appendix III.
6The Knapsack problem is part of the NP-complete class we discussed in

sec. 2.3. No matter the strategy, only exponential algorithms will solve it.
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ǖ.Ǘ Back53acking

Have you ever played chess? Chess pieces

move on an 8 × 8 board, attacking enemy

pieces. The queen is the most powerful piece:

it can attack pieces that occupy its row, its

column, or its diagonals. The next strategy

will be explained in the context of a famous

chess problem:

EIGHT QUEENS PUZZLE How do you place eight queens

on the board such that no queens attack each other?

Try finding a solution manually: you’ll see it’s not trivial.7 Fig-

ure 3.6 shows one of the ways queens can be peacefully positioned.

Fig63e ǖ.Ǚ The letmost queen attacks other queens. Moving her up,

none of the queens attack each other.

We’ve seen in sec. 1.3 eight queens can be placed in the chessboard

in over four billion ways. Solving this problem the brute force way

inspecting all these possibilities is sloppy. Imagine the first two

queens are placed on the board attacking each other: regardless

where the next queens are placed, a solution isn’t possible. Yet,

a brute force approach would waste time with all these doomed

queen placements.

Searching only viable queen placements is more efficient. The

first queen can be placed anywhere. Viable placements for the next

7You can try it online: https://code.energy/8queens.

https://code.energy/8queens
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queens are limited by already placed queens: a queen cannot be

placed in the attacking range of another queen. Placing queens

following this rule, we’re likely to get a board where it’s impossible

to place an additional queen before all eight queens are placed:

1 1

2

1

2

3

1

2

3

4

1

2

3

4

5

Fig63e ǖ.ǚ Placing a queen limits viable places for the next queens.

This can only mean the last queen was placed incorrectly. So we

backtrack: we roll back the previous placement and continue the

search. That’s the essence of the backtracking strategy: keep on

placing queens in valid positions. Once we get stuck, roll back

the placement of the last queen and carry on. The process can be

streamlined using recursion:

function queensΰboardα

if board.has_ͧ_queens

return board

for each position in board.unattacked_positions

board.place_queenΰpositionα

solution ← queensΰboardα

if solution

return solution

board.remove_queenΰpositionα

return False

If the board isn’t already solved, it loops through all viable posi-

tions for the next queen. It uses recursion to check if placing a
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queen in each of these positions gives a solution. Here’s how the

process works:
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Fig63e ǖ.Ǜ Backtracking in the Ǜ Queens Puzzle.
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Backtracking works best in problems where the solution is a se-

quence of choices and making a choice restrains subsequent choices.

It identifies as soon as possible the choices you’ve made cannot give

you the solution you want, so you can sooner step back and try

something else. Fail early, fail often.

ǖ.ǘ He63i45ic4

In a standard chess game, you have 32 pieces of six types and 64

squares they can move on. After your first four moves, there are

already 288 billion possible positions. Even the strongest players

in the world can’t find the best move. They rely on intuition to

find one that is good enough. We can do the same with algorithms.

A heuristic method, or simply a heuristic, is a method that leads

to a solution without guaranteeing it is the best or optimal one.

Heuristics can help when methods like brute force or backtracking

are too slow. There are many funky heuristic approaches, but we’ll

focus on the simplest: not backtracking.

G3eed

A very common heuristic approach to problems is the greedy ap-

proach. It consists in never coming back to previous choices. It’s

the opposite of backtracking. Try to make the best choice at each

step, and don’t question it later. Let’s try this strategy to solve the

Knapsack problem (sec. 3.3 ), but with a twist:

EVIL KNAPSACK A greedy burglar breaks into your

home to steal the products you wanted to sell. He decides

to use your knapsack to carry the stolen items. Which

items will he steal? Remember, the less time he spends in

your home, the less likely he is to get caught.

In essence, the optimal solution here should be the exact same as

for the Knapsack problem. However, the burglar doesn’t have time

to calculate all packing combinations, nor does he have time to

constantly backtrack and remove already packed items! A greedy
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packer will keep on putting the highest valued item in the knapsack

until he can’t fit more:

function greedy_knapsackΰitems, max_weightα

bag_weight ← ͟

bag_items ← List.new

for each item in sort_by_valueΰitemsα

if max_weight ≤ bag_weight + item.weight

bag_weight ← bag_weight + item.weight

bag_items.appendΰitemα

return bag_items

We don’t investigate how a choice affects future choices. This

greedy approach finds a selection of items much faster than the

brute force way. However, there’s no guarantee it will find the

selection with the highest possible combined value.

In computational thinking, greed is not only a sin of the evil.

As an honest merchant, you may also want to pack the greedy way,

or travel the greedy way:

TRAVELING SALESMAN, AGAIN A salesman must visit n

given cities, ending the trip in the city he started. Which

travel plan minimizes the total distance traveled?

As we’ve seen in sec. 1.3, the number of possible city permutations

to consider explodes to a ridiculously high number even for few

cities. It’s extremely expensive (or impossible) to find the optimal

solution for a Traveling Salesman problem with a few thousand

cities.8 But still, you need a route. Here’s a simple greedy algorithm

for this problem:

1. Visit the nearest unvisited city.

2. Repeat until all cities are visited.

Can you think of a better heuristic than a greedy approach? That’s

an active research question among computer scientists.

8The Traveling Salesman problem is in the NP-complete class we discussed in
sec. 2.3. We can’t find an optimal solution better than an exponential algorithm.
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Fig63e ǖ.ǜ ȈTraveling Salesman Problemȉ, from httpǽ//xkcd.com.

When G3eed T36m14 Po8e3

Choosing a heuristic over a classic algorithm is a trade-off. How far

from the optimal knapsack or travel route are you willing to settle

for? Make the choice case by case.

However, don’t ignore heuristics altogether when you abso-

lutely require the optimal solution. A heuristic approach to a

problem can sometimes lead to the best solution. For example,

you might develop a greedy algorithm that systematically finds the

same solution as would a powerful brute force attack. Let’s see

how this can happen:

POWER GRID  Settlements in a remote area got no elec-

tricity, but one of the settlements is building a power plant.

Electricity can be distributed from a settlement to the next

linking them via power lines. How do you link all settle-

ments into a power grid using the least wire?

This problem can be solved simply:

1. From settlements having no power, pick the one which is

closest to a settlement that has power, and link those two.

2. Repeat until all settlements are powered.

At each step we choose a pair of settlements to connect, considering

what looks best at the current moment. Even though we don’t inves-

http://xkcd.com
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Fig63e ǖ.ǔǓ Solving the Power “rid problemwith greedy choices.

tigate how a choice affects future choices, connecting the nearest

non-powered settlement is always the right choice. We were lucky

here: the structure of this problem was perfectly suited to be solved

by a greedy algorithm. In the next section, we’ll see problem struc-

tures that are suited to a great general’s strategy.

ǖ.Ǚ Di7ide and Con26e3

Once an enemy is divided in smaller problems, it’s easier to con-

quer. Caesar and Napoleon ruled Europe by dividing and conquer-

ing their enemies. You can crack problems using the same strategy,

especially those with optimal substructure. Problems with optimal

substructure can be divided into similar but smaller subproblems.

They can be divided over and over until subproblems become easy.

Then subproblem solutions are combined for obtaining the original

problem’s solution.

Di7ide and So35

If we have a big list to sort, we can split it into halves: each half-

list becomes a sorting subproblem. To sort the big list, subproblem

solutions (i.e., the sorted halves) can be merged in a single list using

the merge algorithm.9 But how will we sort our two subproblems?

They are themselves split into subsubproblems, sorted and merged.

9The first algorithm we’ve seen in this chapter (sec. 3.1).
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The new subsubproblems will also be split, sorted, and merged. The

splitting continues until we hit the base case: a one-item list. A

one-item list is already sorted!

function merge_sortΰlistα

if list.length = ͠

return list

left ← list.first_half

right ← list.last_half

return mergeΰmerge_sortΰleftα,

merge_sortΰrightαα

This elegant recursive algorithm is called Merge Sort. As for the

Fibonacci sequence (sec. 3.2), a recursion tree helps to see how

many times the merge_sort function calls itself:

25   33

02   07   25   27   32   33   43   47   53

27   53   07   25   33   02   32   47   43

07   25   27   33   53

27   53   07   25   33

02   32   43   47

02   32   47   43

07   27   53

27   53   07 25   33

02   32

02   32

43   47

47   43

27   53

27   53

27 53

07 25 02 32 47 4333

split step 1

split step 2

split step 3

split step 4

Fig63e ǖ.ǔǔ SampleMerge Sort execution. Rectangles are individual

merge_sort calls, with inputs on top and outputs at the bottom.

Let’s now find Merge Sort’s time complexity. To do this, we’re first

going to count the operations generated by each individual split

step. Then, we’ll count how many split steps there are in total.
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CӏӕӎӔӉӎӇӏӐӅӒӁӔӉӏӎӓ Say we have a big list of size n. When called,

the merge_sort function performs the following operations:

• Splits list in halves, which does not depend on list size: O(1),
• A merge: we recall from sec. 3.1 that merge is O(n),
• Two merge_sort recursive calls that are not counted.10

Since we keep the strongest term and don’t count recursive calls,

the time complexity of the function is O(n). Let’s now count the

time complexity of each split step:

Split step 1. The merge_sort function is called for a list of n

items. The time complexity of this step is O(n).
Split step 2. The merge_sort function is called twice, each

time for n/2 items. We find 2×O(n/2) = O(n).
Split step 3. The merge_sort function is called four times,

each time for n/4 items: 4×O(n/4) = O(n).
...

Split step x. The merge_sort function is called 2x times,

each for a list of n/2x items: 2x ×O(n/2x) = O(n).

The split steps all have the same complexity of O(n). Merge Sort’s

time complexity is thus x × O(n), where x is the number of split

steps necessary for its full execution.11

CӏӕӎӔӉӎӇ ӓӔӅӐӓ How do we evaluate x? We know recursive func-

tions stop to call themselves once they hit their base case. Our base

case is a one-item list. We’ve also seen that split step x works on

lists of n/2x items. Therefore:

n

2x
= 1 → 2x = n → x = log2 n.

If you’re not familiar with the log2 function, don’t be scared! x =
log2 n is just another way to write 2x = n. Coders love log growth.

10Operations performed by recursive calls are counted in the next split step!
11We can’t ignore x because it’s not a constant. If the list size n doubles, you’ll

need one more split step. If n quadruples, you’ll need two more split steps.
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See how slowly the number of required split steps increases12 with

the total number of items to sort:

Table ǖ.ǔ Number of split steps required for inputs of diferent sizes.

Input size (n) log2 n Split steps required

10 3.32 4

100 6.64 7

1,024 10.00 10

1,000,000 19.93 20

1,000,000,000 29.89 30

Merge Sort’s time complexity is thus log2 n×O(n) = O(n logn).
That’s a huge improvement over the O(n2) Selection Sort. Do you

remember the performance gap between log-linear and quadratic

algorithms we’ve seen last chapter in fig. 2.4? Even if a faster com-

puter crunches the O(n2) algorithm, it will end up slower than a

computer crunching the O(n logn) algorithm:

Table ǖ.Ǖ For big inputs, O(n logn) algorithms in slow computers

aremuch faster thanO(n2) algorithms in ǔǓǓǓ× faster computers.

Input Size Quadratic Log-linear

196 (countries in the world) 38 ms 2 s

44K (airports in the world) 32 min 12 min

171K (English dictionary words) 8 hours 51 min

1M (inhabitants of Hawaii) 12 days 6 hours

19M (inhabitants of Florida) 11 years 6 days

130M (books ever published) 500 years 41 days

4.7G (web pages of the Internet) 700K years 5 years

See for yourself: write a log-linear and a quadratic sorting algo-

rithm, compare how they perform for sorting random lists of dif-

ferent sizes. For big inputs, such complexity improvements are of-

ten vital. Let’s now divide and conquer the problems we had tried

brute force on.

12Any process that reduces an input step-by-step, dividing it by a constant
factor in each step, takes a logarithmic number of steps to fully reduce the input.
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Di7ide and T3ade

Divide and conquer is a better approach for the Best Trade problem

(sec. 3.3 ) than simple brute force. Splitting the price history in

half leads to two subproblems: finding the best trade in the former

half and in the latter half. The best trade in the full period is either:

1. The best trade that buys and sells in the first half.

2. The best trade that buys and sells in the second half.

3. The best trade buying in the first half, selling in the second.

The first two cases are the solutions of the subproblems. The third

case is easy to find: buy at the lowest price of the first half and sell

at the highest price of the second half. For inputs over just one day,

the only possible trade is buying and selling the same day, yielding

a profit of zero.

function tradeΰpricesα

if prices.length = ͠

return ͟

former ← prices.first_half

latter ← prices.last_half

case͢ ← maxΰlatterα - minΰformerα

return maxΰtradeΰformerα, tradeΰlatterα, case͢α

27    53    07    25    33    02    32    47    43

02 47 |$45 

27    53    07    25    33

|$26 27 53

02      32      47      43

|$45 02 47

27      53       07

|$26 27 53

25       33

|$8 25 33

02       32

|$30 02 32

47       43

|$0 47 47

27       53

|$26 27 53

27 53

07 25 33 02 32 47 43

Fig63e ǖ.ǔǕ Sample trade execution. Rectangles are individual

trade calls with their input and output.
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When trade is called it performs trivial comparison and split oper-

ations and finds the maximum and minimum on halves of the input.

Finding the maximum or minimum of n items requires inspecting

each of the n items, so an isolated trade call costs O(n).
You’ll notice trade’s recursion tree (fig. 3.12) is very similar to

that of Merge Sort (fig. 3.11). It also has log2 n split steps, where

each split step costs O(n). Therefore, trade is also O(n logn)—a

huge improvement over the previous O(n2) brute force approach.

Di7ide and Pack

The Knapsack problem (sec. 3.3 ) can also be divided and con-

quered. Remember, we have n products to choose from. We will

enumerate each item property as follows:

• wi is the ith item’s weight,

• vi is the ith item’s value.

An item’s index i can be any number between 1 and n. The max-

imum revenue for a knapsack of capacity c choosing among the n

items is K(n, c). If an extra item i = n+1 is considered, it may or

may not improve the maximum possible revenue, which becomes

the highest of:

1. K(n, c), if the extra item is not selected.

2. K(n, c− wn+1) + vn+1, if the extra item is selected.

Case 1 disregards the new item. Case 2 includes the new item,

and selects among the original items ensuring there’s enough space

for it. This means we can define the solution for n items as the

maximum of subsolutions for n − 1 items:

K(n, c) = max( K(n− 1, c),

K(n− 1, c− wn) + vn ).

By now it should be easy to transform this recursive formula into a

recursive algorithm. Figure 3.13 illustrates how the recursive pro-

cess solves a sample problem. Rectangles that appear more than

once were highlighted, as they represent identical subproblems that
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are being computed more than once in the process. Next we’ll learn

how to gain performance by avoiding such repeated computations.

K(5,4)

K(4,4) K(4,2)

K(3,4) K(3,2) K(3,2)

K(2,4) K(2,3) K(2,2) K(2,1) K(2,2) K(2,1)

K(1,3)K(1,4) K(1,3) K(1,2) K(1,2) K(1,1) K(1,2) K(1,1)

Fig63e ǖ.ǔǖ Solving a Knapsack problemwith ǘ items and knapsack

capacity Ǘ. Items numbered ǘ and Ǘweight two, the othersweight one.

ǖ.ǚ Dynamic P3og3amming

Sometimes identical computations are performed multiple times

when solving a problem.13 Dynamic programming is identifying

repeated subproblems in order to compute them only once. One

common way to do this is a method similar to memorizing, with

similar spelling.

Memoizing Fibonacci

Remember the algorithm to calculate Fibonacci numbers? Its recur-

sion tree (fig. 3.3) shows fibΰ͢α being calculated multiple times.

We can fix it by storing fib calculations as we do them, only spawn-

ing fib calls for calculations not already stored. This trick for

reusing partial calculations is called memoization. It gives fib

a performance boost:

M ← [͠ ⇒ ͠΃ ͡ ⇒ ͡]

function dfibΰnα

if n not in M

M[n] ← dfibΰn-͠α + dfibΰn-͡α

return M[n]

13Problems where this happen are said to have overlapping subproblems.



ǘǙ | CͧͥͨͭͬEͪ ͫCIEͦCE ͜IͫͬILL͜͝

fib(6)

fib(4)

fib(3)

fib(1) fib(2)

fib(5)

fib(3)

fib(4)

Fig63e ǖ.ǔǗ Recursion tree for dfib. “reen rectangles represent

calls which are not recalculated.

Memoizing Kna14ack4

It’s obvious there are multiple repeated calls in the Knapsack’s re-

cursion tree (fig. 3.13). Using the same technique that was used in

the Fibonacci function these recalculations are avoided, resulting

in less computation.

K(5,4)

K(4,4) K(4,2)

K(3,4) K(3,2) K(3,2)

K(2,4) K(2,3) K(2,2) K(2,1)

K(1,3)K(1,4) K(1,3) K(1,2) K(1,2) K(1,1)

Fig63e ǖ.ǔǘ Solving the Knapsack recursively with memoization.

Dynamic programming can turn super slow code into reasonably

paced code. Carefully analyze your algorithms to ensure they’re

free of repeated computations. As we’ll see next, sometimes finding

overlapping subproblems can be tricky.
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Bo55om-61 Be45 T3ade

The recursion tree for trade (fig. 3.12) has no repeated calls, yet

it’s doing repeated computations. It scans the input to find max-

imum and minimum values. Afterwards the input is split in half,

and recursive calls scan the input again to find maxima and min-

ima in those halves.14 We need a different approach for avoiding

these repeated scans.

So far we resorted to a top-down approach, where inputs are

reduced until base cases are reached. But we can also go bottom-

up: calculate base cases first, and assemble them over and over

again until we get the general solution. Let’s solve the Best Trade

problem (sec. 3.3 ) that way.

Let’s call P (n) the price on the nth day. Let’s call B(n) the best

day to buy if we’re selling on the nth day. If we sell on the first day,

we can only buy on day 1, therefore B(1) = 1. But if we sell on

the second day, B(2) can be either equal to 1 or 2:

• P (2) < P (1) → B(2) = 2 (buy and sell on day 2).

• P (2) ≥ P (1) → B(2) = 1 (buy on day 1, sell on day 2).

The day with the lowest price before day 3 but not on day 3 is B(2).
So for B(3),

• P (3) < price on dayB(2) → B(3) = 3.

• P (3) ≥ price on dayB(2) → B(3) = B(2).

Notice the day with the lowest price before day 4 is B(3). In fact,

for every n, B(n−1) is the day with the lowest price before day n.

Using this we can express B(n) in terms of B(n − 1):

B(n) =

{

n if P (n) < P (B(n− 1)),

B(n− 1) otherwise.

