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INTRODUCTION

‘Mathematics is the gate and key of the sciences. … 
Neglect of matheÂ�matics works injury to all knowledge, 
since he who is ignorant of it cannot know the other 
sciences or the things of this world. And what is 
worse, men who are thus ignorant are unable to 
perceive their own ignorance and so do not seek a 
remedy.’

Roger Bacon, 1214–1292

The language of matheÂ�matics has changed the way we 
think about the world. Most of our science and technology 
would have been literally unthinkable without matheÂ�matics, 
and it is also the case that countless artists, architects, 
musicians, poets and philosophers have insisted that their 
grasp of the subject was vital to their work. Clearly matheÂ�
matics is important, and in this book I hope to convey 
both the poetry of matheÂ�matics and the profound cultural 
influence of various forms of matheÂ�matical practice. For 
better or worse, you can’t comprehend the influence of 
math until you have some understanding of what matheÂ�
maticians actually do. By way of contrast, you don’t need 
to be an engineer to appreciate the impact of technological 
change, but it is hard to comprehend the power and 
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Â�influence of matheÂ�matical thought without an under-
standing of the subject on its own terms. 

Most people are numerate, and have learned a handful 
of rules for calculation. Unfortunately the arguments and 
lines of reasoning behind these techniques are much less 
widely known, and far too many people mistakenly believe 
they cannot hope to understand or enjoy the poetry of 
math. This book is not a training manual in matheÂ�matical 
techniques: it is an informal and poetic guide to a range 
of matheÂ�matical thoughts. I disregard some technicalities 
along the way, as my primary aim is to show how the 
language of math has arisen over time, as we attempt to 
comprehend the patterns of our world. My hope is that 
by writing about the development of matheÂ�matical ideas 
I can inspire some of my readers, shake up some lazy 
assumptions about pure and applied matheÂ�matics, and 
show that an understanding of math can help us to arrive 
at a richer understanding of facts in general.

Mathematics is often praised (or ignored) on the 
grounds that it is far removed from the lives of ordinary 
people, but that assessment of the subject is utterly 
mistaken. As G. H. Hardy observed in A Mathematician’s 
Apology:

Most people have some appreciation of matheÂ�matics, 
just as most people can enjoy a pleasant tune; and 
there are probably more people really interested in 
matheÂ�matics than in music. Appearances suggest the 
contrary, but there are easy explanations. Music can 
be used to stimulate mass emotion, while matheÂ�matics 
cannot; and musical incapacity is recognized (no doubt 
rightly) as mildly discreditable, whereas most people 
are so frightened of the name of matheÂ�matics that 
they are ready, quite unaffectedly, to exaggerate their 
own matheÂ�matical stupidity.
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The considerable popularity of sudoku is a case in point. 
These puzzles require nothing but the application of 
matheÂ�matical logic, and yet to avoid scaring people off, 
they often carry the disclaimer ‘no matheÂ�matical knowÂ�
ledge required’! The matheÂ�matics that we know shapes 
the way we see the world, not least because matheÂ�matics 
serves as ‘the handmaiden of the sciences’. For example, 
an economist, an engineer or a biologist might measure 
something several times, and then summarize their meaÂ�
surements by finding the mean or average value. Because 
we have developed the symbolic techniques for calculating 
mean values, we can formulate the useful but highly 
abstract concept of ‘the mean value’. We can only do this 
because we have a matheÂ�matical system of symbols. 
Without those symbols we could not record our data, let 
alone define the mean.

Mathematicians are interested in concepts and patterns, 
not just computation. Nevertheless, it should be clear to 
everyone that computational techniques have been of vital 
importance for many millennia. For example, most forms 
of trade are literally inconceivable without the concept 
of number, and without matheÂ�matics you could not 
organize an empire, or develop modern science. More 
generally, matheÂ�matical ideas are not just practically 
important: the conceptual tools that we have at our 
disposal shape the way we approach the world. As the 
psychologist Abraham Maslow famously remarked, ‘If 
the only tool you have is a hammer, you tend to treat 
everything as if it were a nail.’ Although our ability to 
count, calculate and measure things in the world is prac-
tically and psychologically critical, it is important to 
emphasize that matheÂ�maticians do not spend their time 
making calculations. The real challenge of matheÂ�matics 
is to construct an argument. 