14You need to find the tallest man, the tallest woman and the tallest person
in a room. Would you measure everybody for finding the tallest person, then
measure every woman and every man for the tallest man and woman?
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Having all pairs [n,B(n)] for each dayn in the input, the solution is

the pair giving the highest profit. This algorithm solves the problem

by calculating all B values bottom-up:

function trade_dpΰPα

B[͠] ← ͠

sell_day ← ͠

best_profit ← ͟

for each n from ͡ to P.length

if P[n] < P[B[n-͠]]

B[n] ← n

else

B[n] ← B[n-͠]

profit ← P[n] - P[B[n]]

if profit > best_profit

sell_day ← n

best_profit ← profit

return ΰsell_day, B[sell_day]α

This algorithm performs a fixed set of simple operations per item in

the input list, therefore, it’s O(n). That’s a huge performance leap

from the previous O(n logn) algorithm—and downright incompa-

rable to the O(n2) brute force approach. It’s also O(n) in space,

since the auxiliary vector B has as many items as the input. In Ap-

pendix IV, you can see how to gain computer memory by making

the algorithm O(1) in space.

ǖ.Ǜ B3anch and Bo6nd

Many problems involve minimizing or maximizing a target value:

find the shortest path, get the maximum profit, etc. They’re called

optimization problems. When the solution is a sequence of

choices, we often use a strategy called branch and bound. Its

aim is to gain time by quickly detecting and discarding bad choices.

To understand how bad choices are detected, we first need to learn

the concepts of upper and lower bounds.
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U11e3 and Lo8e3 Bo6nd4

Bounds refer to the range of a value. An upper bound sets a limit

on how high the value can be. A lower bound is the least one can

hope for: it guarantees the value is equal to it or greater.

We can often easily get suboptimal solutions: a short path, but

maybe not the shortest; a big profit, but maybe not the biggest.

These solutions provide bounds to the optimal solution. For in-

stance, the shortest route between two places is never shorter than

their straight linear distance. The linear distance is thus a lower

bound of the shortest driving distance.

In the Evil Knapsack problem (sec. 3.5 ) the profit given by

greedy_knapsack is a lower bound to the optimal profit (it may

or may not be close to the optimal profit). Now imagine a version

of the Knapsack problem in which items are all made of powder, so

we can put fractions of items in the knapsack. This version of the

problem can be solved in a simple greedy way: keep packing items

with the highest value/weight ratio:

function powdered_knapsackΰitems, max_weightα

bag_weight ← ͟

bag_items ← List.new

items ← sort_by_value_weight_ratioΰitemsα

for each i in items

weight ← minΰmax_weight - bag_weight,

i.weightα

bag_weight ← bag_weight + weight

value ← weight * i.value_weight_ratio

bagged_value ← bagged_value + value

bag_items.appendΰitem, weightα

return bag_items, bag_value

Adding the restriction that items are indivisible can only make

the highest possible profit decrease because we’ll have to replace

the last added item with something worth less. This means pow-

dered_knapsack gives an upper bound of the optimal profit

with indivisible items.15

15The technique of removing restrictions from problems is called relaxation.
It’s often used for computing bounds in optimization problems.
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B3anch and Bo6nd in 5he Kna14ack P3oblem

We’ve seen finding the optimal profit in a Knapsack problem re-

quires an expensive O(2n) computation. However, we can quickly

get upper and lower bounds on the optimal profit using pow-

dered_knapsack and greedy_knapsack. Let’s try this on a

sample Knapsack problem:

Product Value Weight Value/Weight Ratio Max Capacity

A 20 5 4.00

10

B 19 4 4.75

C 16 2 8.00

D 14 5 2.80

E 13 3 4.33

F 9 2 4.50

10

A

52 39

DB

C

F

E

The figure to the right illustrates the sit-

uation before we start packing. The first

box shows unpacked items to consider. The

second box shows the knapsack’s avail-

able capacity and which items it contains.

Running greedy_knapsack gives a profit of 39, and pow-

dered_knapsack gives a profit 52.66. That means the optimum

profit is somewhere between 39 and 52. Section 3.6 taught us this

problem with n items can be divided into two subproblems with

n− 1 items. The first subproblem will consider the item A is taken,

the other will consider it’s not taken:

10

A

DB

C

F

E

5

A

DB

C

F

E

10

DB

C

F

E
A Ax50 30 52 48

We calculate upper and lower bounds on the two subproblems. One

has a lower bound of 48: now we know the optimal solution is

between 48 and 52. Let’s explore the subproblem on the right, as

it has more interesting bounds:
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B Bx

10

A

DB

C

F

E

5

A

DB

C

F

E

10

DB

C

F

E
A

Ax

10

D

C

F

E

6D

BC

F

E

50 30

40 33 46 43

Now the leftmost subproblem became the one having the most

promising upper bound. Let’s continue our exploration splitting

that subproblem:

B Bx

1

A

D

BC

F

E

5

A

D

C

F

E

10

A

DB

C

F

E

5

A

DB

C

F

E

10

DB

C

F

E
A

Ax

10

D

C

F

E

6D

BC

F

E

B Bx
46 4340 3347 30 49 49

Now we can draw important conclusions. The highlighted subprob-

lem has a lower bound of 49, which is equal to its upper bound.

That means the optimal profit from this subproblem must be ex-

actly 49. Furthermore, notice 49 is bigger than the upper bounds

on all the other branches of subproblems pending exploration. No

other subproblem branch can give a better profit than 49, meaning

we can remove these branches from our search.

The wise use of upper and lower bounds allowed us to find the

optimal profit with minimal computational effort. We dynamically
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adapted our search space as we were exploring possibilities. To

recap, here’s how branch and bound works:

1. Divide the problem into subproblems,

2. Find upper and lower bounds of each new subproblem,

3. Compare subproblem bounds of all branches,

4. Return to step 1 with the most promising subproblem.

You might remember the backtracking strategy (sec. 3.4) also led

to the solution without exploring every possible solution candidate.

In backtracking, we remove paths after having explored them as

far as we can, and we stop when we’re OK with a solution. With

branch and bound, we predict which paths are worst and we avoid

wasting energy exploring them.

Concl64ion

Solving problems is navigating their space of possible solutions to

find the correct one. We learned several ways to do it. The simplest

is brute force: checking every item in the search space one by one.

We’ve seen how to systematically divide problems into smaller

ones, reaping big performance gains. Dividing problems repeatedly

often involves dealing with the same subproblems. In these cases

it’s important to use dynamic programming to avoid repeating the

same computations.

We saw how backtracking can optimize some types of brute

force searches. For problems where upper or lower bounds can be

estimated, we’ve seen how to use that for finding solutions faster

via branch and bound. And heuristics are used when the cost to

calculate the optimum solution isn’t acceptable.

All these strategies we’ve seen are for operating with data. Next

we’ll learn the most common ways data is organized in the com-

puter’s memory, and how that affects the performance of the most

common data operations.
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Data

Good programmers worry about data
structures and their relationships.

— LINUS TORVALDS

C
ONTROL OVER DATA is essential to computer science: com-

putational processes are made of data operations that

transform input into output. But algorithms usually don’t

specify how their data operations are performed. For instance,

merge (sec. 3.1) relies on unspecified external code to create lists

of numbers, to check if lists are empty, and to append items into

lists. The queens algorithm (sec. 3.4) does the same: it doesn’t

care how operations on the chessboard are made, nor how posi-

tions are stored in memory. These details are hidden behind what

we call abstractions. In this chapter, we’ll learn:

How abstract data types keep your code clean,

Common abstractions you need in your toolbox,

Different ways to structure data in memory.

But before we dive into all this, let’s first understand what the terms

“abstraction” and “data type” mean.

Ab453ac5ion4

Abstractions let us omit details; they are an interface for reaping the

functionality of complex things in a simple way. For instance, cars

hide complex mechanics beneath a driving panel, such that anyone

can easily learn to drive without understanding any engineering.

In software, procedural abstractions hide complexities of

a process beneath a procedure call. In the trade algorithm

65
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(sec. 3.6), the min and max procedures hide how the minimum and

maximum numbers are found, making the algorithm simpler. With

abstractions on top of other abstractions, we can build modules1

that allow us to do complex stuff with single procedures, like this:

html ← fetch_sourceΰ"https΂//code.energy"α

In one line of code, we fetched a website’s source code, even though

the inner workings of that task are extremely complex.2

Data abstractions will be a central topic in this chapter. They

hide details of data-handling processes. But before we can under-

stand how data abstraction works, we need to solidify our under-

standing of data types.

Da5a Ty1e

We distinguish different types of fasteners (like screws, bolts, and

nails) according to the operations we can perform on them (like

screwing, wrenching, and hammering). Similarly, we distinguish

different types of data according to the operations that can be per-

formed on the data.

For instance, a data variable that can be split in positional char-

acters, that can be converted to upper or lower case, that can re-

ceive appended characters, is of the String type. Strings represent

texts. A data variable that can be inverted, that can receive XOR, OR,

AND operations, is of the Boolean type. Booleans can be either True

or False. Variables that can be summed, divided, subtracted, are

of the Number type.

Every data type is associated with a specific set of procedures.

The procedures that work on variables that store Lists are differ-

ent to the ones that work on variables that store Sets, which are

different from the ones that work on Numbers.

1A module, or library, is a piece of software that provides generic computa-
tional procedures. They can be included on demand in other pieces of software.

2It involves resolving a domain name, creating a TCP network socket, doing
SSL encryption handshakes, and much more.
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Ǘ.ǔ Ab453ac5 Da5a Ty1e4

An Abstract Data Type (ADT) is the specification of a group of

operations that make sense for a given data type. They define an

interface for working with variables holding data of a given type—

hiding all details of how data is stored and operated in memory.

When our algorithms needs to operate on data, we don’t di-

rectly instruct the computer’s memory to read and write. We use

external data-handling modules that provide procedures defined

in ADTs.

For example, to operate with variables that store lists, we need:

procedures for creating and deleting lists; procedures for accessing

or removing the nth item of a list; and a procedure for appending a

new item to a list. The definitions of these procedures (their names

and what they do) are a List ADT. We can work with lists by exclu-

sively relying on these procedures. That way, we never manipulate

the computer’s memory directly.

Ad7an5age4 of U4ing ADT4

SӉӍӐӌӉӃӉӔә ADTs make our code simpler to understand and modify.

By omitting details from data handling procedures, you focus on the

big picture: the problem-solving process of the algorithm.

FӌӅӘӉӂӉӌӉӔә There are different ways to structure data in memory,

leading to different data-handling modules for a same data type.

We should choose the best for the situation at hand. Modules imple-

menting the same ADT provide the same procedures. This means

we can change the way the data is stored and manipulated just by

using a different data-handling module. It’s like cars: electric cars

and gas-powered cars all have the same driving interface. Anyone

who can drive a car can effortlessly switch to any other.

RӅӕӓӁӂӉӌӉӔә We can use the same data-handling modules in projects

that require handling data of the same type. For instance, both

power_set and recursive_power_set from last chapter op-

erate with variables representing sets. This means we can use the

same Set module in both algorithms.
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OӒӇӁӎӉӚӁӔӉӏӎ We usually need to operate several data types: num-

bers, text, geographical coordinates, images, and more. To better

organize our code, we create distinct modules that each host code

specific to a data type. That’s called separation of concerns: parts

of code that deal with the same logical aspect should be grouped

in their own, separate module. When they’re entangled with other

functionalities, we call it spaghetti code.

CӏӎӖӅӎӉӅӎӃӅ We can get a data-handling module coded by some-

one else, and learn to use the procedures defined by its ADT. Then

we can use these procedures to operate with variables of a new

data type right away. Understanding how the data-handling mod-

ule works isn’t required.

BӕӇ-FӉӘӉӎӇ If you’re using a bug-free data-handling module, your

code will be free of data-handling bugs. If you find a bug in a data-

handling module, fixing it once means you instantly fix all parts of

your code affected by the bug.

Ǘ.Ǖ Common Ab453ac5ion4

To solve a computational problem, it is very important to under-

stand the type of data you’re working on and the operations you’ll

need to perform on it. Deciding the ADT you’ll use is equally impor-

tant. Next, we present well known Abstract Data Types you should

be familiar with. They appear in countless algorithms. They even

come built-in with many programming languages.

P3imi5i7e Da5a Ty1e4

Primitive data types are those with built-in support in the program-

ming language you’re using—they work without external modules.

These always include integers, floating points,3 and generic opera-

tions with them (addition, subtraction, division). Most languages

also come with built-in support for storing text, booleans and other

simple data types in their variables.

3Floating points are a common way to represent numbers that have a decimal.
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The S5ack

Picture a pile of papers. You can put a sheet onto the top of the

pile, or take the top sheet off. The first sheet to be added is always

the last to be removed. The Stack is used when we have a pile of

items, and only work with its top item. The item on top is always

the pile’s most recently inserted one. A Stack implementation must

provide at least these two operations:

• pushΰeα: add an item e to the top of the stack,

• popΰα: retrieve and remove the item on top of the stack.

More “advanced” stacks may provide more operations: to check

whether the stack is empty, or to get the number of items currently

in the stack.

Processing data this way is know as LIFO (Last-In, First-Out);

we only ever remove items from the top, which always has the

stack’s most recent insertion. The Stack is an important data type

that occurs in many algorithms. For implementing the “undo” fea-

ture in your text editor, every edition you make is pushed onto a

stack. Should you want to undo, the text editor pops an edition

from the stack and reverts it.

To implement backtracking (sec. 3.4) without recursive algo-

rithms, you must remember the sequence of choices that got you to

the current spot in a stack. When exploring a new node, we push a

reference to the node into a stack. To go back, simply popΰα from

the stack to get a reference of where to go back to.

The Q6e6e

The Queue is the Stack’s antagonist. It’s also used for storing and

retrieving items, but the retrieved item is always the one in front

of the Queue, i.e., the one that has been on the queue the longest.

Don’t be confused, that’s just like a real-life queue of people waiting

in a restaurant! The Queue’s essential operations are:

• enqueueΰeα: add an item e to the back of the queue,

• dequeueΰα: remove the item at the front of the queue.
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The Queue works by organizing data the FIFO way (First-In, First-

Out), because the first (and oldest) item that was inserted in the

queue is always the first to leave the queue.

Queues are used in many computing scenarios. If you are im-

plementing an online pizza service, you will likely store the pizza

orders in a queue. As a thought exercise, think about what would

be different if your pizza restaurant was designed to serve the or-

ders using a Stack instead of a Queue.

The P3io3i5y Q6e6e

The Priority Queue is similar to the Queue, with the difference that

enqueued items must have an assigned priority. People waiting for

medical attention in a hospital is a real life example of a Priority

Queue. The urgent cases receive top priority and go directly to the

front of the queue, whereas the minor cases are added to the bottom

of the queue. These are the Priority Queue’s operations:

• enqueueΰe, pα: add an item e to the queue according to

the priority level p,

• dequeueΰα: remove the item at the front of the queue and

return it.

In a computer there are typically many running processes but only

one (or a few) CPUs to execute them. An operating system orga-

nizes all these processes waiting for execution in a Priority Queue.

Each process waiting in the queue is assigned a priority level. The

operating system dequeues a process and lets it run for a little while.

Afterwards, if the process isn’t finished it gets enqueued again. The

operating system keeps repeating this.

Some processes are more time-sensitive and get immediate CPU

time, others wait in the queue longer. The process that gets input

from the keyboard typically receives a super-high priority. If the

keyboard stops responding, the user might believe the computer

crashed and try to cold-restart it, which is never good.
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The Li45

When storing a bunch of items, you sometimes need more flexibil-

ity. For instance, you could want to freely reorder the items; or to

access, insert and remove items at any position. In these cases, the

List is handy. Commonly defined operations in a List ADT include:

• insertΰn, eα: insert the item e at position n,

• removeΰnα: remove the item at position n,

• getΰnα: get the item at position n,

• sortΰα: sort the items in the list,

• sliceΰstart, endα: return a sub-list slice starting at the

position start up until the position end,

• reverseΰα: reverse the order of the list.

The List is one of the most used ADTs. For instance, if you need to

store links to the most frequently accessed files in a system, a list is

ideal: you can sort the links for display purposes, and remove links

at will as the corresponding files become less frequently accessed.

The Stack or Queue should be preferred when the flexibility of

List isn’t needed. Using a simpler ADT ensures data is handled in a

strict and robust way (FIFO or LIFO). It also makes the code easier

to understand: knowing a variable is a Stack helps to see how data

flows in and out.

The So35ed Li45

The Sorted List is useful when you need to maintain an always

sorted list of items. In these cases, instead of figuring out the right

position before each insertion in the list (and manually sorting it

periodically), we use a Sorted List. Its insertions always keep the

list sorted. None of its operations allow reordering its items: the

list is guaranteed to be always sorted. The Sorted List has fewer

operators than the List:

• insertΰeα: insert item e at the right position in the list,

• removeΰnα: remove the item at the position n in the list,

• getΰnα: get the item at position n.
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The Ma1

The Map (aka Dictionary) is used to store mappings between two

objects: a key object and a value object. You can query a map with

a key and get its associated value. For instance, you might use a

map to store a user’s ID number as key, and its full name as value.

Then, given the ID number of a user, the map returns the related

name. The operations for the Map are:

• setΰkey, valueα: add a key-value mapping,

• deleteΰkeyα: remove key and its associated value,

• getΰkeyα: retrieve the value that was associated to key.

The Se5

The Set represents unordered groups of unique items, like mathe-

matical sets described in Appendix III. They’re used when the order

of items you need to store is meaningless, or if you must ensure

no items in the group occurs more than once. The common Set

operations are:

• addΰeα: add an item to the set or produce an error if the

item is already in the set,

• listΰα: list the items in the set,

• deleteΰeα: remove an item from the set.

With these ADTs, you as a coder learned to interact with data, like

a driver uses a car’s dashboard. Now let’s try to understand how

the wires are structured behind that dashboard.

Ǘ.ǖ S536c563e4

An Abstract Data Type only describes how variables of a given data

type are operated. It provides a list of operations, but doesn’t ex-

plain how data operations happen. Conversely, data structures

describe how data is to be organized and accessed in the com-

puter’s memory. They provide ways for implementing ADTs in

data-handling modules.
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There are different ways to implement ADTs because there are

different data structures. Selecting an ADT implementation that

uses the best data structure according to your needs is essential for

creating efficient computer programs. Next we’ll explore the most

common data structures and learn their strengths and weaknesses.

The A33ay

The Array is the simplest way to store a bunch of items in computer

memory. It consists in allocating a sequential space in the computer

memory, and writing your items sequentially in that space, marking

the end of the sequence with a special NULL token.

Each object in an array occupies the same amount of space in

memory. Imagine an array starting at memory address s, where

each item occupy b bytes. The nth item in the array can be obtained

fetching b bytes starting from memory position s + (b × n).

10 11

A

12

B

13

C D NULL

14 15 16 17

Memory Addresses

Memory Contents

Fig63e Ǘ.ǔ An array in the computer’s memory.

This lets us access any item from an array instantly. The Array is es-

pecially useful for implementing the Stack, but can also used to im-

plement Lists and Queues. Arrays are simple to code and have the

advantage of instant access time. But they also have disadvantages.

It can be impractical to allocate large amounts of sequential

space in the memory. If you need to grow an array, there might not

be enough free space adjacent to it in the memory. Removing an

item in the middle is problematic: you have to push all subsequent

items one step back, or mark the removed item’s memory space

as “dead”. Neither option is desirable. Similarly, adding an item

causes you to push all subsequent items one step forward.
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The Linked Li45

With Linked Lists, items are stored in a chain of cells that don’t

need to be at sequential memory addresses. Memory for each cell is

allocated as needed. Each cell has a pointer indicating the address

of the next cell in the chain. A cell with an empty pointer marks

the end of the chain.