Pythagoras’ famous Theorem provides an excellent 
example of how the nature of matheÂ�matical thought is 
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widely misunderstood. Most educated people know that 
given any right-angled triangle, we can use the formula 
a2 + b2 = c 2 to find all three lengths, even if we have only 
been told two of them. As they have been asked to repeat-
edly perform this kind of calculation, people mistakenly 
conclude that matheÂ�matics is all about applying a given 
set of rules. Unfortunately, far too few people can give a 
convincing explanation as to why Pythagoras’ Theorem 
must be true, despite the fact that there are literally 
hundreds of different proofs. One of the simplest argu-
ments for showing that it’s true hinges around the following 
diagram:

Pythagoras: The shapes on either side of the equals sign 
are contained inside a pair of identical squares, whose sides 
are a + b units wide. The one on the left contains a square 
a units wide, a square b units wide plus four right-angled 
triangles. The one the right contains a square c units wide 
plus four right-angled triangles. We can convert the picture 
on the left into the one on the right simply by moving the 
four triangles, and moving a shape does not change its 
area. Since the white area is the same in each of the draw-
ings, this demonstrates that a2 + b2 = c 2 for any right-angled 
triangle. 

Sceptic: How can you be certain that we always get a 
square on the right-hand side? More specifically, how do 

a a a 

b b 

b b 

b 

a a 

c = 2 

2 

2 
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you know that your triangles always meet at a point, what-
ever the values of a and b?

Pythagoras: Both drawings are of equal height (a + b units 
high). This tells us that the two triangles that are just to 
the right of the equals sign must touch at a point, because 
they only just manage to fit inside the containing square. 
Similarly, the two triangles on the bottom of the right-hand 
side touch at a point, because the total length along this 
side is a + b, which equals b + a (the width of the containing 
squares). 

Sceptic: OK, but how do you know that the triangles on 
the right-hand side always meet at right angles? In other 
words, how do you know that the shape on the right-hand 
side is really a square? 

Pythagoras: You agree that we have four sides of equal 
length, and all four corners are the same? 

Sceptic: Yes. Rotating the picture on the right by 90°, 180° 
or 270° leaves the diagram unchanged.

Pythagoras: And despite these facts you still aren’t 
convinced that it’s a square? No wonder they call you a 
sceptic! 

My aim in writing this book is to show how the language 
of matheÂ�matics has evolved, and to indicate how matheÂ�
matical arguments relate to the broader human adventure. 
This book is related to the work of various philosophers 
(particularly Ludwig Wittgenstein), but it is not a history 
of non-matheÂ�matical ideas, or an attempt to draw battle 
lines between conflicting ‘big pictures’ from the philosophy 
of math. I will have succeeded if my writing provokes 
thought, but I have also tried to argue against the idea that 
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matheÂ�maticians discover facts about abstract objects, just 
like scientists discover facts about physical objects. MatheÂ�
matical language does not make sense because abstract 
objects existed before matheÂ�maticians! Contrariwise, we 
can only become cognisant of abstract objects because 
matheÂ�matical language is something that humans can actu-
ally use.

It is fundamental to human understanding that our theo-
ries or accounts of the physical world are expressed through 
language. People make statements of fact, and the reflective, 
systematic study of our ability to make statements leads 
us into the world of math. Indeed, our understanding of 
matheÂ�matics always begins with a clear, comprehensible 
case, from which we form a notion of the abstract prin-
ciples at play. For example, children learn the counting 
song, and they are then initiated into the practice of 
counting actual, physical objects. This concrete experience 
grounds our sense of number, as we abstract away from 
a particular experience of counting things, justifiably 
believing that we could set about counting any collection 
of objects. That is to say, number words become meaningful 
for an individual as they use those words on some particular 
occasion, in the presence of actual, countable objects, but 
once that person has acquired a language, the language 
itself enables them to think in terms of number, whatever 
they might wish to count.

Some people mistakenly believe that to do matheÂ�matics, 
we simply need to follow certain rules. I suspect that people 
arrive at this erroneous position because in order to satisfy 
their teachers and examiners, all they need to do is apply 
some rules correctly. In fact, higher matheÂ�matics is an 
essentially creative pursuit that requires imagination. That 
said, rules are never far behind our creative insights, because 
in order to contribute to the body of matheÂ�matical knowÂ�
ledge, matheÂ�maticians need to be able to communicate 
their ideas. The formal discipline that we require to fully 



	 INTRODUCTION� 7

state our arguments is an essential constraint on the shape 
of matheÂ�matical knowledge, but the matheÂ�matics that we 
know also reflects the problems, challenges and cultural 
concerns that have motivated the various members of the 
matheÂ�matical community. 

I hope that reading this book persuades you that matheÂ�
maticians are explorers of patterns, and formal, logical 
proofs that can be methodically checked are the ultimate 
test of matheÂ�matical validity. The clarity of a strictly formal 
proof is a beautiful thing to comprehend, and I think it 
is fair to say that an argument is only matheÂ�matical if it is 
apparent that it can be formalized. However, while we 
can gain a sense of understanding by learning to use a 
particuÂ�lar formal scheme, it is certainly possible to check 
each step in a formal argument without understanding 
the subject at hand. Indeed, a computer could do it, even 
though a computer is no more a mathematician than a 
photocopier is an artist. 

I have taken a more intuitive approach as my aim is not 
to train the reader in the appropriate formal techniques, 
but simply to make the heart of each argument as compre-
hensible as possible. That said, the subject matter of this 
book is subtle and sophisticated, so there is no escaping 
the need to take certain arguments carefully and slowly. 
Mathematics is a subject where you must read the same 
sentence several times over, and as with poetry, you must 
read at an appropriate pace. 

Over the course of my book I trace out a history of 
matheÂ�matical practice, with a focus on conceptual innova-
tions. I do not claim to have covered all of the key ideas, 
but I have tried to sketch the major shifts in the popular 
understanding of math. The book is structured by a combi-
nation of historical and thematic considerations, and its 
thirteen chapters can be grouped into four main sections. 
I begin by discussing the number concept, from a specu-
lative and rhetorical account of prehistoric rituals to 
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matheÂ�matics in the ancient world. I examine the relation-
ship between counting and the continuum of measurement, 
and try to explain how the rise of algebra has dramatically 
changed our world.

The first section ends with ‘matheÂ�matical padlocks’ of 
the modern era, but in the second section I step back in 
time. More specifically, I discuss the origins of calculus, 
and the conceptual shift that accompanied the birth of 
non-Euclidean geometries. In short, I try to explain how 
modern matheÂ�matics grew beyond the science of the 
Greeks, the Arabs, or other ancient cultures. 

In the third section I turn to the most philosophically 
loaded terms in matheÂ�matics: the concept of the infinite, and 
the fundamentals of formal logic. I also discuss the genius 
of Alan Turing, and try to elucidate the subtle relation-
ship between truth, proof and computability. In particular, 
I focus on a proof of the infinite richness of addition 
and multiplication (as demonstrated by Matiyasevich’s 
Theorem), and examine Kurt Gödel’s celebrated theorems 
on the Incompleteness of Arithmetic. 

In the final section I consider the role of matheÂ�matics 
in our attempts to comprehend the world around us. In 
particular, I describe the importance of models, and the 
role of matheÂ�matics in biology. I conclude by taking a step 
back from any particular theorem, and try to use what we 
have learned about matheÂ�matical activity to think about 
thinking in general. 