10 11

B

25

C

26 27 35

DA
… …

25 27 35 NULL

Fig63e Ǘ.Ǖ A Linked List in the computer’s memory.

Linked lists can be used to implement Stacks, Lists, and Queues.

There’s no problem growing the list: each cell can be kept at any

part of the memory. We can create lists as big as the amount of

free memory we have. It’s also easy to insert items in the middle or

delete any item by changing the cell pointers:

NEW

10 11

B

25

C

26 27 35

DA
… …

25 26 35 NULL27

Freed

space

10 11

B

25 26 27 35

DA
… …

25 35 NULL

Fig63e Ǘ.ǖ Adding an item between B and CǾ deleting C.

The Linked List also has its drawbacks: we can’t instantly retrieve

the nth item. For that, we have to start searching at the first cell,

use it to get the address of the second cell, then get the second cell,

use its pointer to the next cell and so on, until we get to the nth cell.
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Also, if we’re only given the address of a single cell, it’s not easy to

remove it or move backwards. With no other information, we can’t

know the address of the previous cell in the chain.

The Do6ble Linked Li45

The Double Linked List is the Linked List with an extra: cells have

two pointers: one to the cell that came before it, and other to the

cell that comes after.

10 11

B

25

C

26 27 35

DA … …

25 27 35 NULL

NULL 11 25 27

Fig63e Ǘ.Ǘ A double Linked List in the computer’s memory.

It has the same benefits as the Linked List: no big chunk of memory

preallocation is required, because memory space for new cells can

be allocated on demand. And the extra pointers let us walk the

chain of cells forwards and backwards. And if we’re only given the

address of a single cell, we’re able to delete it.

Still, there’s no way to access the nth item instantly. Also, stor-

ing two pointers in each cell directly translates to more code com-

plexity and more required memory to store our data.

A33ay4 74. Linked Li454

Feature-rich programming languages often come with built-in im-

plementations for List, Queue, Stack and other ADTs. These imple-

mentations often resort to a default data structure. Some of these

implementations can even switch data structures automatically dur-

ing runtime, based on how data is being accessed.

When performance isn’t an issue, we can rely on these generic

ADT implementations and not worry about data structures. But

when performance must be optimal, or when working with a lower

level language that doesn’t have such features, you must decide

which data structures to use. Analyze the operations your data must
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undergo, and choose an implementation that uses an appropriate

data structure. Linked Lists are preferable to Arrays when:

• You need insertions/deletions in the list to be extremely fast,

• You don’t need random, unordered access to the data,

• You insert or delete items in the middle of a list,

• You can’t evaluate the exact size of the list (it needs to grow

or shrink throughout the execution).

Arrays are preferable over Linked Lists when:

• You frequently need random, unordered access to the data,

• You need extreme performance to access the items,

• The number of items doesn’t change during execution, so you

can easily allocate contiguous space of computer memory.

The T3ee

Like the Linked List, the Tree employs memory cells that do not

need to be contiguous in physical memory to store objects. Cells

also have pointers to other cells. Unlike Linked Lists, cells and their

pointers are not arranged as a linear chain of cells, but as a tree-like

structure. Trees are especially suitable for hierarchical data, such

as a file directory structure, or the command chain of an army.

Proto-Indo-European

Indo-IranianHellenic Celtic ItalicBalto-SlavicGermanic

IndicIranian

Sanskrit

Bengali Hindi Urdu

Persian

Farsi Kurdish

Greek Irish Scotish LatinPolish Russian

French Spanish

Gallic

Portuguese

ItalianNorwegian Swedish

North

Germanic

West

Germanic

German Dutch English

Fig63e Ǘ.ǘ A tree with the origins of Indo-European languages.
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In the Tree terminology, a cell is called a node, and a pointer from

one cell to another is called an edge. The topmost node of a tree

is the Root Node: the only node that doesn’t have a parent. Apart

from the Root Node, nodes in trees must have exactly one parent.4

Two nodes that have the same parent are siblings. A node’s

parent, grandparent, great-grandparent (and so on all the way to

the Root Node) constitute the node’s ancestors. Likewise, a node’s

children, grandchildren, great-grandchildren (and so on all the way

to the bottom of the tree) are the node’s descendants.

Nodes that do not have any children are leaf nodes (think of

leaves in an actual tree ). And a path between two nodes is a set

of nodes and edges that can lead from one node to the other.

A node’s level is the size of its path to the Root Node. The tree’s

height is the level of the deepest node in the tree. And finally, a

set of trees can be referred to as a forest.

Proto-Indo-European

Indo-IranianHellenic Celtic ItalicBalto-SlavicGermanic

IndicIranian

Sanskrit

Bengali Hindi Urdu

Persian

Farsi Kurdish

Greek Irish Scotish LatinPolish Russian

French Spanish

Gallic

Portuguese

ItalianNorwegian Swedish

North

Germanic

West

Germanic

German Dutch English

ʟᴇᴠᴇʟ 0

ʟᴇᴠᴇʟ 1

ʟᴇᴠᴇʟ 2

ʟᴇᴠᴇʟ 3

ʟᴇᴠᴇʟ 4

Fig63e Ǘ.Ǚ Leaves on this tree are present-day languages.

Bina3y Sea3ch T3ee

A Binary Search Tree is a special type of Tree that can be efficiently

searched. Nodes in Binary Search Trees can have at most two chil-

dren. And nodes are positioned according to their value/key. Chil-

dren nodes to the left of the parent must be smaller than the parent,

children nodes to the right must be greater.

4If a node violates this rule, many search algorithms for trees won’t work.
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x

y z

y ≤ x and z ≥ x

10

6 18

4 8 15 21

Fig63e Ǘ.ǚ A sample binary search tree.

If the tree respects this property, it’s easy to search for a node with

a given key/value within the tree:

function find_nodeΰbinary_tree, valueα

node ← binary_tree.root_node

while node΂

if node.value = value

return node

if value > node.value

node ← node.right

else

node ← node.left

return "NOT FOUND"

To insert an item, we search the value we want to insert in the tree.

We take the last node explored in that search, and make its right

or left pointer point to the new node:

function insert_nodeΰbinary_tree, new_nodeα

node ← binary_tree.root_node

while node΂

last_node ← node

if new_node.value > node.value

node ← node.right

else

node ← node.left

if new_node.value > last_node.value

last_node.right ← new_node

else

last_node.left ← new_node



Data | ǚǜ

TӒӅӅ BӁӌӁӎӃӉӎӇ If we insert too many nodes in a Binary Search

Tree, we end up with a tree of very high height, where many

nodes have only one child. For example, if we insert nodes with

keys/values always greater than the previous one, we end up with

something that looks more like a Linked List. But we can rearrange

nodes in a tree such that its height is reduced. This is called tree bal-

ancing. A perfectly balanced tree has the minimum possible height.

10

6

18

4

8

15 21

10

6 18

4 8 15 21

10

6

18

4

8

15 21

Fig63e Ǘ.Ǜ The same binary search tree in a very badly balanced

form, in a somewhat balanced form, and in a perfectly balanced form.

Most operations with trees involve following links between nodes

until we get to a specific one. The higher the height of the tree,

the longer the average path between nodes, and the more times

we need to access the memory. Therefore, it’s important to reduce

tree height. Building a perfectly balanced binary search tree from

a sorted list of nodes can be done as follows:

function build_balancedΰnodesα

if nodes is empty

return NULL

middle ← nodes.length/͡

left ← nodes.sliceΰ͟, middle - ͠α

right ← nodes.sliceΰmiddle + ͠, nodes.lengthα

balanced ← BinaryTree.newΰroot=nodes[middle]α

balanced.left ← build_balancedΰleftα

balanced.right ← build_balancedΰrightα

return balanced



ǛǓ | CͧͥͨͭͬEͪ ͫCIEͦCE ͜IͫͬILL͜͝

Consider a Binary Search Tree with n nodes. Its maximum height

is n, in which case it looks like a Linked List. The minimum height,

with the tree perfectly balanced, is log2 n. The complexity of search-

ing an item in a binary search tree is proportional to its height. In

the worst case, the search must descend to the lowest level, reach-

ing all the way to the tree’s leaves in order to find the item. Search-

ing in a balanced Binary Search Tree with n items is thus O(logn).
That’s why this data structure is often chosen for implementing

Sets (which requires finding if items are already present) and Maps

(which requires finding key-values).

However, tree balancing is an expensive operation, as it re-

quires sorting all nodes. Rebalancing a tree after each insertion

or deletion can greatly slow down these operations. Usually, trees

are undergo balancing after several insertions and deletions take

place. But balancing the tree from time to time is only a reasonable

strategy for trees that are rarely changed.

To efficiently handle binary trees that change a lot, self-

balancing binary trees were invented. Their procedures for in-

serting or removing items directly ensure the tree stays balanced.

The Red-Black Tree is a famous example of a self-balancing tree,

which colors nodes either “red” or “black” for its balancing strat-

egy.5 Red-Black Trees are frequently used to implement Maps: the

map can be heavily edited in an efficient way, and finding any

given key in the map remains fast because of self-balancing.

The AVL Tree is another breed of self-balancing trees. They

require a bit more time to insert and delete items than Red-Black

Trees, but tend to have better balancing. This means they’re faster

than Red-Black Trees for retrieving items. AVL Trees are often used

to optimize performance in read-intensive scenarios.

Data is traditionally stored in magnetic disks that read data in

big chunks. In these cases, the B-Tree, a generalization of Binary

Trees, is used. In B-Trees, nodes may store more than one item and

can have more than two children, making it efficient to operate

with data in big chunks. As we’ll soon see, B-Trees are commonly

used in database systems.

5Self-balancing strategies are out of the scope of this book. If you are curious,
there are videos on the Internet showing how they work.
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The Bina3y Hea1

The Binary Heap is a special type of Binary Search Tree, in which

we can find the smallest (or highest) item instantly. This data struc-

ture is especially useful for implementing Priority Queues. In the

Heap it costs O(1) to get the minimum (or maximum) item, be-

cause it is always the Root Node of the tree. Searching or inserting

nodes still costs O(logn). It has the same node placement rules

as the Binary Search Tree, plus an extra restriction: a parent node

must be greater (or smaller) than both its child nodes.

21
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y z
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y z

x ≤ y ≤ z

x ≥ z ≥ y

Fig63e Ǘ.ǜ Nodes organized as a binary max-heap ștopȚ and min-

heap șbottomȚ.

Remember to use the Binary Heap whenever you must frequently

work with the maximum (or minimum) item of a set.

The G3a1h

The Graph is similar to the Tree. The difference is that there’s no

children or parent nodes, and therefore, no Root Node. Data is
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freely arranged as nodes and edges, and any node can have multiple

incoming and outgoing edges.

This is the most flexible data structure there is, and it can be

used to represent almost any type of data. For example, graphs

are ideal for representing a social network, where nodes are people

and edges represent friendships.

The Ha4h Table

The Hash Table is a data structure that allows finding items in

O(1) time. Searching for an item takes a constant amount of time,

whether you’re searching among 10 million or just 10 items.

Similarly to the Array, the Hash requires preallocating a big

chunk of sequential memory to store data. But unlike the Array,

items are not stored in an ordered sequence. The position an item

occupies is “magically” given by a hash function. That’s a special

function that takes the data you want to store as input, and out-

puts a random-looking number. That number is interpreted as the

memory position the item will be stored at.

This allows us to retrieve items instantly. A given value is first

run through the hash function. The function will output the exact

position the item should be stored in memory. Fetch that memory

position. If the item was stored, you’ll find it there.

There is a problem with Hash Tables: sometimes the hash func-

tion returns the same memory position for two different inputs.

That’s called a hash collision. When it happens, both items have

to be stored at the same memory address (for instance, by using a

Linked List that starts at the given address). Hash collisions are an

extra overhead of CPU and memory, so we try to avoid it.

A proper hash function will return random-looking values for

different inputs. Therefore, the larger the range of values the hash

function can output, the more data positions are available, and the

less probable it is for a hash collision to happen. So we ensure at

least 50% of the space available to the Hash Table is free. Other-

wise, collisions would be too frequent, causing a significant drop in

the Hash Table’s performance.

Hash Tables are often used to implement Maps and Sets. They

allow faster insertions and deletions than tree-based data structures.
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However, they require a very large chunk of sequential memory in

order to work properly.

Concl64ion

We learned data structures provide concrete ways to organize data

in computer memory. Different data structures require different op-

erations for storing, deleting, searching, and running though stored

data. There’s no silver bullet: you should choose which data struc-

ture to use according to the situation at hand.

We learned that instead of using data structures directly in our

code, it’s better to use Abstract Data Types. This isolates your code

from data manipulation details, and lets you easily switch the data

structure of your programs without changing any of the code.

Don’t reinvent the wheel by trying to create the basic data struc-

tures and abstract data types from scratch. Unless if you’re doing

it for fun, for learning, or for research. Use third-party data han-

dling libraries that were already well tested. Most languages have

built-in support for these structures.

Refe3ence

• Balancing a Binary Search Tree, by Stoimen

– See it at https://code.energy/stoimen

• Cornell Lecture on Abstract Data Types and Data Structures

– See it at https://code.energy/cornell-adt

• IITKGP nodes on Abstract Data Types

– See it at https://code.energy/iitkgp

• Search Tree Implementation by “Interactive Python”

– See it at https://code.energy/python-tree

https://code.energy/stoimen
https://code.energy/cornell-adt
https://code.energy/iitkgp
https://code.energy/python-tree
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Algorithms

[Coding is] attractive not only because it can be
economically and scientifically rewarding, but
also because it can be an aesthetic experience
much like composing poetry or music.

— DONALD KNUTH

M
ANKIND PURSUES SOLUTIONS to increasingly hard prob-

lems. Most times you come across a problem, many

others have already worked on something similar.

Chances are, they discovered efficient algorithms you can read-

ily use. Searching for existing algorithms should always be your

first move when solving problems.1 In this chapter we’ll explore

famous algorithms that:

Efficiently sort super long lists,

Quickly search for the item you need,

Operate and manipulate graphs,

Use WWII operations research to optimize processes.

You will learn to recognize problems on which you can apply these

known solutions. There are many different types of problems: sort-

ing data, searching patterns, route-finding, and more. And many

types of algorithms are specific to fields of study: image processing,

cryptography, artificial intelligence… We can’t cover them all in

this book.2 Still, we’ll learn some of the most important algorithms

every good coder should be familiar with.

1Finding a new problem that hasn’t been explored before is rare. When re-
searchers find a new problem, they write a scientific paper about it.

2Here’s a more comprehensive list: https://code.energy/algo-list.

85

https://code.energy/algo-list
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ǘ.ǔ So35ing

Prior to computers, sorting data was a major bottleneck that took

huge amounts of time to perform manually. When the Tabulating

Machine Company (that later became IBM) automated sorting oper-

ations in the 1890s, they sped up the US Census data compilation

by several years.

Many sorting algorithms exist. The simpler ones are O(n2).
Selection Sort (sec. 2.1) is one such algorithm. It’s the algorithm

people tend to use for sorting a physical deck of cards. Selection

Sort belongs to a big group of quadratic cost algorithms. We typi-

cally use them to sort small datasets of less than a thousand items.

One notable quadratic sorting algorithm is Insertion Sort. It’s very

efficient at sorting nearly sorted datasets, even if they are huge:

function insertion_sortΰlistα

for i ← ͡ … list.length

j ← i

while j and list[j-͠] > list[j]

list.swap_itemsΰj, j-͠α

j ← j - ͠

Run this algorithm in pen and paper, using a nearly sorted list of

numbers. For inputs where a negligible number of items are out of

order, insertion_sort is O(n). In this case, it does less opera-

tions than any other sorting algorithm.

For large datasets which aren’t nearly sorted, O(n2) algo-

rithms are too slow (see tbl. 3.2). In these cases, we need more

efficient algorithms. The most famous efficient sorting algorithms

are Merge Sort (sec. 3.6) and Quicksort, both O(n logn). Here’s

how Quicksort sorts a pile of cards:

1. If the pile has fewer than four cards, put them in the right

order and you’re done. Else, continue to step 2.

2. Choose at random any card from the pile to be the pivot.

3. Cards larger than the pivot go to a new pile to the right; cards

smaller than the pivot go to a new pile to the left.

4. Start this procedure for each of the two piles you just created.

5. Join the left pile, pivot and right pile to get a sorted pile.
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Shuffling a deck of cards and following these steps is a great way

to learn Quicksort. That would also strengthen your understand-

ing of recursion.

Pivot

Pivot Pivot

Fig63e ǘ.ǔ A sample Quicksort run.

You are now prepared to handle most problems that involve sorting.

We didn’t cover all sorting algorithms here, so remember there are

many more, each suitable to specific sorting scenario.
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ǘ.Ǖ Sea3ching

Looking for specific information in memory is a key operation in

computing. A sound knowledge of search algorithms is essential.

The simplest search algorithm is Sequential Search: look at all

items one after the other, until you find the one you want—or check

all items to realize it’s not there.

It’s easy to see that Sequential Search is O(n), where n is the

total number of items in the search space. But when the items

we’re searching are well structured, there are more efficient ways

to search. We’ve seen in sec. 4.3 that data structured in a balanced

binary search tree costs only O(logn) to search.

If your items are structured in a sorted array, we can also search

them in O(logn) time through Binary Search. This search process

discards half the search space in each step:

function binary_searchΰitems, keyα΂

if not items

return NULL

i ← items.length / ͡

if key = items[i]

return items[i]

if key > items[i]

sliced ← items.sliceΰi+͠, items.lengthα

else

sliced ← items.sliceΰ͟, i-͠α

return binary_searchΰsliced, keyα

Each step of binary_search does a constant number of opera-

tions and discards half the input. This means for n items, log2 n

steps fully reduce the input. As each step involves a fixed number

of operations, the algorithm is O(logn). You can search a million,

or a trillion items, yet the search is still going to perform well.

Yet there’s even more efficient. By storing your items in a Hash

Table (sec. 4.3), you only need to calculate the hash of the key you

are searching for. That hash gives the address of the item with the

key! The time it takes to find an item does not increase when we in-

crease the search space. It doesn’t matter if you’re searching among

millions, billions or trillions of items—the number of operations is

constant, meaning the process is O(1) in time. Almost instant.
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ǘ.ǖ G3a1h4

We’ve seen graphs are the flexible data structure that use nodes and

edges to store information. They’re widely used, to represent data

like social networks (nodes are persons, edges are friendship rela-

tionships), telephone networks (nodes are telephones and stations,

edges are communications), and much more.

Sea3ching in G3a1h4

How do you find a node in a Graph? If the Graph’s structure offers

no navigation help, you must visit every node in the graph until you

find the one you want. To achieve that, there are two approaches:

depth-first and breadth-first.

Fig63e ǘ.Ǖ Exploring a graph depth-first versus breadth-first.