One of the challenges in writing this book was doing 
justice to the weight of simple, teachable statements. 
Some statements are like paper darts: you can follow 
them with a lightness of contemplation, if you know to 
where they float. If your only guide is to cling to the 
words themselves, they cannot carry you, as their target 
has not been spoken. Other statements possess gravitas, 
as in their accessible simplicity they act like stones, 
pulling us down to what can and has been said. 
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Unfortunately, people tend to underestimate the value 
of simple, understandable statements, as we more often 
praise ideas by suggesting they are hard to grasp. As the 
great thinker Blaise Pascal remarked in The Art of 
Persuasion, ‘One of the main reasons which puts people 
off the right way they have to follow is the concept they 
first encounter that good things are inaccessible by being 
labelled great, mighty, elevated, sublime. That ruins 
everything. I would like to call them lowly, commonplace, 
familiar. These names befit them better. I hate these 
pompous words …’

The great edifice of matheÂ�matical theorems has a crys-
talline perfection, and it can seem far removed from the 
messy and contingent realities of the everyday world. 
Nevertheless, matheÂ�matics is a product of human culture, 
which has co-evolved with our attempts to comprehend 
the world. Rather than picturing matheÂ�matics as the study 
of ‘abstract’ objects, we can describe it as a poetry of 
patterns, in which our language brings about the truth 
that it proclaims. The idea that matheÂ�maticians bring about 
the truths that they proclaim may sound rather myste-
rious, but as a simple example, just think about the game 
of chess. By describing the rules we can call the game of 
chess into being, complete with truths that we did not 
think of when we first invented it. For example, whether 
or not anyone has ever actually played the game, we can 
prove that you cannot force a competent player into 
checkmate if the only pieces at your disposal are a king 
and a pair of knights. Chess is clearly a human invention, 
but this fact about chess must be true in any world where 
the rules of chess are the same, and we cannot imagine 
a world where we could not decide to keep our familiar 
rules in place.

MatheÂ�matical language and methodology present and 
represent structures that we can study, and those structures 
or patterns are as much a human invention as the game of 
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chess. However, matheÂ�matics as a whole is much more 
than an arbitrary game, as the linguistic technologies that 
we have developed are genuinely fit for human purpose. 
For example, people (and other animals) mentally gather 
objects into groups, and we have found that the process 
of counting really does elucidate the plurality of those 
groups. Furthermore, the many different branches of 
matheÂ�matics are profoundly interconnected, to art, science 
and the rest of matheÂ�matics. 

In short, matheÂ�matics is a language, and while we may 
be astounded that the universe is at all comprehensible, 
we should not be surprised that science is matheÂ�matical. 
Scientists need to be able to communicate their theories, 
and when we have a rule-governed understanding, the 
instructions that a student can follow draw out patterns 
or structures that the mathematician can then study. When 
you understand it properly, the purely matheÂ�matical is 
not a distant abstraction – it is as close as the sense that 
we make of the world: what is seen right there in front 
of us. In my view, math is not abstract because it has to 
be, right from the word go. It actually begins with linguistic 
practice of the simplest and most sensible kind. We only 
pursue greater levels of abstraction because doing so is a 
necessary step in achieving the noble goals of modern 
matheÂ�maticians. 

In particular, making our matheÂ�matical language more 
abstract means that our conclusions hold more generally, 
as when children realize that it makes no difference 
whether they are counting apples, pears or people. From 
generation to generation, people have found that numbers 
and other formal systems are deeply compelling: they can 
shape our imagination, and what is more, they can enable 
comprehension. The story of math is fascinating in its 
own right, but in writing this book I hoped to do more 
than simply sketch a history of matheÂ�matical ideas. I am 
convinced that the history and philosophy of math provide 
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an invaluable perspective on human nature and the nature 
of facts, and I hope that my book conveys the subject’s 
cultural, aesthetic and philosophical relevance, as well as 
the compelling drama of matheÂ�matical discovery.





Chapter 1: 
BEGINNINGS

‘There can be no doubt that all our knowledge begins 
with experience. … But though all our knowledge 
begins with experience, it does not follow that it all 
arises out of experience.’

Immanuel Kant, 1724–1804

Language and Purpose
Researchers working with infants and animals have found 
compelling evidence that we have an innate sense of quan-
tity. More specifically, humans, birds and many other 
animals can recognize when a small collection has changed 
in size, even if they do not observe the change taking 
place. For example, birds can recognize when one of their 
eggs is missing, even if they did not witness the egg’s 
removal. Similarly, many animals will consistently pick 
the larger of two collections when they are given a choice. 
Presumably, this sensitivity to quantity is a necessary 
precondition for the development of math, and it is inter-
esting to note that some animals are quicker than humans 
at intuitively sensing differences in quantity. Nevertheless, 
although such abilities constitute evidence for animal intel-
ligence, it is rather inaccurate to claim that ‘birds count 
their eggs’. 
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I would argue that ‘proto-matheÂ�matical’ thinking can 
only begin once we have developed language, and that this 
kind of understanding is fundamental to many types of 
human behaviour, not just what we ordinarily think of as 
‘understanding math’. Of course, any account of the life-
style of our Stone Age ancestors is bound to be highly 
speculative, but despite the lack of conclusive evidence, I 
think it is helpful to imagine how our ancestors first devel-
oped rational capabilities, and the enormously complex 
thing that we call language.

Humans are not the only animals to use tools, and for 
millions of years our primate ancestors extended their 
abilities by utilizing what was found at hand. Sticks, 
stones, fur, leaves, bark and all manner of food stuffs 
were used in playful ways that we can only guess. Flesh 
was scraped from fur, sticks were sharpened and adapted 
to a purpose, and stones were knapped to produce effec-
tive butchery kits. Most importantly, about 1.8 million 
years ago Homo erectus started using fire to cook, which 
reduced the amount of energy needed for digestion, 
making it possible to grow larger brains and smaller diges-
tive tracts. 

As human intelligence evolved, our vocalizations and 
patterns of interaction developed into something that 
deserves to be called language. One very plausible specu-
lation is that more intelligent hominids were more 
successful in making the most from the complex dynamics 
of their social situation, providing the selective advantage 
that led to increasing intelligence. In any case, communi-
cative aspects of modern language are common to many 
animals. For example, many animals can convey a state of 
panic when they see a predator. It is therefore clear that 
complex, communicative forms of interaction massively 
predate the development of the proto-matheÂ�matical, or 
any conception that language might be the thing of interest, 
rather than the people who were making the sounds. 
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This idea is worth elaborating, so as an example of 
how a culture of interactions can evolve to something 
greater, imagine a woman who lives in a community with 
a particular culture of responses: Men who give me tasty 
food will hear me hum, but those who grab me without 
giving me tasty food will hear me growl. If a man was 
trying to establish a sexual relationship with this woman, 
he would want to hear the humming sound, because a 
woman who hums is much more likely to be interested 
in sex than a woman who growls. Consequently, the man 
would wilfully do a bit of cooking prior to any sexual 
advance, acting to establish the circumstances that he 
associates with the humming sound. 

By living in such a social context, we came to feel the 
sense of our own actions. In other words, we responded 
to changing social occasions with increasingly sophisticated 
forms of motivated strategy, and were mindful of complex 
goals whose achievement required actions beyond those 
in the immediate present. For example, the occasion of 
preparing an especially tasty meal is not the same occasion 
as hearing a woman make the humming sound, but we see 
that one is motivated by the other. 

Social norms and the vocabulary of praise and blame 
are both potent forces for shaping the imagination. It is 
absolutely fundamental that we find words with which to 
judge our actions, and our judgements work with words. 
An example of this endlessly subtle process can be found 
in the following conversation: 

‘Let’s break into that house.’
‘I don’t know, that seems like a bad idea.’
‘Go on, don’t be chicken.’

We are fearful that our reasoning will compel us to name 
ourselves cowards, idiots, or many other kinds of undesired 
utterance. The will to avoid such experience is part of our 
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humanity, as is the compelling nature of the reasons that 
we find. As Blaise Pascal observed, we are most compelled 
by the reasons of our own devising, but such complexities 
can be closely shared and instinctively taught to others. 
The caveman is compelled by the fact that the woman has 
established reasons for growling, if he fails to meet the 
expectations of an established practice. It is a process of 
judgement that he has a feeling for, and the weight of the 
utterance is that it is not felt to be arbitrary. Similarly, our 
potential thief is pulled by the fact that he too can reason 
himself a coward, and does not wish to do so. 