Searching a graph via Depth First Search (DFS), we keep following

edges, going deeper and deeper into the graph. When we reach

a node that has no edges to any new nodes, we go back to the

previous node and continue the process. We use a Stack to keep

track of the exploration trail, pushing a node when we explore it,

and popping a node when we need to go back. The backtracking

strategy (sec. 3.4) explores solutions this way.
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function DFSΰstart_node, keyα

next_nodes ← Stack.newΰα

seen_nodes ← Set.newΰα

next_nodes.pushΰstart_nodeα

seen_nodes.addΰstart_nodeα

while not next_nodes.empty

node ← next_nodes.popΰα

if node.key = key΂

return node

for n in node.connected_nodes

if not n in seen_nodes

next_nodes.pushΰnα

seen_nodes.addΰnα

return NULL

If going deep in the graph isn’t a good approach, you can try

Breadth First Search (BFS). It explores the graph level per level:

first the neighbors of your start node, then its neighbors’ neigh-

bors, and so on. To keep track of nodes to visit, we use a Queue.

Once we explore a node, we enqueue its children, then dequeue

the next node to explore.

function BFSΰstart_node, keyα

next_nodes ← Queue.newΰα

seen_nodes ← Set.newΰα

next_nodes.enqueueΰstart_nodeα

seen_nodes.addΰstart_nodeα

while not next_nodes.empty

node ← next_nodes.dequeueΰα

if node.key = key΂

return node

for n in node.connected_nodes

if not n in seen_nodes

next_nodes.enqueueΰnα

seen_nodes.addΰnα

return NULL
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Notice that DFS and BFS only differ in the way the next nodes to

explore are stored: one uses a Queue, the other a Stack.

So which approach should we use? The DFS is simpler to imple-

ment and consumes less memory: you just need to store the parent

nodes leading to the current node. In BFS you need to store the

entire frontier of the search process. If you have a graph of million

nodes, that might not be practical.

When you suspect the node you are searching isn’t many levels

away from the start, it’s usually worth paying the higher cost of

BFS, because you’re likely to find the node faster. When you need

to explore all the nodes of a graph, it’s usually better to stick with

DFS for its simple implementation and smaller memory footprint.

Fig63e ǘ.ǖ DFS, courtesy of httpǽ//xkcd.com.

You can see from fig. 5.3 that choosing the wrong exploration tech-

nique can have dire consequences.

http://xkcd.com
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G3a1h Colo3ing

Graph Coloring problems arise when you have a fixed amount of

“colors” (or any other set of labels), and you must assign each node

in the Graph a color. Nodes that are connected with an edge cannot

share the same color. For instance, consider this problem:

INTERFERENCE You are given a map of cell phone tow-

ers and the neighborhoods they serve. Towers in adjacent

neighborhoods have to operate on different frequencies to

avoid interference. There are four frequencies to pick from.

Which frequency do you assign to each tower?

The first step is to model this problem using a Graph. Towers are

nodes in the graph. If two towers are close enough to cause inter-

ference, we connect them with an edge. Each frequency is a color.

How do you find a viable frequency assignment? Is it possible to

find a solution that uses only three colors? Two colors? Finding the

minimum number of colors of a valid color assignment is in fact an

NP-complete problem—there are only exponential algorithms for it.

For this problem, we’re not gonna show an algorithm. You

should use what you learned so far and try solving this problem

by yourself. You can do so at UVA,3 an online judge that will test

your proposed solution. It will run your code and tell you if it works.

If it does, it will also rank your code’s execution time against other

people’s code. Dive in! Research the algorithms and strategies for

solving this problem, and try them. Reading a book can only take

you so far. Submitting code to an online judge gives you the hands-

on experience you need to become a great coder.

Pa5h Finding

Finding the shortest path between nodes is the most famous graph

problem. GPS navigation systems will search a graph of streets and

crossroads to compute your itinerary. Some even use traffic data

to increase the weight of edges representing jammed streets.

To find short paths, BFS and DFS strategies are usable but bad.

One famous and very effective way of finding the shortest path is

3UVA’s Graph Coloring Problem: https://code.energy/uva-graph-coloring

https://code.energy/uva-graph-coloring
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the Djkistra Algorithm. As BFS uses an auxiliary Queue to keep

track of nodes to explore, the Djkistra Algorithm uses a Priority

Queue. When new nodes are explored, their connections are added

to the Priority Queue. A node’s priority is the weight of the edges

that take it to the starting node. This way, the next node to explore

is always the closest to where we started.

There are cases where the Djkistra Algorithm cycles forever

without ever finding the destination node. A negative cycle can trick

the search process to endlessly explore it. A negative cycle is a

path in the graph that starts and ends at the same node, where the

edge weights in the path sum to a negative value. If you are search-

ing for a minimum path in a graph where edges can have negative

weights, beware.

What if the graph you are trying to search is huge? Bidirec-

tional Search can be used to increase search speed. Two search

processes run simultaneously: one from the start node, the other

from the destination node. When any node in one search area is

also present in the other, presto! We’ve got the path. The search

area involved in Bidirectional Search is twice smaller than the Uni-

directional Search. Check out how the grey area is smaller than

the yellow area:

start node

end node

Fig63e ǘ.Ǘ Unidirectional versus Bidirectional search areas.
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Fig63e ǘ.ǘ Finding the shortest route from JFK to GVAwith Djkistra.
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PageRank

Did you ever wonder how Google is able to analyze billions of web

pages and present you the most relevant ones? Many algorithms

are involved, but the most important is the PageRank Algorithm.

Before founding Google, Sergey Brin and Larry Page were com-

puter science academics at Stanford University, researching graph

algorithms. They modeled the Web as a graph: web pages are

nodes, and links between web pages are edges.

They figured if a web page receives many links from other im-

portant pages, then it must be important as well. They created the

PageRank Algorithm after that idea. The algorithm runs in rounds.

Each web page in the graph starts with an equal number of “points”.

After each round, each page distributes its points to the pages it has

links to. The process is repeated until every score has stabilized.

Each page’s stabilized score is called its PageRank. By using the

PageRank Algorithm to determine web page importance, Google

quickly came to dominate other search engines.

The PageRank Algorithm can also be applied to other types of

graphs. For example, we can model users of the Twitter network in

a graph, and then calculate the PageRank of each user. Do you think

users with a higher PageRank are likely to be important people?

ǘ.Ǘ O1e3a5ion4 Re4ea3ch

During World War II, the British Army needed to make the best

strategic decisions to optimize the impact of their operations. They

created many analytical tools to figure out the best way to coordi-

nate their military operations.

That practice was named operations research. It improved the

British early warning radar system, and helped the United Kingdom

better manage its manpower and resources. During the war, hun-

dreds of Brits were involved in operations research. After, the new

ideas were applied to optimize processes in businesses and indus-

tries. Operations research involves defining an objective to maxi-

mize or minimize. It can help maximize objectives like yield, profit,

or performance; and minimize objectives like loss, risk, or cost.
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For instance, operations research is used by airline companies

to optimize flight schedules. Fine adjustments in workforce and

equipment scheduling can save millions of dollars. Another exam-

ple is in oil refineries, where finding the optimal proportions of raw

materials in a blend can be seen as an operations research problem.

Linea3 O15imiza5ion P3oblem4

Problems where the objective and constraints can be modeled using

linear equations4 are called linear optimization problems. Let’s

learn how these problems are solved:

SMART FURNISHING Your office needs filing cabinets.

Cabinet X costs $10, occupies 6 square feet and holds 8 cu-

bic feet of files. Cabinet Y costs $20, occupies 8 square feet

and holds 12 cubic feet of files. You have $140, and you

can use up to 72 square feet in the office for the cabinets.

What should you buy to maximize storage capacity?

First, we identify the variables of our problem. We’re looking for

number of cabinets of each type that should be bought, so:

• x: number of model X cabinets to purchase,

• y: number of model Y cabinets to purchase.

We want to maximize storage capacity. Let’s call the storage capac-

ity z, and model that value as a function of x and y:

• z = 8x+ 12y.

Now we need to choose values of x and y that will yield the maxi-

mum possible z. These values must be chosen such that they respect

our constraints in budget (less than $140) and space (less than 72

square feet). Let’s model these constraints:

• 10x+ 20y ≤ 140 (budget constraint),

• 6x+ 8y ≤ 72 (space constraint),

• x ≥ 0, y ≥ 0 (we can’t buy a negative number of cabinets).

4Formally, polynomials with degree 1. They can have no squares (nor any
powers) and their variables can only be multiplied by constant numbers.
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How would you solve this problem? Simply buying as much of the

model with the best storage/space ratio isn’t the answer, because

there’s limited space in the office to hold cabinets. Maybe you’d go

brute force: write a program that computes z for all possible x and

y, and get the pair that produces the best z. This works for simple

problems, but it’s unfeasible to do it with many variables.

It turns out no coding is required to solve linear optimization

problems like this. You just need to use the right tool for the job: the

Simplex Method. Simplex solves linear optimization problems very

efficiently. It has been helping industries solve complex problems

since the 1960s. When you must solve a linear optimization prob-

lem, don’t reinvent the wheel: pick a ready-to-use Simplex solver.

Simplex solvers just require you to input the function that needs

to be maximized (or minimized), along with the equations that

model your constraints. The solver does the rest. Here, the choice

for x and y that maximizes z is x = 8 and y = 3.

Simplex works through smart exploration of the space of accept-

able solutions. To understand how Simplex works, let’s represent

all possible values for x and y in a 2D plane. Budgets and office

space constraint are represented as lines:

14

7

12

9

Choices that respect

space restriction.

Choices that respect

budget restriction.

Choices that respect

both restrictions.

x

y

Fig63e ǘ.Ǚ Values of x and y that satisfy the problem’s constrains.

Note that the space of all possible solutions is a closed area in the

graph. It has been proven that the optimum solution to a linear

problem must be a corner point of this closed area—a point where

lines representing constraints cross. Simplex checks these corner
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points and picks the one that optimizes z. It’s not easy to visualize

this process in linear optimization problems that have more than

two variables, but the mathematical principle works the same way.

Ne58o3k Flo8 P3oblem4

Many problems relating to networks and flows can be formulated

in terms of linear equations, and thus be easily solved with Simplex.

For instance, during the Cold War, the US Army mapped out the po-

tential rail resupply routes the Soviets could use in Eastern Europe:

Fig63e ǘ.ǚ Declassified military report from ǔǜǘǘ of the Soviet rail

network, showing the transportation capacity of its rail lines.

SUPPLY NETWORK A rail network is represented by

lines connecting cities. Each line has a maximum capacity:

the largest daily flow of goods it can carry. What amount

of supplies can be conveyed from a given producing city to

a given consuming city?

To model the problem with linear equations, each rail line becomes

a variable representing the amount of goods that should flow on
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the line. The constraints are: no rail line can convey more than its

capacity; the incoming flow of goods must be equals to the outgoing

flow of goods in all cities except the producing and consuming ones.

We then pick values for our variables that maximize incoming goods

in the receiving city.

We’re not going to explain the mapping to linear form in detail.

Our point here is just to let you know that many optimization prob-

lems involving graphs, cost, and flows can be solved easily with

existing Simplex implementations. A lot of helpful documentation

can be found online. Keep your eyes open and remember: don’t

lose time reinventing the wheel.

Concl64ion

We showed there are several well known algorithms and techniques

for solving all sorts of problems. The first step you should take

when solving a problem is always looking for existing algorithms

and methods.

There are many important algorithms we haven’t included.

For instance, we have more advanced search algorithms than the

Djkistra (such as the A*), algorithms for estimating how similar

two words are (Levenshtein Edit Distance), machine learning al-

gorithms, and much more…

Refe3ence

• Introduction to Algorithms, by Cormen

– Get it at https://code.energy/cormen

• Algorithms, by Sedgewick

– Get it at https://code.energy/sedgewick

• Simple Linear Programming Model, by Katie Pease

– Get it at https://code.energy/katie

https://code.energy/cormen
https://code.energy/sedgewick
https://code.energy/katie
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Databases

While I am best known for my work on
databases, my fundamental skills are those
of an architect: analyzing requirements and
constructing simple, but elegant, solutions.

— CHARLES BACHMAN

M
ANAGING HUGE COLLECTIONS of data in computer sys-

tems is hard, but often vital. Biologists store and re-

trieve DNA sequences and their related protein struc-

tures. Facebook manages content generated by billions of people.

Amazon keeps track of its sales, inventory, and logistics.

How do you store these big, constantly changing collections of

data in disks? How do you let different agents retrieve, edit and add

data at the same time? Instead of implementing these functionali-

ties ourselves, we use a DataBase Management System (DBMS): a

special piece of software for managing databases. The DBMS orga-

nizes and stores the data. It mediates accesses and changes to the

database. In this chapter, you’ll learn to:

Understand the relational model of most databases,

Be flexible using non-relational database systems,

Coordinate computers and distribute your data,

Map stuff better with geographical database systems,

Share data across systems thanks to data serialization.

Relational database systems are dominant, but non-relational

database systems can often be easier and more efficient. Database

systems are very diverse, and choosing one can be hard. This chap-

ter provides a general overview of the different types of database

systems out there.

101
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Once data is easily accessible through a database system, it can

be put to good use. A miner can extract valuable minerals and met-

als from a cheap looking rocky plot of land. Likewise, we can often

extract valuable information from data. That’s called data mining.

For instance, a big grocery chain analyzed its product-transaction

data, and found that its top-spending customers often buy a type

of cheese ranked below 200 in sales. Normally, they discontinued

products with low sales. Data mining inspired managers not only

to keep that cheese product, but to put it in more visible spots.

That pleased their best customers, and made them come back even

more. To be able to make such a smart move, the grocery chain

had to have its data well organized in a database system.

Ǚ.ǔ Rela5ional

The emergence of the relational model in the late 1960s was a

huge leap for information management. Relational databases make

it easy to avoid duplicate information and data inconsistencies. The

majority of database systems used today are relational.

In the relational model, data is divided in different tables. A

table works like a matrix or spreadsheet. Each data entry is a row

in it. Columns are the different properties data entries can have.

Usually columns impose a data type they can contain. Columns

can also specify other restrictions: whether it’s mandatory for rows

to have a value in that column; whether the value in the column

must be unique across all rows in the table, and more.

Columns are most commonly referred to as fields. If a column

only allows whole numbers, we say it is an integer field. Different

tables use different types of fields. The organization of a database

table is given by its fields and the restrictions they enforce. This

combination of fields and restrictions is called the table’s schema.

All data entries are rows, and the database system won’t accept

a row into a table if it violates the table’s schema. That’s a big limi-

tation of the relational model. When the characteristics of the data

vary too much, fitting the data to a fixed schema can be trouble-

some. But if you’re working with data of homogeneous structure,

a fixed schema will help you ensure the data is valid.
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Rela5ion4hi14

Imagine a database of invoices contained in a single table. For each

invoice, we must store information about the order and the cus-

tomer. When storing more than one invoice for the same customer,

information gets duplicated:

2017-02-22 991-1009 $12.01Bobby Tables

$77.57

Customer Name

2017-02-17 997-1009

Customer Phone Number

2017-02-20

101-9973

997-1009

2017-02-18

$93.37

Order Total

Bobby Tables

$99.73

Date

Bobby Tables

Elaine Roberts

Fig63e Ǚ.ǔ Invoice data stored in a single table.

Duplicated information is hard to manage and update. To avoid it,

the relational model splits related information in different tables.

For instance, we divide our invoice data into two tables: “orders”

and “customers”. We make each row in the “orders” table reference

a row in the “customers” table:

ID Name

997-1009

Phone

73 101-9973

37 Bobby Tables

Elaine Roberts2017-02-18

2017-02-22

2017-02-20

Date

2017-02-17

$77.57

$12.01

Amount

$93.37

$99.73

ID

1

4 37

Customer

2

3

37

73

37

orders customers

Fig63e Ǚ.Ǖ Relationships between rows remove data duplication.

By relating data from different tables, the same customer can be

part of many orders without data duplication. To support relation-

ships, every table has a special identification field or ID. We use ID
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values to refer to a specific row within a table. These values must

be unique: there can’t be two rows with the same ID. The ID field

of a table is also known as its primary key. A field that records

references to other rows’ IDs is called a foreign key.

With primary keys and foreign keys, we can create complex rela-

tionships between separate sets of data. For instance, the following

tables store information about Turing Award winners:1

computer scientists  winners

US1941-02-07Lamport24 Leslie

UKTuring22 Alan 1912-05-23

US1943–10-11Stonebraker25 Michael

ILPearl23 Judea 1936-09-04

USDi ie26 Whitfield 1944-05-05

Silvio Micali28 IT1954–10-13

Goldwasser

Last

Hellman 1945-10-02Martin US27

Nationality

NULLShafrira US21

First Date of BirthID

US United States

UK United Kingdom

IT

IL

Country Name

Israel

Italy

ID

64 27 2015

26 201563

201462 25

61 201324

ID

58

59

60 201228

201221

201123

Recipient Year

2015 Di ie-Helmann key sharing.

2014 Database systems design.

ID

2011

2012

2013 Distributed computing systems design.

Secure criptographic proofs.

Bayesian inference algorithms.

Main contribution

awardscountries

Fig63e Ǚ.ǖ Computer scientists and Turing Awards.

1The Turing Award is like a Nobel Prize, but for computer science. It comes
with one million dollars.
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The relationship between computer scientists and awards isn’t triv-

ial like customers and orders. An award can be shared among

two computer scientists—and nothing says a computer scientist can

only win once. For this reason, we use a “winners” table just to store

relationships among computer scientists and awards.

When a database is organized in a way that it is completely free

of duplicate information, we say that the database is normalized.

The process of transforming a database with replicated data to one

without is called normalization.

Schema Mig3a5ion

As an application grows and new features are added, it’s unlikely

its database structure (the schema of all its tables) remains the

same. When we need to change the database structure, we create

a schema migration script. It automatically upgrades the schema

and transforms existing data accordingly. Typically, these scripts

can also undo their changes. This allows to easily restore the

database structure to match a past working version of the software.

There are ready-to-use schema migration tools for most DBMSs.

They help you to create, apply, and revert schema migration scripts.

Some big systems go through hundreds of schema migrations a year,

so these tools are indispensable. Without creating schema migra-

tions, your “manual” database changes will be hard to revert to

a specific working version. It will be hard to guarantee compati-

bility between the local databases of different software developers.

These problems occur frequently in big software projects with care-

less database practices.

SQL

Almost every relational DBMS works with a query language called

SQL.2 An in-depth SQL course is not in the scope of this book, but

here you’ll get a general idea of how it works. Having a small famil-

iarity with SQL is important, even if you don’t directly work with it.

A SQL query is a statement of what data should be retrieved:

2SQL is more often pronounced sequel, but saying ess-queue-ell isn’t incorrect.
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SELECT <field name> [, <field name>, <field name>,…]

FROM <table name>

WHERE <condition>΃

The items that come after SELECT are the fields that you want to

get. To get all fields in the table, you can write “SELECT *”. There

can be several tables in the database, so FROM states which table

you want to query. After the WHERE command, you state the criteria

for selecting rows. Boolean logic can be used to specify multiple

conditions. The following query gets all fields from a “customers”

table, filtering rows by “name” and “age” fields:

SELECT * FROM customers

WHERE age > ͡͠ AND name = "John"΃

You can query “SELECT * FROM customers” without specify-

ing a WHERE clause. This causes every customer to be returned.

There are also other query operators you should know: ORDER BY

sorts the results according to the specified field(s); GROUP BY is

used when you need to group the results in boxes and return per-

box aggregated results. For instance, if you have a table of cus-

tomers having a “country” and an “age” field, you could query:

SELECT country, AVGΰageα

FROM customers

GROUP BY country

ORDER BY country΃

This returns a sorted list of countries where your customers live,

along with average customer age per country. SQL provides other

aggregation functions. For instance, replace AVGΰageα with

MAXΰageα and you get the oldest customer’s age per country.

Sometimes, you need to consider information from a row and

the rows it relates to. Imagine you have a table storing orders, and

a table storing customers. The “orders” table has a foreign key for

referencing customers (fig. 6.2). Finding information about cus-

tomers who made high-valued orders requires fetching data from

both tables. But you don’t need to query the two tables individually

and match records yourself. There’s a SQL command for that:
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SELECT DISTINCT customers.name, customers.phone

FROM customers

JOIN orders ON orders.customer = customers.id

WHERE orders.amount > ͟͟͠.͟͟΃

That query returns the name and phone number of customers who

made orders of over $100. The “SELECT DISTINCT” causes each

customer to be returned only once. JOIN allows for very flexible

querying,3 but it comes at a price. Joins are expensive to compute.

They may consider every combination of rows from the tables you

are joining in your query. A database manager must always take

into account the product of the number of rows of joined tables.

For very large tables, joins become unfeasible. The JOIN is the

greatest power and, at the same time, the major weakness of rela-

tional databases.

Indexing

For a table’s primary key to be useful, we must be able to quickly

retrieve a data entry when given its ID value. To that end, the

DBMS builds an auxiliary index, mapping row IDs to their respec-

tive addresses in memory. An index is essentially a self-balancing

binary search tree (sec. 4.3). Each row in the table corresponds to

a node in the tree.

US1941-09-09Dennis Ritchie04

UK1912-06-1208 Alan Turing

US15 Bill Gates 1955-10-28

UKAda Lovelace21 1815-12-10

IL18 1952-07-06Adi Shamir

1928-10-25Peter Naur US10

Nationality

1939-11-07Barbara Liskov US06

Name Date of BirthID

10

6 18

4 8 15 21

ID’s Index

Fig63e Ǚ.Ǘ An index mapping ID values to rows’ locations.

3There are several ways to JOIN. See https://code.energy/joins for more.

https://code.energy/joins
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Node keys are the values in the field we index. To find the register

with a given value, we search for the value in the tree. Once we find

a node, we get the address it stores, and use it to fetch the register.

Searching a binary search tree is O(logn), so finding registers in

large tables is fast.

Usually, an index is created by the DBMS for each primary key

in the database. If we often need to find registers by searching

other fields (for instance, if we search customers by name), we can

instruct the DBMS to create additional indexes for these fields too.

UӎӉӑӕӅӎӅӓӓ CӏӎӓӔӒӁӉӎӔӓ Indexes are often automatically created

for fields that have a uniqueness constraint. When inserting a new

row, the DBMS must search the entire table to make sure no unique-

ness constraint is violated. Finding if a value is present in a field

without an index means checking all rows in the table. With an

index, we can quickly search if the value we’re trying to insert is

already present. Indexing fields that have a uniqueness constraint

is necessary to be able to insert items fast.

SӏӒӔӉӎӇ Indexes help to fetch rows in the indexed fields’ sorted

order. For instance, if there is an index for the “name” field, we

can get rows sorted by name without any extra calculations. When

you use ORDER BY in a field without an index, the DBMS has to

sort the data in memory before serving the query. Many DBMSs

might even refuse to fulfill queries asking to sort by a non-indexed

field when the query involves too many rows.

If you must sort rows first by country and then by age, having

an index on “age” or on “country” field doesn’t help much. An index

on “country” allows you to fetch rows sorted by country, but then

you’ll still need to manually sort items that have the same country

by age. When sorting by two fields is required, joint indexes are

used. They index multiple fields and won’t help finding items faster,

but they make returning data sorted by the multiple fields a breeze.

PӅӒӆӏӒӍӁӎӃӅ So indexes are awesome: they allow for super fast

querying and instant sorted data access. Then why don’t we have

indexes for all fields in every table? The problem is when a new

register is inserted to or removed from the table, all its indexes must

be updated to reflect that. If there are a lot of indexes, updating,
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inserting or removing rows can become computationally expensive

(remember tree balancing). Moreover, indexes occupy disk space,

which is not an unlimited resource.

You should monitor how your application uses the database.

DBMSs usually ship with tools to help you do that. These tools

can “explain” queries, reporting which indexes a query used, and

how many rows had to be sequentially scanned to perform a query.

If your queries are wasting too much time sequentially scanning

data in a field, add an index for that field and see how that helps.

For example, if you are frequently querying a database for peo-

ple of a given age, defining a index on the “age” field allows the

DBMS to directly select rows corresponding to a given age. This

way, you’ll save time avoiding sequential scanning to filter rows

that don’t match the required age.

To adjust a database for higher performance, it’s crucial to know

which indexes to keep and which to discard. If a database is mostly

read and rarely updated, it might make sense to keep more indexes.

Poor indexing is a major cause for slowdown in commercial systems.

Careless system administrators often won’t investigate how com-

mon queries are run—they will just index random fields they “feel”

will help performance. Don’t do this! Use “explain” tools to check

your queries and add indexes only when it makes a difference.

T3an4ac5ion4

Imagine a secretive Swiss bank keeps no records of money trans-

fers: their database just stores account balances. Suppose someone

wants to transfer money from his account to his friend’s account in

the same bank. Two operations must be performed on the bank’s

database: subtracting from one balance, and adding to another.

A database server usually allows multiple clients to read and

write data simultaneously—executing operations sequentially would

make any DBMS too slow. Here’s the catch: if someone queries

the total balance of all accounts after a subtraction is recorded but

before the corresponding addition is, some money will be missing.

Or worse: what if the system loses power between the two opera-

tions? When the system comes back online, it will be hard to find

why the data is inconsistent.
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We need a way for the database system to perform either all

changes from a multi-part operation, or keep the data unchanged.

To do this, database systems provide a functionality called trans-

actions. A transaction is a list of database operations that must

be executed atomically.4 This makes the coder’s life easier: the

database system is responsible of keeping the database consistent.

All the coder has to do is to wrap dependent operations together:

START TRANSACTION΃

UPDATE vault SET balance = balance + ͤ͟ WHERE id=͡΃

UPDATE vault SET balance = balance - ͤ͟ WHERE id=͠΃

COMMIT΃

Remember, performing multi-step updates without transactions

eventually creates wild, unexpected, and hidden inconsistencies

in your data.

Ǚ.Ǖ Non-Rela5ional

Relational databases are great, but have some limitations. As an

application gets more complex, its relational database gets more

and more tables. Queries become larger and harder to understand.

And it requires more and more JOINs, which are computationally

expensive and can create serious bottlenecks.

The non-relational model ditches tabular relations. It hardly

ever requires us to combine information from several data entries.

Since non-relational database systems use query languages other

than SQL, they are also referred to as NoSQL databases.

Fig63e Ǚ.ǘ Courtesy of httpǽ//geek-and-poke.com.

4Atomic operations are performed in a single step: they can’t half-execute.

http://geek-and-poke.com
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Doc6men5 S5o3e4

The most widely known type of NoSQL database is the document

store. In document stores, data entries are kept exactly the way

they are needed by the application. The figure below compares the

tabular way and the document way to store posts in a blog:

ID

3

10

11

1

Title

11

Author

2

Posts

Title 1

Title 2

Title 3

Name Avatar

10

ID

11

Authors

Author A

Author B

URL 1

URL 2

1

1

Content

2

Post

Comments

Comment X

Comment Y

Comment Z

Title 1

Author A URL 1

Comment X

Comment Y

Title 2

Author B URL 2

Comment Z

Title 3

Author B URL 2

ID: 1 ID: 2

Posts

ID: 3

Fig63e Ǚ.Ǚ Data in the relational model ștopȚ vs. NoSQL șbottomȚ.

Notice how all the data about a post is copied into that post’s reg-

ister? The non-relational model expects us to duplicate information

at each relevant place. It’s hard to keep duplicated data updated

and consistent. In return, by grouping relevant data together, doc-

ument stores can offer more flexibility:

• You don’t need to join rows,

• You don’t need fixed schemas,

• Each data entry can have its own configuration of fields.

This means there are no “tables” and “rows” in document stores.

Instead, a data entry is called a document. Related documents are

grouped in a collection.
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Documents have a primary key field, so relationships across doc-

uments are possible. But JOINs are not optimal on document stores.

Sometimes they’re not even implemented, so you have to follow re-

lationships between documents on your own. Both ways, it’s bad—

if documents share related data, it should probably be replicated

in the documents.

Like relational databases, NoSQL databases create indexes for

primary key fields. You can also define additional indexes for fields

that are often queried or sorted.

Key-Val6e S5o3e4

The key-value store is the simplest form of organized, persistent

data storage. It’s mainly used for caching. For example, when a

user requests a specific web page to a server, the server must fetch

the web page’s data from the database, and use it to render the

HTML it will send to the user. In high-traffic websites, with thou-

sands of concurrent accesses, doing that becomes impossible.

To solve this problem, we use a key-value store as a caching

mechanism. The key is the requested URL, and the value is the final

HTML of the corresponding web page. The next time someone asks

for the same URL, the already generated HTML is simply retrieved

from the key-value store using the URL as key.

If you repeat a slow operation that always produces the same

result, consider caching it. You don’t necessarily have to use a key-

value store, you can store the cache in other types of databases. It’s

only when the cache is very frequently accessed that the superior

efficiency of key-value store systems becomes relevant.

G3a1h Da5aba4e4

In a graph database, data entries are stored as nodes, and rela-

tionships as edges. Nodes are not tied to a fixed schema and can

store data flexibly. The graph structure makes it efficient to work

with data entries according to their relationships. Here’s how the

information from fig. 6.6 would look in a graph:
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Author A URL 1

PERSONID: 2

Author B URL 2

PERSONID: 4

ID: 1 POST

Title 1

Comment X

Comment Y

Title 2

Comment Z

ID: 3 POST
Title 3

ID: 5 POST

author

author
author

Fig63e Ǚ.ǚ Blog information stored in a graph database.

This is the most flexible type of database. Letting go of tables and

collections, you can store networked data in intuitive ways. If you

wanted to map the subway and public bus stops of a city on a

whiteboard, you wouldn’t write tabular data. You would use cy-

cles, boxes and arrows. Graph databases allow you to store data

this way.

If your data looks like a network, consider using a graph

database. They’re especially useful when there are many important

relationships between pieces of data. Graph databases also allow

different types of graph-oriented queries. For example, storing pub-

lic transportation data in a graph, you can directly query for the

best one-legged or two-legged route between two given bus stops.

Big Da5a

The buzzword Big Data describes data-handling situations that are

extremely challenging in terms of Volume, Velocity, or Variety.5

5Commonly known as the three V’s. Some people make that five with Vari-
ability and Veracity.
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Big data volume means you handle thousands of terabytes, as is

the case of the LHC.6 Big data velocity means you must store mil-

lion of writes per second without holdups, or serve billions of read

queries quickly. Data variety means that the data doesn’t have a

strong structure, so it’s difficult to handle it using traditional rela-

tional databases.

Whenever you need a non-standard data management ap-

proach because of volume, velocity or variety, you can say it’s

a “Big Data” application. To run some state-of-the-art scientific

experiments (such as the ones involving the LHC or the SKA7),

computer scientists are already researching what they call Mega-

data: the storing and analyzing of millions of terabytes of data.

Big Data is often associated with non-relational databases, be-

cause of their added flexibility. It wouldn’t be feasible to implement

many types of Big Data applications with relational databases.

SQL 74 NoSQL

Relational databases are data-centered: they maximize data struc-

turing and eliminate duplication, regardless of how the data will be

needed. Non-relational databases are application-centered: they

facilitate access and use according to your needs.

We’ve seen NoSQL databases allow us to store massive, volatile,

unstructured data fast and efficiently. Without worrying about

fixed schemas and schema migrations, you can develop your so-

lutions faster. Non-relational databases often feel more natural

and easy to coders.

Your non-relational database will be powerful, but you will be

responsible for updating the duplicated information across docu-

ments and collections. You will have to take the necessary mea-

sures to keep it consistent. Remember, with great power comes

great responsibility.

6The Large Hadron Collider, or LHC, is the world’s largest particle accelerator.
During an experiment, its sensors generate 1,000 terabytes of data every second.

7The Square Kilometer Array, or SKA, is a collection of telescopes scheduled
to start operations in 2020. It will generate a million terabytes of data each day.
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Ǚ.ǖ Di453ib65ed

There are several situations in which not one, but several computers

must act in coordination to provide a database system:

• Databases of several hundred terabytes. Finding a single

computer with that much storage space is impractical.

• Database systems that process several thousand simultane-

ous queries per second.8 No single computer has enough

networking or processing power to handle such a load.

• Mission-critical databases, such as the ones recording alti-

tude and speed of aircraft currently in a given airspace. Re-

lying on a single computer is too risky—if it crashes, the

database becomes unavailable.

For these scenarios, there are DBMSs that can run on several coor-

dinated computers, forming a distributed database system. Now,

let’s see the most common ways to set up a distributed database.

Single-Ma45e3 Re1lica5ion

One computer is the master and receives all queries to the database.

It is connected to several other slave computers. Each slave has a

replica of the database. As the master receives write queries, it

forwards them to slaves, keeping them synchronized:

master
slave #1

slave #2

slave #3

read query

write query

Fig63e Ǚ.Ǜ Single-master distributed database.

8Right after the final match in 2014’s World Cup, Twitter experienced a peak
of over 10,000 new tweets per second.
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With this setup, the master is able to serve more read queries, be-

cause it can delegate those to the slaves. And the system becomes

more reliable: if the master computer shuts down, the slave ma-

chines can coordinate and elect a new master automatically. That

way, the system doesn’t stop running.

M6l5i-Ma45e3 Re1lica5ion

If your database system must support a massive amount of simulta-

neous write queries, a single master cannot handle all the load. In

this case, all computers in the cluster become masters. A load bal-

ancer is used to distribute incoming read and write queries equally

among the machines in the cluster.

read query

write query

load balancer

Fig63e Ǚ.ǜ Multi-master distributed database.

Each computer is connected to all others in the cluster. They prop-

agate write queries among themselves, so they all remain synchro-

nized. Each has a copy of the entire database.

Sha3ding

If your database receives many write queries for large amounts of

data, it’s hard to synchronize the database everywhere in the cluster.

Some computers might not have enough storage space to accom-

modate the entire thing. One solution is to partition the database
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among the computers. Since each machine owns a portion of the

database, a query router forwards queries to the relevant one:

read ID "PRWGL"
write ID "BTZLK"

A—F

shard #1

G—L

shard #2

M—R

shard #3

S—Z

shard #4

read ID "TOQZR"

query router

Fig63e Ǚ.ǔǓ Sample sharding setup. Queries are routed according to

the first letter in the ID being queried.

This setup can process many read and write queries for super huge

databases. But it has a problem: if a machine in the cluster fails, the

parts of data it is responsible for become unavailable. To mitigate

that risk, sharding can be used with replication:

A—F

master #1

G—L

master #2

M—R

master #3

S—Z

master #4

query router

slave 1.1

slave 1.2

slave 2.1

slave 2.2

slave 3.1

slave 3.2

slave 4.1

slave 4.2

Fig63e Ǚ.ǔǔ A sharding setup with three replicas per shard.
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With this setup, each shard is served by a master-slave cluster. This

further increases the database system capacity to serve read queries.

And if one of the main servers in a shard goes offline, a slave can au-

tomatically take its place, ensuring the system doesn’t break down

or lose data.

Da5a Con4i45ency

In distributed databases with replication, updates made in one ma-

chine don’t propagate instantly across all replicas. It takes some

time until all machines in the cluster are synchronized. That can

damage the consistency of your data.

Suppose you’re selling movie tickets on a website. It has way

too much traffic, so its database is distributed on two servers. Alice

purchases a ticket on Server A. Bob is being served by Server B and

sees the same free ticket. Before Alice’s purchase propagates to

Server B, Bob also purchases the ticket. Now the two servers have

a data inconsistency. To fix it, you’ll have to reverse one of the

sales, and apologize either to an angry Alice or to an angry Bob.

Database systems offer tools to mitigate data inconsistencies.

For instance, some allow you to issue queries that enforce data

consistency across the entire cluster. However, enforcing data con-

sistency reduces the performance of the database system. Trans-

actions in particular can cause serious performance issues in dis-

tributed databases, as they force the coordination of all machines

in the cluster to lock down potentially large sections of the data.

There is a trade-off between consistency and performance. If

your database queries do not strongly enforce data consistency,

they are said to work under eventual consistency. Data is guar-

anteed to eventually be consistent, after some time. This means

some write queries might not be applied, and some read queries

may return out-of-date information.

In many cases, working with eventual consistency won’t cause

problems. For instance, it’s OK if a product you sell online shows

284 customer reviews instead of 285 because one was just made.
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Ǚ.Ǘ Geog3a1hical

Many databases store geographic information, such as the location

of cities or the polygons that define state borders. Transportation

applications might need to map out how the roads, rails and sta-

tions connect to each other. The Census Bureau needs to store the

cartographic shape of thousands of census tracts, along with cen-

sus data collected in each tract.

21.6 – 36.5

36.5 – 39.2

39.2 – 41.3

41.3 – 44.0

44.0 – 62.9

Fig63e Ǚ.ǔǕ Median age in the USA șdata from census.govȚ.

In these databases, querying spatial information is interesting. For

instance, if you’re in charge of an emergency medical service, you

need a database with the location of hospitals in the area. Your

database system must be able to quickly answer which is the nearest

hospital from any given location.

These applications ushered the development of special database

systems, known as Geographical Information Systems (GIS). They

provide specially designed fields for geographical data: PointField,

LineField, PolygonField, and so on. And they can perform spatial

queries in these fields. On a GIS database of rivers and cities, you

can directly order queries like “list cities within 10 miles of the Missis-

sippi river, ordered by population size”. The GIS makes use of spatial

indexes, so searching by spatial proximity is very efficient.

These systems even allow you to define spatial constraints. For

instance, in a table storing land parcels, you can enforce the con-
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straint that no two land parcels may overlap and occupy the same

land. This can save land registry agencies a huge amount of trouble.

Many general-use DBMSs provide GIS extensions. Whenever

you are dealing with geographical data, make sure you use a

database engine with GIS support, and use its features to make

smarter queries. GIS applications are often used in day-to-day life,

for instance with GPS navigators like Google Maps or Waze.

Ǚ.ǘ Se3ializa5ion Fo3ma54

How can we store data outside of our database, in a format that

is interoperable across different systems? For instance, we might

want to backup the data, or export it to an other system. To do this,

the data has to go through a process called serialization, where

it is transformed according to an encoding format. The resulting

file can be understood by any system that supports that encoding

format. Let’s skim through a few encoding formats commonly used

for data serialization.