However, it is crucial to note that in each of these exam-
ples, the significance of an utterance is inseparable from 
the fact that another person has decided to say the state-
ment in question. In other words, we reached the point 
of very sophisticated communication long before we ever 
considered ‘language’ as a thing in itself, separate from the 
people who were speaking.

Human Cognition and the Meaning of Math
The literature of matheÂ�matics is largely composed of argu-
ments of the form ‘If A and B are true, then it follows 
that C is also true’, and it is worth pausing to wonder 
how it is that humans developed the capacity for deductive 
reasoning. We are not the only animals who are alert to 
the range of possible consequences of our actions, and we 
might suppose that our grasp of logical consequence is 
only possible because we have evolved the cognitive abili-
ties needed to predict the practical consequences of the 
things that we might do. For example, imagine a hungry 
ape looking at another ape with some food. It might think 
to itself, ‘If I grab the food, that big guy will hit me. I 
don’t want to be hit, so therefore I should restrain myself 
and not grab the food.’

The fact that we use language fundamentally changes 
the character of our reasoning, but it is easy to believe 
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that imagining the consequences of potential actions is 
an ancient ability that confers an evolutionary advantage. 
However, it is hard to see how the evolution of this kind 
of ‘reasoning’ about actions and their consequences could 
enable abstract thought. After all, the scenario I have 
described is all about judging the way to behave in a 
complex context, where any new information might 
change our prediction of what will happen next, and we 
ought to be open to noticing further clues. For example, 
if our ape saw the other ape make a friendly gesture, it 
might be wise to grab the food instead of letting it go. 
That is very different from working out logical conse-
quences, where one thing follows from another, 
regardless of any further information that could plausibly 
come our way.

Because the social cunning of animals depends on their 
grasp of entire contexts, where there are always further 
clues, it is difficult to see how that kind of understanding 
could provide the cognitive abilities that a mathematician 
requires. In contrast, our capacity for spatial reasoning 
is much less open ended, and human beings do not need 
to be trained to make valid spatial deductions. For 
example, suppose that there is a jar inside my fridge. 
Now suppose that there is an olive inside the jar. Is the 
olive inside the fridge? The answer is yes, of course the 
olive is inside the fridge, because the olive is in the jar, 
and the jar is in the fridge. Now imagine that the jar is 
in the fridge but the olive is not in the fridge. Is the 
olive in the jar? Of course not, because the jar is in the 
fridge, and I have just told you that the olive is not in 
the fridge. 

In reasoning about the location of the olive, it is suffi-
cient to bear a thin skeleton of facts in mind. Additional 
information will not change our thinking, unless it contra-
dicts the facts that form the basis of our deduction. Also 
note that in order to make these deductions, we do not 
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need to be initiated into some or other method of symbol-
izing. All humans can reason in this way, so it is plausible 
to claim that there are innate neural mechanisms that 
underpin our grasp of the logic of containers. Of course, 
in order to pose these questions I need to use some words, 
but humans (and other animals) find it very easy to under-
stand that containers have an inside and an outside, and 
this kind of understanding provides a structure to our 
perceptual world. 

There is strong empirical evidence that before they learn 
to speak, and long before they learn matheÂ�matics, children 
start to structure their perceptual world. For example, a 
child might play with some eggs by putting them in a 
bowl, and they have some sense that this collection of eggs 
is in a different spatial region to the things that are outside 
the bowl. This kind of spatial understanding is a basic 
cognitive ability, and we do not need symbols to begin to 
appreciate the sense that we can make of moving something 
into or out of a container. Furthermore, we can see in an 
instant the difference between collections containing one, 
two, three or four eggs. These cognitive capacities enable 
us to see that when we add an egg to our bowl (moving 
it from outside to inside), the collection somehow changes, 
and likewise, taking an egg out of the bowl changes the 
collection. Even when we have a bowl of sugar, where we 
cannot see how many grains there might be, small children 
have some kind of understanding of the process of adding 
sugar to a bowl, or taking some sugar away. That is to 
say, we can recognize particular acts of adding sugar to a 
bowl as being examples of someone ‘adding something to 
a bowl’, so the word ‘adding’ has some grounding in 
physical experience.