SQL is the most common format for serializing relational

databases. We write a series of SQL commands that replicate

the database and all its details. Most relational database systems

include a “dump” command to create an SQL-serialized file of your

database. They also include a “restore” command to load such a

“dump file” back to the database system.

XML is another way to represent structured data, but that

doesn’t depend on the relational model or to a database system im-

plementation. XML was created to be interoperable among diverse

computing systems, and to describe the structure and complexity

of data. Some people say that XML was developed by academics

who didn’t realize their creation wasn’t very practical.

JSON is the serializing format most the world is converging

to. It can represent relational and non-relational data, in an intu-

itive way to coders. Many additions to JSON exist: BSON (Binary

JSON) gives JSON maximum efficiency for data processing; JSON-

LD brings the power of XML structure into JSON.

CSV or Comma Separated Values, is arguably the simplest for-

mat for data exchange. Data is stored in textual form, with one
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data element per line. The properties of each data element are sep-

arated by a comma, or some other character that doesn’t occur in

the data. CSV is useful for dumping simple data, but it gets messy

to represent complex data using it.

Concl64ion

In this chapter, we learned structuring information in a database is

very important to make our data useful. We learned the different

ways to do it. We’ve seen how the relational model splits data into

tables, and how it gets linked back together with relationships.

Most coders only ever learn to work with the relational model,

but we went beyond. We’ve seen alternative, non-relational ways

to structure data. We discussed problems of data consistency, and

how they can be mitigated using transactions. We discussed how

to scale database systems to handle intense loads by using a dis-

tributed database. We’ve presented GIS systems, and the features

they offer for working with geographic data. And we showed com-

mon ways to exchange data between different applications.

Lastly, unless you’re just experimenting, pick a DBMS that

is widely used. It will have fewer bugs and better performance.

There are no silver bullets for database system selection. No spe-

cific DBMS will be the best pick for every scenario. Having read this

chapter, you should understand the different types of DBMSs and

their features, so you can make an informed choice of which to use.
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Computers

Any sufficiently advanced technology
is indistinguishable from magic.

—ARTHUR C. CLARKE

C
OUNTLESS DIFFERENT MACHINES were invented to solve

problems. There are many types of computers, from the

ones embedded in robots roaming Mars to the ones pow-

ering the navigational systems of nuclear submarines. Almost

all computers, including our laptops and phones, have the same

working principle as the first computing model invented by Von-

Neumann in 1945. Do you know how computers work under the

hood? In this chapter, you’ll learn to:

Understand foundations of computer architecture,

Choose a compiler to translate your code for computers,

Trade storage for speed with the memory hierarchy.

After all, coding has to look like magic to non-coders, not us.

ǚ.ǔ A3chi5ec563e

A computer is a machine that follows instructions to manipulate

data. It has two main components: processor and memory. The

memory, or RAM,1 is where we write the instructions. It also stores

the data to operate on. The processor, or CPU,2 gets instructions

and data from the memory and performs calculations accordingly.

Let’s learn how these two components work.

1Short for Random Access Memory.
2Short for Central Processing Unit.

123
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Memo3y

The memory is divided into many cells. Each cell stores a tiny

amount of data, and has a numerical address. Reading or writing

data in memory is done through operations that affect one cell at

a time. To read or write a specific memory cell, we must commu-

nicate its numerical address.

Since the memory is an electrical component, we transmit cell

addresses through wires as binary numbers.3 Each wire transmits

a binary digit. Wires are set at higher voltage for the “one” signal

or lower voltage for the “zero” signal.

RAM
1 1 0 1 0 0 1

cell address #

0

Fig63e ǚ.ǔ Informing the RAM to operate on cell # ǕǔǓ ș͟͟͟͟͠͠͠͠Ț.

There are two things the memory can do with a given cell’s address:

get its value, or store a new value. The memory has a special input

wire for setting its operational mode:

RAM

read mode

01

RAM

write mode

cell’s current data

cell address

cell’s new data

cell address

Fig63e ǚ.Ǖ Thememory can operate in read or write mode.

3Binary numbers are expressed in base 2. Appendix I explains how this works.
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Each memory cell stores an 8-digit binary number, which is called

a byte. In “read” mode, the memory retrieves the byte stored in a

cell, and outputs it in eight data-transmitting wires:

RAM

read mode

11 1 0 1 0 0 1

cell address

0 00 1 0 0 00

data retrieved

0

Fig63e ǚ.ǖ Reading the number ǖǕ frommemory address Ǖǔǔ.

When the memory is in “write” mode, it gets a byte from these wires,

and writes it to the informed cell:

0 00 1 0 0 10

data to store

RAM

write mode

1 1 0 1 0

cell address

1

1 0 0

Fig63e ǚ.Ǘ Writing the number ǖǖ in memory address ǕǔǕ.

A group of wires used for transmitting the same data is a bus. The

eight wires used to transmit addresses form the address bus. The

other eight wires used to transmit data to and from memory cells

form the data bus. While the address bus is unidirectional (only

used to receive data), the data bus is bidirectional (used to send

and receive data).
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In any computer, CPU and RAM are constantly exchanging data:

the CPU keeps on fetching instructions and data from memory, and

occasionally stores outputs and partial calculations in it.

Data Bus

Address Bus

Command Wire

RAMRAM

CPU

Fig63e ǚ.ǘ The CPU is wired to the RAM.

CPU

The CPU has some internal memory cells called registers. It can

perform simple mathematical operations with numbers stored in

these registers. It can also move data between the RAM and these

registers. These are examples of typical operations a CPU can be

instructed to execute:

• Copy data from memory position #220 into register #3,

• Add the number in register #3 to the number in register #1.

The collection of all operations a CPU can do is called its instruc-

tion set. Each operation in the instruction set is assigned a number.

Computer code is essentially a sequence of numbers representing

CPU operations. These operations are stored as numbers in the

RAM. We store input/output data, partial calculations, and com-

puter code, all mixed together in the RAM.4

4Code can even modify itself, by including instructions that rewrite parts of
its code in RAM. Computer viruses often do that to make their detection by anti-
virus software harder. That’s an incredible parallel with biological viruses that
change their DNA to hide from their hosts’ immune system.
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Figure 7.6 shows how some CPU instructions are mapped to

numbers, as it appears in CPU manuals. As CPU manufacturing

technology advanced, CPUs kept on supporting more operations.

The instruction set of contemporary CPUs is huge. However, the

most important operations already existed decades ago.

Fig63e ǚ.Ǚ Part of Intel ǗǓǓǗ’s datasheet, showing how operations

are mapped to numbers. It was the world’s first CPU, released in ǔǜǚǔ.

The CPU works in a never-ending cycle, always fetching and exe-

cuting an instruction from memory. At the core of this cycle is the

PC register, or Program Counter.5 It’s a special register that stores

the memory address of the next instruction to be executed. The

CPU will:

1. Fetch the instruction at the memory address given by the PC,

2. Increment the PC by 1,

3. Execute the instruction,

4. Go back to step 1.

When the CPU is powered up, the PC is reset to its default value,

which is the address of the first instruction to be executed by the

machine. That’s usually an immutable built-in program responsible

for loading the computer’s basic functionalities.6

5Don’t confuse this with the common acronym for Personal Computer.
6In many personal computers, that program is called the BIOS.
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After being powered up, the CPU keeps following this fetch-

execute cycle until the computer shuts down. But if the CPU could

only follow an ordered, sequential list of operations, it would be just

a fancy calculator. The CPU is amazing because it can be instructed

to write a new value to the PC, causing the execution to branch, or

“jump” to somewhere else in the memory. And this branching can

be conditional. For instance, a CPU instruction could say: “set PC

to address #200 if register #1 equals zero”. This allows computers

to execute stuff like this:

if x = ͟

compute_thisΰα

else

compute_thatΰα

That’s all there is to it. Whether you open a website, play a com-

puter game, or edit a spreadsheet, computations are always the

same: a series of simple operations which can only sum, compare,

or move data across memory.

With many of these simple operations, we can express compli-

cated procedures. For example, the code for the classic Space In-

vaders game has about 3,000 machine instructions.

Fig63e ǚ.ǚ Space Invaders, released in ǔǜǚǛ, is oten considered the

most influential video game ever.
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CPU CӌӏӃӋ Back in the 1980s, Space Invaders became super pop-

ular. People played it in arcade machines equipped with a 2 MHz

CPU. That number indicates the CPU’s clock: the number of ba-

sic operations it executes per second. With a two million hertz (2

MHz) clock, the CPU performs roughly two million basic operations

per second. A machine instruction requires five to ten basic opera-

tions to complete. Hence, vintage arcade machines ran hundreds of

thousands of machine instructions every second.

With modern technological progress, ordinary desktop comput-

ers and smartphones typically have 2 GHz CPUs. They can perform

hundreds of millions machine instructions every second. And since

recently, multi-core CPUs are hitting mass adoption. A quad-core

2 GHz CPU can execute close to a billion machine instructions per

second. And it seems like our CPUs will be equipped with more

and more cores in the future.7

CPU AӒӃӈӉӔӅӃӔӕӒӅӓ Ever wonder why you can’t insert a PlaySta-

tion CD in your desktop computer and start playing the game? Or

why you can’t run iPhone apps on a Mac? The reason is simple:

different CPU architectures.

Nowadays the x86 architecture is pretty standard, so a same

code can be executed across most personal computers. However,

cell phones, for example, have CPUs with different architectures

that are more power-efficient. A different CPU architecture means

a different CPU instruction set, thus a different way to encode in-

structions as numbers. Numbers that translate as instructions for

your desktop CPU don’t represent valid instructions for the CPU in

your cell phone, and vice versa.

ӂӉӔ-؋، Ӗӓ. ӂӉӔ-؍6 AӒӃӈӉӔӅӃӔӕӒӅ The first CPU, called Intel 4004, was

built on a 4-bit architecture. This means it could operate (sum,

compare, move) binary numbers of up to 4 digits in a single ma-

chine instruction. The 4004 had data and address buses with only

four wires each.

7A CPU with 1,000 cores was already announced by researchers back in 2016.
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Shortly afterwards, 8-bit CPUs became widely available. They

were used in the early personal computers that ran DOS.8 The Game

Boy, a famous portable gaming computer in the 1980s and 1990s,

also had an 8-bit processor. A single instruction in these CPUs can

operate on eight-digit binary numbers.

Quick technological progress allowed the 16-bit, then the 32-

bit architecture to become dominant. CPU registers were enlarged

to accommodate 32-bit numbers. Larger registers naturally lead to

larger data and address buses. An address bus with 32 wires allows

addressing 232 bytes (4 GB) of memory.

And our thirst for computing power raged on. Computer pro-

grams became more complex, and started using more memory.

Four gigabytes of RAM became too little. And addressing over 4

GB of memory with numerical addresses that fit in 32-bit registers

is tricky. This ushered the rise of the 64-bit architecture, which

is dominant today. With 64-bit CPUs, extremely large numbers

can be operated by the CPU in a single instruction. And 64-bit

registers store addresses in a humongous memory space: 264 bytes

are over 17 billion gigabytes.

BӉӇ-EӎӄӉӁӎ Ӗӓ. 4ӉӔӔӌӅ-EӎӄӉӁӎ Some computer designers thought it

made sense to store numbers left-to-right in the RAM and CPU, in

a way that is known as little-endian. Other computer designers

preferred to write data in memory right-to-left, in what is known

as big-endian. The binary sequence ͠-͟-͟-͟-͟-͟-͠-͠ can rep-

resent different numbers, depending on “endianness”:

• Big-endian: 27 + 21 + 20 = 131,

• Litte-endian: 20 + 26 + 27 = 193.

Most CPUs today are little-endian, but there are a lot of big-endian

computers out there. If data generated by a little-endian CPU needs

to be interpreted by a big-endian CPU, we have to take measures

to avoid endianness mismatch. Programmers manipulating binary

numbers directly, particularly when parsing data that comes out of

8For Disk Operating System. We’ll explain operating systems soon.
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network switches, should remember this. Even though most com-

puters today are little-endian, Internet traffic standardized in big-

endian, because most of the early network routers had big-endian

CPUs. Big-endian data will appear garbled when read as little-

endian, and vice versa.

EӍӕӌӁӔӏӒӓ Sometimes, it’s useful to run in your own computer

some code that was designed for a different CPU. That way, you

can test an iPhone app without an iPhone, or play your favorite

vintage Super Nintendo game. For these tasks, there are pieces of

software called emulators.

An emulator mimics the target machine: it pretends to have

the same CPU, RAM, and other hardware. The instructions are de-

coded by the emulator program, and executed within the emulated

machine. As you can imagine, it’s very complex to emulate a ma-

chine inside another one when they have different architectures.

But since our computers are much faster than old ones, it’s possi-

ble. You can get a Game Boy emulator, have your computer create

a virtual Game Boy, and play the games just like you would on a

physical Game Boy.

ǚ.Ǖ Com1ile34

We can program computers to perform MRIs, recognize our voices,

explore other planets, and carry out many other complex tasks. It’s

remarkable that everything a computer can do is ultimately carried

out through simple CPU instructions, that just sum and compare

numbers. Complex computer programs, like a Web Browser, re-

quire millions or billions of such machine instructions.

But we rarely write our programs directly as CPU instructions.

It would be impossible for a human to write a realistic 3D computer

game this way. To express our orders in a more “natural” and com-

pact way, we created programming languages. We write our code

in these languages.9 Then, we use a program called a compiler to

translate our orders as machine instructions a CPU can run.

9We will learn more about programming languages in the next chapter.
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To explain what a compiler does, let’s image a simple mathe-

matical analogy. If we want to ask someone to calculate the facto-

rial of five, we can ask:

5! = ?

However, if the person we’re asking doesn’t know what a factorial

is, that question won’t make sense. We’d have to rephrase it using

simpler operations:

5× 4× 3× 2× 1 = ?

What if the person we’re asking can only perform sums? We’d have

to simplify our expression even further:

5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5+

5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = ?

As we write our calculation in simpler and simper forms, it takes

more and more operations. It’s the same with computer code.

The compiler translates complex instructions in a programming

language into a equivalent CPU instructions. Combined with the

power of external libraries, we can express complex programs of

billions of CPU instructions in relatively few lines of code that are

easily understood and modified.

Alan Turing, the father of computing, discovered that simple

machines can be powerful enough to compute anything that is com-

putable. For a machine to have universal computing power, it must

be able to follow a program containing instructions to:

• Read and write data in memory,

• Perform conditional branching: if a memory address has a

given value, jump to another point in the program.

Machines that have such universal computing power are called

turing-complete. It doesn’t matter how complex or difficult a

computation is, it can always be expressed in terms of simple

read/write/branch instructions. With enough time and memory,

these instructions can compute anything.
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Fig63e ǚ.Ǜ Courtesy of httpǽ//geek-and-poke.com.

Recently, it was shown that a CPU instruction called “move” (MOV)

is turing-complete. This means a CPU that can only perform the

MOV instruction is capable of anything a full-fledged CPU is. In

other words, any type of code can be expressed strictly by using

MOV instructions.10

The important concept to get here is that if a program can be

coded in a programming language, then it can be rewritten to run in

any turing-complete machine, regardless of how simple it is. The

compiler is the magic program that automatically translates code

from a complex language into a simpler one.

10Check out this compiler that will compile any C code into MOV-only binary
code: https://code.energy/mov.

http://geek-and-poke.com
https://code.energy/mov
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O1e3a5ing Sy45em4

Compiled computer programs are essentially sequences of CPU in-

structions. As we learned, code compiled for a desktop computer

won’t run on a smartphone, because these machines have CPUs of

different architectures. Still, a compiled program may not be usable

on two computers that share the same CPU architecture. That’s be-

cause programs must communicate with the computer’s operating

system to run.

To communicate with the world, programs must input and out-

put stuff: open files, write a message on the screen, open a network

connection, etc. But different computers have different hardware.

It’s impossible for a program to directly support all different types

of screens, sound cards, or network cards.

That’s why programs rely on an operating system to execute.

With its help, programs can work effortlessly with different hard-

ware. Programs make special system calls, requesting the operat-

ing system to perform required input/output operations. Compilers

translate input/output commands into the appropriate system calls.

However, different operating systems often use incompatible

system calls. The system call for printing something on the screen

with Windows is different from the one used by Mac OS, or Linux.

That’s why if you compile your program to run on Windows

with a x86 processor, it won’t work on a Mac with a x86 processor.

Besides targeting a specific CPU architecture, compiled code also

targets a specific operating system.

Com1ile3 O15imiza5ion4

Good compilers work hard to optimize the machine code they gen-

erate. If they see parts of your code can be changed to a more effi-

cient equivalent, they’ll do it. Compilers may try to apply hundreds

of optimization rules before producing a binary output.

That’s why you shouldn’t make your code harder to read in fa-

vor of micro-optimizations. In the end, the compiler will do all triv-

ial optimizations anyway. For instance, one might argue this code:
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function factorialΰnα

if n > ͠

return factorialΰn - ͠α * n

else

return ͠

Should be changed into this equivalent:

function factorialΰnα

result ← ͠

while n > ͠

result ← result * n

n ← n - ͠

return result

Yes, performing the factorial calculation without recursion uses

less computational resources. Still there is no reason to change

your code because of this. Modern compilers will rewrite simple

recursive functions automatically. Here’s another example:

i ← x + y + ͠

j ← x + y

Compilers will avoid computing x + y twice by rewriting that:

t͠ ← x + y

i ← t͠ + ͠

j ← t͠

Focus on writing clean, self-explanatory code. If you have perfor-

mance issues, use profiling tools to discover bottlenecks in your

code, and try computing these parts in smarter ways. Don’t waste

time on unnecessary micromanagement.

There are situations, though, where we want to skip compila-

tion. Let’s see how to do that.

Sc3i15ing Lang6age4

Some programming languages, called scripting languages, are exe-

cuted without a direct compilation to machine code. These include

JavaScript, Python, and Ruby. Code in these languages works by
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getting executed not directly by the CPU, but by an interpreter that

must be installed in the machine that is running the code.

Since the interpreter translates the code to the machine in real

time, it usually runs much slower than compiled code. On the other

hand, the programmer can always run the code immediately, with-

out waiting through the compilation process. When a project is

very big, compiling can take hours.

Fig63e ǚ.ǜ ȈCompilingȉ, courtesy of httpǽ//xkcd.com.

Google engineers had to constantly compile large batches of code.

That made coders “lose” (fig. 7.9) a lot of time. Google couldn’t

switch to scripting languages—they needed the higher performance

of the compiled binary. So they developed Go, a language that

compiles incredibly fast, but still has a very high performance.

Di4a44embly and 3e7e34e enginee3ing

Given a compiled computer program, it’s impossible to recover its

source code prior to compilation.11 But it is possible to decode the

11At least for now. With the evolution of artificial intelligence, that could be
possible some day.

http://xkcd.com
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binary program, transforming the numbers encoding CPU instruc-

tions into a human-readable sequence of instructions. This process

is called disassembly.

We can then look at these CPU instructions and try to figure out

what they’re doing, in a process called reverse engineering. Some

disassembly programs greatly help this process, automatically de-

tecting and annotating system calls and frequently used functions.

With disassembly tools, a hacker can understand every aspect of

what a binary code does. I’m sure many of the top IT companies

have secret reverse engineering labs, where they study their com-

petitors’ software.

Underground hackers often analyze the binary code from li-

censed programs like Windows, Photoshop, and Grand Theft Auto,

in order to determine which part of the code verifies the license.

They modify the binary code, placing an instruction to directly

JUMP to the part of the code that executes after the license has

been validated. When the modified binary is run, it gets to the

injected JUMP command before the license is even checked, so

people can run these illegal, pirated copies without paying.

Security researchers and engineers working for secret govern-

mental spying agencies also have labs to study popular consumer

software like iOS, Windows, or Internet Explorer. They identify po-

tential security breaches in these programs, to defend people from

cyber attacks or to hack into high-value targets. The most famous

attack of this kind was the Stuxnet, a cyberweapon built by agen-

cies from United States and Israel. It slowed down Iran’s nuclear

program by infecting computers that controlled underground Ira-

nian fusion reactors.

O1en-So63ce Sot8a3e

As we explained earlier, from the binary executable you can analyze

the raw instructions for the program in question, but you can’t re-

cover the original source code that was used to generate the binary.

Without the original source code, even though you can change

the binary a little bit to hack it in small ways, it’s practically impos-

sible to make any major change to the program, such as adding a

new feature. Some people believe that it’s much better to build code
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collaboratively, so they started to make their source code open for

other people to change. That’s the main concept about open source:

software that everyone can use and modify freely. Linux-based op-

erating systems (such as Ubuntu, Fedora, Debian) are open-source,

whereas Windows and Mac OS are closed source.

An interesting asset of open-source operating systems is that

everyone can inspect the source code to look for security vulnera-

bilities. It was already confirmed that governmental agencies have

exploited and spied on millions of civilians using unpatched secu-

rity breaches in every-day consumer software.

With open-source software, there are more eyes on the code,

so it’s harder for malicious third parties and government agencies

to insert surveillance backdoors. When using Mac OS or Windows,

you have to trust that Microsoft or Apple aren’t compromising your

security and are doing their best to prevent any severe security flaw.

Open-source systems are open to public scrutiny, so there are less

chances that security flaws slip through unnoticed.

ǚ.ǖ Memo3y Hie3a3chy

We know a computer works by having its CPU execute simple in-

structions. We know these instructions can only operate on data

stored in CPU registers. However, their storage space is usually

limited to less than a thousand bytes. This means CPU registers

constantly have to transfer data to and from the RAM.

If memory access is slow, the CPU has to sit idle, waiting for

the RAM to do its work. The time it takes to read and write data in

memory is directly reflected in computer performance. Increasing

memory speed can boost your computer as much as increasing CPU

speed. Data in CPU registers is accessed near-instantly by the CPU,

within just one cycle.12 The RAM, however, is way slower.

12In a CPU with a 1 GHz clock, a cycle lasts about a billionth of a second—the
time it takes for light to travel from this book to your eyes.
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P3oce44o3-Memo3y Ga1

Recent technological developments increased CPU speeds expo-

nentially. Memory speeds also increased, but at a much slower

rate. This performance gap between CPU and RAM is known as the

Processor-Memory Gap: CPU instructions are “cheap” as we can

execute plenty of then, whereas getting data from the RAM takes

a lot more time, so it’s “expensive”. As this gap became wider, the

importance of efficient memory access grew even more.
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Fig63e ǚ.ǔǓ The processor-memory gap in the last decades.

In modern computers, it takes about a thousand CPU cycles to get

data from the RAM—about 1 microsecond.13 That’s incredibly fast,

but it’s an eternity compared to the time it takes to access CPU

registers. Computer scientists started to try to find ways to reduce

the number of RAM operations required by their computations.

13It takes about ten microseconds for sound waves from your voice to reach a
person that’s in front of you.
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Tem1o3al and S1a5ial Locali5y

When trying to minimize RAM access, computer scientists started

noticing two things:

• Temporal Locality: when a memory address is accessed, it’s

probable it will be accessed again soon.

• Spatial Locality: when a memory address is accessed, it’s

probable addresses that are adjacent to it are going to be

accessed soon.

It would be great to store these memory addresses in CPU regis-

ters in anticipation. That would avoid most of the expensive RAM

operations. However, industry engineers found no viable way to

design CPU chips with enough internal registers. Still, they found a

great way to explore temporal and spatial locality. Let’s see how

this works.

The Lǔ Cache

It’s possible to build an extremely fast auxiliary memory, integrated

with the CPU. We call it the L1 cache. Getting data from this mem-

ory into the registers is just a tiny bit slower than getting data from

the registers themselves.

With an L1 cache, we can copy the contents of memory ad-

dresses with high probability of being accessed close to the CPU

registers. This way, they can be very quickly loaded into CPU reg-

isters. It takes only about ten CPU cycles to get data from the L1

cache into the registers. That’s about a hundred times faster then

fetching it from the RAM.

With about 10 KB of L1 cache memory and smart utilization of

temporal and spatial locality, over half of RAM access calls can be

fulfilled by the cache alone. This innovation revolutionized com-

puting technology. Equipping a CPU with an L1 cache drastically

reduces the time it has to wait for data. The CPU gets to spend much

more time doing actual computations rather than sitting idle.
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The LǕ Cache

Increasing the size of the L1 cache would make fetching data from

the RAM an even rarer operation, further reducing CPU waiting

time. However, growing the L1 cache without slowing it down is

difficult. After the L1 cache is about 50 KB in size, further increasing

it gets very expensive. The better solution is to build an additional

memory cache: the L2 cache. By allowing it to be slower, it can be

much larger than the L1 cache. A modern CPU will have about 200

KB of L2 cache. It takes about a hundred CPU cycles to get data

from the L2 cache into CPU registers.

We keep the very highly likely accessed addresses copied in the

L1 cache. Memory spaces with a pretty high probability of being ac-

cessed are copied to the L2 cache. If a memory address isn’t copied

in the L1 cache, the CPU can still try the L2 cache. Only if it’s in

neither cache does it have to access the RAM.

Many manufacturers are now shipping processors with an L3

cache: larger and slower than the L2, but still faster than the RAM.

The L1/L2/L3 caches are so important they take up most of the

silicon space inside a CPU chip.

Fig63e ǚ.ǔǔ Microscope photo of an Intel ”askell-E processor. The

square structures in the center are ǕǓ MB of Lǖ cache.
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The use of L1/L2/L3 caches dramatically increase the performance

of computers. With an L2 cache of 200 KB, less than 10% of memory

requests made by the CPU have to be fetched directly from the RAM.

Next time you go buy a computer, remember to compare the

different sizes of L1/L2/L3 caches of the CPUs you’re looking at.

Better CPUs will have larger caches. It’s often better to get a CPU

with a slower clock but larger cache.

P3ima3y Memo3y 74. Seconda3y Memo3y

As you can see, a computer has different types of memories, ar-

ranged in a hierarchy. The top-performing memories are limited

in size and very expensive. As we go down the hierarchy, more

memory space is available, but at lower access speeds.
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Fig63e ǚ.ǔǕ Memory hierarchy diagram.

After CPU registers and caches, next down the memory hierarchy is

the RAM. It’s responsible for storing data and code of all currently

running processes. As of 2017, a computer usually has 1 to 10 GB of

RAM. In many cases, that might not be enough to fit the computer’s

operating system along with all other running programs.
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In these cases, we have to dig deeper in the memory hierarchy,

and use the hard disk. As of 2017, computers usually have hard

disks of hundreds of gigabytes—more than enough to fit data from

all currently running programs. When the RAM is full, we move its

currently idle data to the hard disk to free up some memory.

The problem is, hard disks are extremely slow. Typically, it takes

a million CPU cycles, or a millisecond14 to move data between the

disk and the RAM. It might seem that accessing the data from the

disk is fast, but remember: accessing the RAM only takes a thou-

sand cycles—the disk takes a million. The RAM memory is often

called primary memory, whereas programs and data stored in the

disk are said to be in secondary memory.

The CPU cannot directly access secondary memory. Prior to ex-

ecution, programs stored in the secondary memory must be copied

to the primary memory. In fact, each time you boot your computer,

even your operating system has to be copied from the disk to the

RAM before the CPU can run it.

NӅӖӅӒ EӘӈӁӕӓӔ ӔӈӅ RAM It’s important to ensure all the data and

programs a computer handles during typical activity can fit in its

RAM. Otherwise, the computer will constantly transfer data be-

tween the disk and RAM. Since that operation is very slow, the

computer’s performance will degrade so much it will become use-

less. In this scenario, the computer spends more time waiting for

data to travel than doing actual computations.

When a computer is constantly getting data from the disk into

RAM, we say that it’s in trashing mode. Servers must always be

monitored: if they start processing stuff that cannot fit into the

RAM, trashing might cause the whole server to crash. That’s what

will cause a long line forming in a bank or at a cash register, while

the attendant can do little but blame the trashing computer system.

Insufficient RAM is possibly one of the main causes of server failure.

14A standard photograph captures light during about about four milliseconds.



ǔǗǗ | CͧͥͨͭͬEͪ ͫCIEͦCE ͜IͫͬILL͜͝

Ex5e3nal and Te35ia3y S5o3age

The memory hierarchy goes further down. If connected to a net-

work, a computer can access memory managed by other comput-

ers, either in the local network or on the Internet (aka in the cloud).

But that takes even more time: while reading a local disk takes a

millisecond, getting data from a network can take hundreds of mil-

liseconds. It takes about ten milliseconds just for a network packet

to travel from one computer to an other. If the network packet goes

through the Internet, it often travels for much longer: two to three

hundred milliseconds—the same duration as the blink of an eye.

In the bottom of the memory hierarchy, we have tertiary stor-

age: storage devices that are not always online and available. We

can affordably store dozens of millions of gigabytes of data in mag-

netic tape cartridges or CDs. Accessing data in this medium how-

ever, requires someone to pick up the medium and insert it in a

reader device. That can take minutes or days.15 Tertiary storage is

only suitable for archiving data you’ll rarely need to access.

T3end4 in Memo3y Technology

It has been hard to significantly improve technology used in “fast”

memories (the ones on top of the memory hierarchy). On the other

hand, “slow” memories are getting faster and cheaper. The cost of

hard disk storage has been dropping for decades, and it seems this

trend will continue.

New technologies are also making disks faster. We’re switching

from magnetic spinning disks to Solid State Drives (SSD). The ab-

sence of moving parts allows them to be faster, more reliable, and

less power-hungry.

Disks with SSD technology are getting cheaper and faster ev-

eryday, but they’re still expensive. Some manufacturers are pro-

ducing hybrid disks with both SSD and magnetic technology. The

frequently accessed data is stored in the SSD, and the less frequently

accessed data is kept in the slower magnetic part. When the less

accessed data starts to be frequently accessed, it’s copied into the

15Try asking the IT department to backup magnetic tapes on a Friday night…
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Fig63e ǚ.ǔǖ Disk storage cost per gigabyte.

fast SSD part of the hybrid drive. It’s similar to the trick CPUs use

to quicken RAM access through internal caches.

Concl64ion

In this chapter, we explained some very basic aspects of how com-

puters work. We’ve seen that anything that is computable can be

expressed in terms of simple instructions. We learned there is a

program called the compiler, that translates our complex computa-

tional commands to simple instructions that a CPU can do. Com-

puters can do complex computations simply because of the massive

amount of basic operations their CPUs can do.

We learned our computers have fast processors, but relatively

slow memory. But the memory is accessed not at random, but ac-

cording to spatial and temporal locality. That allows using faster

memories to cache memory data that has a high access probability.

We’ve seen this principle applied in several levels of caching: from

the L1 cache all the way down to tertiary storage.

The caching principle discussed in this chapter can be applied

to many scenarios. Identifying parts of data more frequently used

by your application and making this data faster to access is one of

the most used strategies to make computer programs run faster.
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Programming

When someone says: “I want a programming
language in which I need only say what I
wish done”, give him a lollipop.

—ALAN J. PERLIS

W
E WANT COMPUTERS to understand us. This is why we

express our orders in a programming language: a lan-

guage the machine will understand. Unless you hire a

coder, or you are in a science fiction movie, you can’t just tell a com-

puter what to do in Shakespearean English. For now, only coders

have the power to instruct a machine on what to do without con-

straints. And as your knowledge of programming languages deep-

ens, your power as a coder grows. In this chapter, you’ll learn to:

  Spot the secret linguistics that govern code,
x Store your precious information inside variables,

Think solutions under different paradigms.

We won’t get into the syntactical and grammatical formalities of

computer science. Relax and read on!

Ǜ.ǔ Ling6i45ic4

Programming languages differ wildly, but all of them exist to do

one thing: manipulate information. These languages rely on three

basic building blocks to do this. A value represents information.

An expression produces a value. A statement uses a value to give

an instruction to a computer.

147
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Val6e4

The kind of information a value can encode varies from language

to language. In the most rudimental languages, a value can only

encode very simple information, such as an integer or a floating

point1 number. As languages grew more complex, they started to

handle characters, and later strings, as values. In C, which is still

a very low level language, you can define a structure: a way to

define values that are composed from groups of other values. For

instance, you could define a value type called “coordinate”, that

would be made of two floats: latitude and longitude.

Values are so important, that they are also known as a program-

ming language’s “first-class citizens”. Languages allow all sorts of

operations with values: they can be created at runtime, can be

passed as arguments to functions, and be returned by functions.

Ex13e44ion4

You can create a value in two ways: either by writing a literal, or

by calling a function. Here’s an example expression of a literal:

͢

Boom. We literally just created the value 3 by writing ͢. Pretty

straightforward. Other types of values can also be created as literals.

Most programming languages will allow you to create the string

value hello world by typing "hello world". Functions, on the

other hand, will generate a value following a method or procedure

that’s coded somewhere else. For example:

getPacificTimeΰα

This expression created a value equal to the current time in Los

Angeles. If it’s 4 a.m., the method returned 4.

Another basic element in every programming language is the

operator. An operator can join simple expressions to form more

complex ones. For example, using the + operator, we can create a

value equal to the time in New York:

1Floating points are a common way to represent numbers that have a decimal.
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simple expression simple expressionoperator

complex expression

3 + getPacificTime()

When its 4 a.m. in Los Angeles, our expression reduces to 7. In fact,

an expression is anything you write that the computer will be able

to reduce to a single value. Big expressions can be combined with

other expressions through operators, forming even larger expres-

sions. In the end, even the most complex expression must always

evaluate to a single value.

Alongside literals, operators and functions, expressions can

also contain parentheses. Parentheses allows control over opera-

tor precedence: (2 + 4)2 evaluates to 62, which in turn evaluates

to 36. The expression 2 + 42 evaluates to 2 + 16, then to 18.

S5a5emen54

While an expression is used to represent a value, a statement is used

to instruct the computer to do something. For example, this state-

ment causes a message to be shown: printΰ"hello world"α.

Fig63e Ǜ.ǔ Courtesy of httpǽ//geek-and-poke.com.

http://geek-and-poke.com
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More complex examples include the if, while-loop and for-loop state-

ments. Different programming languages support different types

of statements.

DӅӆӉӎӉӔӉӏӎӓ Some programming languages have special state-

ments, called definitions. They change the state of a program

by adding an entity that didn’t exist, like a new value or function.2

To refer to an entity we defined, we need to associate a name to

it. That’s called name binding. For example, the name getPaci-

ficTime had to be bound to a function definition somewhere.

Ǜ.Ǖ Va3iable4

Variables are the most important name binding there is: the one

between a name and a value. A variable associates a name to the

memory address where a value is stored, serving as an “alias”. Most

often, a variable is created using the assignment operator. In this

book’s pseudocode, assignments are written ←, like this:

pi ← ͢.ͣ͠͡

In most programming languages, assignments are written =. Some

languages even require you to declare a name as a variable, before

it is defined. You’ll end up with something like this:

var pi

pi = ͢.ͣ͠͡

This statement reserves a memory block, writes the value ͢.ͣ͠͡ in

it, and associates the name “pi” to the memory block’s address.

Va3iable Ty1ing

In most programming languages, variables must have an assigned

type (e.g. integer, float, or string). This way, the program knows

how it should interpret the 1s and 0s it reads in the variable’s mem-

ory block. This helps to spot errors when operating with our vari-

2Sometimes, entities can be imported from pre-coded external libraries.
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ables. If a variable is of the “string” type, while an other is of the

integer type, it makes no sense to sum them.

There are two ways to perform type checking: statically and

dynamically. Static type checking requires the coder to declare the

type of every variable before using it. For example, programming

languages like C and C++ will have you write:

float pi΃

pi = ͢.ͣ͠͡΃

This declares that the variable named pi can only store data that

represents a floating point number. Statically typed languages can

apply extra optimizations while compiling the code, and detect pos-

sible bugs even before you execute the code. However, declaring

types every time you use a variable can get boring.

Some languages prefer checking types dynamically. With dy-

namic type checking, any variable can store any type of value, so no

type declaration is required. However, when the code is executing,

extra type checking is performed when operating with variables, to

ensure operations between variables all make sense.

Va3iable Sco1e

If all name bindings were available and valid at all points in the

program, programming would be extremely difficult. As programs

get bigger, the same names of variables (such as time, length, or

speed) might end up being used in unrelated parts of the code.

For example, I could define a “length” variable in two points

in my program without noticing, and that would cause a bug.

Worse yet, I could import a library that also uses a “length” vari-

able: in this case the length from my code would collide with the

length from the imported code.

To avoid collisions, names bindings are not valid over the entire

source code. The variable’s scope defines where it is valid and can

be used. Most languages are set up such that a variable is only valid

within the function where it was defined.

The current context, or environment, is the set of all name

bindings that are available in a program at a given point. Usually,

variables that are defined within a context are instantly deleted and



ǔǘǕ | CͧͥͨͭͬEͪ ͫCIEͦCE ͜IͫͬILL͜͝

freed from the computer’s memory once the execution flow leaves

that context. Though it’s not recommended, you can bypass this

rule and create variables that are always accessible anywhere in

your program. These are called global variables.

The collection of all names available globally consists of your

namespace. You should watch the namespace of your programs

closely. It should be kept as small as possible. In large namespaces,

it’s easier to create name conflicts.

When adding more names to your program’s namespace, try

to minimize the number of names added. For example, when you

import an external module, only add the names of the functions

you are going to use. Good modules should require the user to add

the very little to their namespace. Adding unnecessary things to the

namespace causes a problem known as namespace pollution.

Ǜ.ǖ Pa3adigm4

A paradigm is a specific collection of concepts and practices that de-

fine a field of science. A paradigm will orientate how you approach

a problem, the techniques you use, and the structure of your so-

lution. For instance, Newtonian and Relativistic schools are two

different paradigms of physics.

For both coding and physics, the way you approach your prob-

lems changes completely depending on the paradigm you consider.

A programming paradigm is a point of view of the coding realm.

It will direct your coding style and technique.

You can use one or multiple paradigms in your program. It’s

best to use the paradigms that the programming language you are

using is based on. In the 1940s, the first computers were manu-

ally programmed by flipping switches to insert 1s and 0s into the

computer’s memory. Programming never stopped evolving, and

paradigms emerged to empower people to code with more effi-

ciency, complexity and speed.