Of course, adding sugar to my cup of tea is not an 
example of matheÂ�matical addition. My point is that our 
innate cognitive capabilities provide a foundation for our 
notions of containers, of collections of things, and of 
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adding or taking away from those collections. Furthermore, 
when we teach the more sophisticated, abstract concepts 
of addition and subtraction (which are certainly not 
innate), we do so by referring to those more basic, phys-
ically grounded forms of understanding. When we use 
pen and paper to do some sums we do not literally add 
objects to a collection, but it is no coincidence that we 
use the same words for both matheÂ�matical addition and 
the physical case where we literally move some objects. 
After all, even the greatest of matheÂ�maticians first under-
stood matheÂ�matical addition by hearing things like ‘If you 
have two apples in a basket and you add three more, how 
many do you have?’ 

As the cognitive scientists George Lakoff and Rafael 
Núñez argue in their thought-provoking and controversial 
book Where Mathematics Comes From, our underÂ�standing 
of matheÂ�matical symbols is rooted in our cognitive capa-
bilities. In particular, we have some innate understanding 
of spatial relations, and we have the ability to construct 
‘conceptual metaphors’, where we understand an idea or 
conceptual domain by employing the language and patterns 
of thought that were first developed in some other domain. 
The use of conceptual metaphor is something that is 
common to all forms of understanding, and as such it 
is not characteristic of matheÂ�matics in particular. That is 
simply to say, I take it for granted that new ideas do not 
descend from on high: they must relate to what we already 
know, as physically embodied human beings, and we 
explain new concepts by talking about how they are akin 
to some other, familiar concept. 

Conceptual mappings from one thing to another are 
fundamental to human understanding, not least because 
they allow us to reason about unfamiliar or abstract things 
by using the inferential structure of things that are deeply 
familiar. For example, when we are asked to think about 
adding the numbers two and three, we know that this 
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operation is like adding three apples to a basket that 
already contains two apples, and it is also like taking 
two steps followed by three steps. Of course, whether 
we are imagining moving apples into a basket or thinking 
about an abstract form of addition, we don’t actually 
need to move any objects. Furthermore, we understand 
that the touch and smell of apples are not part of the 
facts of addition, as the concepts involved are very 
general, and can be applied to all manner of situations. 
Nevertheless, we understand that when we are adding 
two numbers, the meaning of the symbols entitles us to 
think in terms of concrete, physical cases, though we are 
not obliged to do so. Indeed, it may well be true to say 
that our minds and brains are capable of forming abstract 
number concepts because we are capable of thinking 
about particuÂ�lar, concrete cases. 

MatheÂ�matical reasoning involves rules and definitions, 
and the fact that computers can add correctly demonstrates 
that you don’t even need to have a brain to correctly 
employ a specific, notational system. In other words, in a 
very limited way we can ‘do matheÂ�matics’ without needing 
to reflect on the significance or meaning of our symbols. 
However, matheÂ�matics isn’t only about the proper, rule-
governed use of symbols: it is about ideas that can be 
expressed by the rule-governed use of symbols, and it 
seems that many matheÂ�matical ideas are deeply rooted in 
the structure of the world that we perceive. 

Stone Age Rituals and Autonomous Symbols
Mathematicians are interested in ideas, not just the manipu-
lation of ‘meaningless’ symbols, but the practice of 
matheÂ�matics has always involved the systematic use of 
symbols. MatheÂ�matical symbols do not merely express 
matheÂ�matical ideas: they make matheÂ�matics possible. 
Furthermore, even the greatest matheÂ�maticians need to be 
taught the rules before they can make a contribution of 
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their own. Indeed, the very word matheÂ�matics is derived 
from the Greek for ‘teachable knowledge’. The question 
is, how and why did human cultures develop a system of 
rules for the use of symbols, and how did those symbols 
change our lives? 