There are three main programming paradigms: imperative,

declarative, and logic. Unfortunately, most coders only learn how

to properly work with the first one. Knowing about all three is

important, because it will enable you to benefit from the features
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and opportunities each programming language offers. This way,

you’ll be able to code with maximum effectiveness.

Im1e3a5i7e P3og3amming

The imperative programming paradigm is about instructing the

computer on what it must do exactly at each step using specific

commands. Each command changes the computer’s state. The se-

quence of commands that constitutes a program is followed, one

after another.

This was the first programming paradigm, as it’s a natural ex-

tension of the way our computers work. Computations are always

performed by CPU instructions that are executed one after another.

In the end, every computer program is ultimately executed by com-

puters under this paradigm.

Imperative Programming is by far the most widely known

paradigm. In fact, many programmers are familiar only with this

one. It’s also a natural extension of the way humans work: we use

this paradigm to describe a cooking recipe, a car repair routine,

and other everyday procedures. When we are lazy about doing

a boring task, we code these instructions into a program and a

computer does it for us. Programmer laziness is responsible for

many important things.

Fig63e Ǜ.Ǖ ȈThe “eneral Problemȉ, from httpǽ//xkcd.com.

http://xkcd.com
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MӁӃӈӉӎӅ CӏӄӅ PӒӏӇӒӁӍӍӉӎӇ Early programmers, who had to in-

put their code manually to the computer using 1s and 0s, also got

lazy. They decided it would be more fun to write their sequence

of CPU instructions using mnemonics, such as CP for the “copy” in-

struction, MOV for the “move” instruction, CMP for the “compare”

instruction, and so on. Then they wrote a program that converted

mnemonic code to equivalent binary numbers, which could then

be executed by the computer. With this, the Assembly (aka ASM)

language was born.

A program written using these mnemonics is way more read-

able than its equivalent bunch of 1s and 0s. These early mnemonics

and this programming style are both still widely used to this day. As

modern CPUs support more complex instructions, more mnemonics

were created, but the basic principle is still the same.

ASM is used to program systems such as an electronic mi-

crowave, or the computer system in a car. This programming style

is also used on sections of code where extreme performance is

needed, where saving even a few CPU cycles is relevant.

For example, imagine you are optimizing a high-performance

web server and you’ve encountered a severe bottleneck. You can

convert this bottleneck into ASM code, and inspect it. Many times

we can modify the code to make it use fewer instructions. Lower

level languages sometimes support the insertion of machine lan-

guage within the programming language’s normal code for imple-

menting such fine optimizations. Writing in machine code gives

you absolute control of what the CPU is actually doing when run-

ning your code.

SӔӒӕӃӔӕӒӅӄ PӒӏӇӒӁӍӍӉӎӇ In the beginning, programs used GOTO

commands to control the execution flow. This command makes the

execution to jump to a different part of the code. As programs be-

came more complex, it was nearly impossible to understand what

a program did. Different possible flows of execution were all in-

tertwined with GOTO and JUMP commands, in a condition known

as spaghetti code.3 In 1968, Djkistra wrote his famous manifesto

“GOTO Statement Considered Harmful”, and it ushered a revolu-

tion. Code began to be separated in logical parts. Instead of ad-hoc

3If you want to curse someone else’s source code, call it spaghetti code.
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GOTOs, programmers began to use control structures (if, else,

while, for…). That enabled programs to be much more easily

written and debugged.

PӒӏӃӅӄӕӒӁӌ PӒӏӇӒӁӍӍӉӎӇ The next advance in the art of coding

was procedural programming. It allows code to be organized into

procedures, to avoid code replication and to increase code reusabil-

ity. For instance, you can create a function that converts metric

system measures to USA imperial units, and then call your function

to reuse that same code whenever you want. This improved struc-

tured programming even further. Using procedures made it much

easier to group related pieces of code, while separating them into

different logical parts.

Decla3a5i7e P3og3amming

The declarative programming paradigm makes you state your de-

sired result without dealing with every single intricate step that gets

you there. It’s about declaring what you want, and not how you

want it done. In many scenarios, this allows programs to be much

shorter and simpler. They are often also easier to read.

FӕӎӃӔӉӏӎӁӌPӒӏӇӒӁӍӍӉӎӇ In the functional programming paradigm,

functions are more than just procedures. They’re used to declare

the relationship between two or more items, much like math equa-

tions. Functions are first-class citizens in the functional paradigm.

They are treated the same way as any other primitive data type,

such as strings and numbers.

Functions can receive other functions as arguments, and return

functions as outputs. Functions that have these features are known

as high-order functions, because of their high expressive power.

Many mainstream programming languages are incorporating such

elements from the functional paradigm. You should take advantage

of their marvelous expressiveness whenever possible.

For instance, most functional programming languages ship

with a generic sort function. It can sort any sequence of items.

The sort function accepts another function as input, that defines

how items are compared in the sorting process. For example, let’s

say coordinates contains a list of geographical locations. Given
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two locations, the closer_to_home function says which is closer

to your home. You could sort a list of locations by proximity to

your home like this:

sortΰcoordinates, closer_to_homeα

High-order functions are often used to filter data. Functional pro-

gramming languages also offer a generic filter function, which re-

ceives a set of items to be filtered, and a filtering function that indi-

cates if each item is to be filtered or not. For example, to filter out

even numbers from a list, you can write:

odd_numbers ← filterΰnumbers, number_is_oddα

The number_is_odd is a function that receives a number and re-

turns True if the number is odd, and False otherwise.

Another typical task that comes up when programming is to

apply a special function over all items in a list. In functional pro-

gramming, that is called mapping. Languages often ship with a

built-in map function for this task. For example, to calculate the

square of every number in a list, we can do this:

squared_numbers ← mapΰnumbers, squareα

The square is a function that returns the square of the number

it’s given. Map and filter occur so frequently, that many program-

ming languages provide ways to write these expressions in simpler

forms. For instance, in the Python programming language, you

square numbers in a list a like this:

squared_numbers = [x**͡ for x in numbers]

That’s called a syntactic sugar: added syntax that lets you write

expressions in simpler and shorter forms. Many programming lan-

guages provide several forms of syntactic sugar for you. Use them

and abuse them.

Finally, when you need to process a list of values in a way that

produces a single result, there’s the reduce function. As input, it

gets a list, an initial value, and a reducing function. The initial value
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will initiate an “accumulator” variable, which will be updated by the

reducing function for every item in the list before it’s returned:

function reduceΰlist, initial_val, funcα

accumulator ← initial_val

for item in list

accumulator ← funcΰaccumulator, itemα

return accumulator

For example, you can use reduce to sum items in a list:

sum ← functionΰa, bα΂ a + b

summed_numbers ← reduceΰnumbers, ͟, sumα

Using reduce can simplify your code and make it more readable.

Another example: if sentences is a list of sentences, and you

want to calculate the total number of words in those sentences,

you can write:

wsum ← functionΰa, bα΂ a + lengthΰsplitΰbαα

number_of_words ← reduceΰsentences, ͟, wsumα

The split function splits a string into a list of words, and the

length function counts the number of items in a list.

High-order functions don’t just receive functions as inputs—

they can also produce new functions as outputs. They’re even able

to enclose a reference to a value into the function they generate. We

call that a closure. A function that has a closure “remembers” stuff

and can access the environment of its enclosed values.

Using closures, we can split the execution of a function which

takes multiple arguments into more steps. This is called currying.

For instance, suppose your code has this sum function:

sum ← functionΰa, bα΂ a + b

The sum function expects two parameters, but it can be called with

just one parameter. The expression sumΰ͢α doesn’t return a num-

ber, but a new curried function. When invoked, it calls sum, using

͢ as the first parameter. The reference to the value ͢ got enclosed

in the curried function. For instance:
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sum_three ← sumΰ͢α

print sum_threeΰ͠α # prints "ͣ".

special_sum ← sumΰget_numberΰαα

print special_sumΰ͠α # prints "get_numberΰα + ͠".

Note that get_number will not be called and evaluated in order

to create the special_sum function. A reference to get_number

gets enclosed to special_sum. The get_number function is only

called when we need to evaluate the special_sum function. This

is known as lazy evaluation, and it’s an important characteristic of

functional programming languages.

Closures are also used to generate a set of related functions that

follow a template. Using a function template can make your code

more readable and avoid duplication. Let’s see an example:

function power_generatorΰbaseα

function powerΰxα

return powerΰx, baseα

return power

We can use power_generator to generate different functions

that calculate powers:

square ← power_generatorΰ͡α

print squareΰ͡α # prints ͣ.

cube ← power_generatorΰ͢α

print cubeΰ͡α # prints ͧ.

Note that the returned functions square and cube retain the

value for the base variable. That variable only existed in the envi-

ronment of power_generator, even though these returned func-

tions are completely independent from the power_generator

function. Again: a closure is a function that has access to some

variables outside of its own environment.

Closures can also be use to manage a function’s internal state.

Let’s suppose you need a function that accumulates the sum of all

numbers that you gave it. One way to do it is with a global variable:
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GLOBAL_COUNT ← ͟

function addΰxα

GLOBAL_COUNT ← GLOBAL_COUNT + x

return GLOBAL_COUNT

As we’ve seen, global variables should be avoided because they pol-

lute the program’s namespace. A cleaner approach is to use a clo-

sure to include a reference to the accumulator variable:

function make_adderΰα

n ← ͟

function adderΰxα

n ← x + n

return n

return adder

This lets us create several adders without using global variables:

my_adder ← make_adderΰα

print my_adderΰͤα # prints ͤ.

print my_adderΰ͡α # prints ͦ ΰͤ + ͡α.

print my_adderΰ͢α # prints ͟͠ ΰͤ + ͡ + ͢α.

PӁӔӔӅӒӎ MӁӔӃӈӉӎӇ Functional programming also allows you to

treat functions like math functions. With math, we can write how

functions behave according to the input. Notice the input pattern

of the factorial function:

0! = 1,

n! = (n− 1)!

Functional programming allows pattern matching—the process of

recognizing that pattern. You can simply write:

factorialΰ͟α΂ ͠

factorialΰnα΂ n × factorialΰn - ͠α
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In contrast, imperative programming required you to write:

function factorialΰnα

if n = ͟

return ͠

else

return n × factorialΰn - ͠α

Which one looks clearer? I’d go with the functional version when-

ever possible! Some programming languages are strictly functional;

all the code is equivalent to purely mathematical functions. These

languages go as far as being atemporal, with the order of the state-

ments in the code not interfering in the code’s behaviour. In these

languages, all values assigned to variables are non-mutant. We call

that single assignment. Since there is no program state, there is

no point-in-time for the variable to change. Computing in a strict

functional paradigm is merely a matter of evaluating functions and

matching patterns.

Logic P3og3amming

Whenever your problem is the solution to a set of logical formulas,

you can use logic programming. The coder expresses logical as-

sertions about a situation, such as the one ones we saw in sec. 1.2.

Then, queries are made to find out answers from the model that

was provided. The computer is in charge of interpreting the logical

variables and queries. It will also build a solution space from the

assertions and search for query solutions that satisfy all of them.

The greatest advantage of the logical programming paradigm

is that programming itself is kept to a minimum. Only facts, state-

ments and queries are presented to the computer. The computer is

in charge of finding the best way to search the solution space and

present the results.

This paradigm isn’t very well used in the mainstream, but if you

find yourself working with artificial intelligence, natural language

processing, remember to look into this.



Programming

Concl64ion

As techniques for computer programming evolved, new program-

ming paradigms emerged. They allowed computer code more ex-

pressiveness and elegance. The more you know of different pro-

gramming paradigms, the better you’ll be able to code.

In this chapter, we’ve seen how programming evolved from di-

rectly inputing 1s and 0s into the computer memory into writing

assembly code. Then programming became easier with the estab-

lishment of control structures, such as loops and variables. We’ve

seen how using functions allowed code to be better organized.

We saw some elements of the declarative programming paradigm

that are becoming used in mainstream programming languages.

And finally, we mentioned logic programming, which is the pre-

ferred paradigm when working in some very specific contexts.

Hopefully, you will have the guts to tackle any new program-

ming language. They all have something to offer. Now, get out

there and code!

Refe3ence

• Essentials of Programming Languages, by Friedman

– Get it at https://code.energy/friedman

• Code Complete, by McConnell

– Get it at https://code.energy/code-complete
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Computer science education cannot make anybody an
expert programmer any more than studying brushes
and pigment can make somebody an expert painter.

—ERIC S. RAYMOND

This book presented the most important topics of computer science

in a very simple form. It’s the bare minimum a good programmer

should know about computer science.

I hope this new knowledge will encourage you to dig deeper

into the topics you like. That’s why I included links to some of the

best reference books at the end of each chapter.

There are some important topics in computer science that are

notably absent from this book. How can you make computers in

a network covering the entire planet (the Internet) communicate

in a reliable way? How do you make several processors work in

synchrony to solve a computational task faster? One of the most

important programming paradigms, object-oriented programming,

also got left out. I plan to address these missing parts in a next book.

Also, you will have to write programs to fully learn what we’ve

seen. And that’s a good thing. Coding can be unrewarding at first,

when you start learning how to do basic things with a program-

ming language. Once you learn the basics, I promise it gets super

rewarding. So get out there and code.

Lastly, I’d like to say this is my first attempt at writing a book.

I have no idea how well it went. That’s why your feedback about

this book would be incredibly valuable to me. What did you like

about it? Which parts were confusing? How do you think it could

be improved? Drop me a line at hi@code.energy.

163

mailto:hi@code.energy




Aͨͨͦ͜͝͡X

I N6me3ical Ba4e4

Computing can be reduced to operating with numbers, because in-

formation is expressible in numbers. Letters can be mapped to num-

bers, so text can be written numerically. Colors are a combination

of light intensities of red, blue and green, which can be given as

numbers. Images can be composed by mosaics of colored squares,

so they can be expressed as numbers.

Archaic number systems (e.g., roman numerals: I, II, III,…)

compose numbers from sums of digits. The number system used

today is also based on sums of digits, but the value of each digit in

position i is multiplied by d to the power of i, where d is the num-

ber of distinct digits. We call d the base. We normally use d = 10
because we have ten fingers, but the system works for any base d:

10
3
× 4 = 4000

10
2
× 3 = 300

10
1
× 2 = 20

10
0
× 1 = 1

16
3
× 1 = 4096

16
2
× 0 = 0

16
1
× 14 = 224

16
0
× 1 = 1

2
12

× 1 = 4, 096

2
7
× 1 = 128

2
6
× 1 = 64

2
5
× 1 = 32

2
0
× 1 = 1

8
4
× 1 = 4, 096

8
2
× 3 = 192

8
1
× 4 = 32

8
0
× 1 = 1

Hexadecimal

Base 16

0 1E1

0123

4, 096 + 0 + 224 + 1 = 4, 321

Decimal

Base 10

3 124

0123

4, 000 + 300 + 20 + 1 = 4, 321

Octal

Base 8

3 140

0123

1

4

4, 096 + 128 + 64 + 32 + 1 = 4, 321

Binary

Base 2

0 100

0123

4, 096 + 128 + 64 + 32 + 1 = 4, 321

1 011

4567

0 000

891011

1

12

Fig63e ǔǓ.ǔ The number Ǘ,ǖǕǔ in diferent bases.
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II Ga644’ 53ick

The story goes that Gauss was asked by an elementary school

teacher to sum all numbers from 1 to 100 as a punishment. To

the teacher’s amazement, Gauss came up with the answer 5,050

within minutes. His trick was to play with the order of elements

of twice the sum:

2×
100∑

i=1

i = (1 + 2 + · · ·+ 99 + 100) + (1 + 2 + · · ·+ 99 + 100)

= (1 + 100) + (2 + 99) + · · ·+ (99 + 2) + (100 + 1)
︸ ︷︷ ︸

100 pairings

= 101 + 101 + · · ·+ 101 + 101
︸ ︷︷ ︸

100 times

= 10, 100.

Dividing this by 2 yields 5,050. We can formally write this reorder-

ing
∑

n

i=1 i =
∑

n

i=1(n + 1 − i). Thus:

2×

n∑

i=1

i =

n∑

i=1

i+

n∑

i=1

(n+ 1− i)

=

n∑

i=1

(i+ n+ 1− i)

=

n∑

i=1

(n+ 1).

There is no i in the last line, so (n + 1) is summed over and over

again n times. Therefore:

n∑

i=1

i =
n(n+ 1)

2
.
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Appendix

III Se54

We use the word set to describe a collection of objects. For example,

we can call S the set of monkey face emoji:

S = { , , , }.

SӕӂӓӅӔӓ A set of objects that is contained inside another set is

called a subset. For example, the monkeys showing hands and

eyes are S1 = { , }. All the monkeys in S1 are contained in S.

We write this S1 ⊂ S. We can group monkeys showing hands and

mouths in another subset: S2 = { , }.

Fig63e ǔǓ.Ǖ S1 andS2 are subsets ofS.

UӎӉӏӎ What monkeys belong to either S1 or S2? They are the

monkeys in S3 = { , , }. This new set is called the union of

the two previous sets. We write this S3 = S1 ∪ S2.

IӎӔӅӒӓӅӃӔӉӏӎ What monkeys belong to both S1 and S2? They are

the monkeys in S4 = { }. This new set is called the intersection

of the two previous sets. We write this S4 = S1 ∩ S2.

PӏӗӅӒ ӓӅӔӓ Note that S3 and S4 are both still subsets of S. We

also consider S5 = S and the empty set S6 = {} are both subsets

of S. If you count all subsets of S, you will find 24 = 16 subsets. If

we see all these subsets as objects, we can also start to collect them

into sets. The collection of all subsets of S is called its power set:

PS = {S1, S2, . . . , S16}.
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IV Kadane’4 Algo3i5hm

In sec. 3.3, we introduced the Best Trade problem:

BEST TRADE You have the daily prices of gold for a

interval of time. You want to find two days in this interval

such that if you had bought then sold gold at those dates,

you’d have made the maximum possible profit.

In sec. 3.7, we showed an algorithm that solves this in O(n) time

and O(n) space. When Jay Kadane discovered it in 1984, he also

showed how to solve the problem in O(n) time and O(1) space:

function trade_kadaneΰpricesα΂

sell_day ← ͠

buy_day ← ͠

best_profit ← ͟

for each s from ͡ to prices.length

if prices[s] < prices[buy_day]

b ← s

else

b ← buy_day

profit ← prices[s] - prices[b]

if profit > best_profit

sell_day ← s

buy_day ← b

best_profit ← profit

return ΰsell_day, buy_dayα

That’s because we don’t need to store the best buying day for every

day of the input. We just need to store the best buying day relative

to the best selling day found so far.
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COLOPHON

This book was created with X ELATEX, a type-
setting engine for Donald Knuth’s TEX system.
The text is set Charter, a typeface designed
by Matthew Carter in 1987, based on Pierre-
Simon Fournier’s characters from the XVIII
Century. Other fonts include Source Code

Pro, Source Sans Pro and CALENDAS PLUS.

The emoji were kindly provided by Twemoji,
an open-source project maintained by Twitter.

The cover image is based on 1845 schematics
of the Analytical Engine by Charles Babbage. It
was the first programmable computer ever to
be designed by mankind.
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