It seems fair to claim that the most fundamental and 
distinctive feature of human cognition is our boundless 
imagination. We don’t just consider our current situation, 
we imagine various ways that the future could pan out, 
and we think about the past and how it could have been 
different. In general, we inhabit imaginable worlds that 
follow certain principles, and compared to other animals, 
our thoughts are not overly constrained by our current 
situation or perceptions. In particular, we can think about 
objects that are not ready at hand, and it is reasonable to 
assume that in the distant past, our ancestors would feel 
distressed if their desire to act was frustrated by the absence 
of some object or tool. 

As an animal might express the presence of predators, 
our ancestors would gesture, ‘I am missing a flint’. By using 
their vocal cords, facial expressions and bodily posture, 
they would express their motivated looking. Fellow primates 
would respond to this signal in a manner appropriate to 
the occasion, having an empathic grasp of what it is to 
search in such a fashion. Over countless generations, our 
ancestors must have developed ways of conveying a desire 
for certain objects, even though those objects were currently 
out of sight. Furthermore, at some point our ancestors 
must have made the vital step of imbuing those expressive 
gestures with an essentially matheÂ�matical meaning. This 
remarkable feat was not achieved by the discovery of 
abstract objects: it was achieved by developing rituals. 

Suppose, for example, that there was a pre-existing form 
of expression that conveyed the speaker’s irritation over 
missing a flint. Now imagine the earliest people running 
their hands over their treasured tool kit of flints. As a 
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person checked their tools time and time again, they may 
have expressed their familiarity with these objects by 
reciting a sequence of names. As each tool was touched 
in turn, we can imagine our ancestors repeating a distinc-
tive sequence of rhythmic speech, with one word for each 
tool, like someone saying ‘Eeny-meeny-miney-mo’. If this 
ritual was left unfinished by the time there were no more 
objects left to touch, Stone Age humans could see that 
they had a reason for making the gesture ‘I am missing a 
flint’. 

This is not the same as counting with an abstract concept 
of number, as whether or not they deserve to be called 
matheÂ�maticians, even the youngest of children will not 
mistake ‘Eeny-meeny-miney’ for ‘Eeny-meeny-miney-mo’. 
Sensitivity to the incompleteness of a habitual action is 
clearly innate, and this is very close to the sing-song voice 
of baby talk and our natural sense of rhythm. When our 
ancestors expressed this failure of correspondence between 
the present tools and the familiar ritual, the other people 
would also know that something was missing, because they 
recognized that the ritual had been performed correctly. In 
other words, it is the ritual that tells us that a flint is missing, 
and not just the individual who performed it. 

By possessing such a clear sense of justified speech, 
people could find grounded meanings in their utterances, 
and strategically approach the issues that concerned them 
(namely, ‘Is it the case that all the familiar devices are 
present?’). In this way, expressive gesture came to signify 
more than an immediate cultural resonance, and the primal 
gestures that conveyed the sense ‘I am irate over a  
missing flint’ become something deeper. The common 
sense of valid reasoning gave new weight to our commu-
nications, as by means of the common practice a statement 
of fact can be established. In particular, note that the 
fact’s appearance in the world is dependent on the prac-
tice itself, not the individual who carried it out. This 



	 BEGINNINGS� 23

process of language speaking for itself emphatically does 
not require the abstract concept of number, and I would 
argue that proto-Â�matheÂ�matical thought had a gradual 
evolution that predates counting by many tens of thou-
sands of years. 

The origin of number words as we understand them 
today isn’t known for certain, but there are some interesting 
theories supported by linguistic evidence. It may be that 
practices closely related to counting arose spontaneously 
throughout the world, more or less independently from 
place to place. However, the mathematician and historian 
of science Abraham Seidenberg (1916–1988) proposed that 
counting was invented just once, and then spread across 
the globe. Number words are often related to words for 
body parts, and Seidenberg claimed that the similarities in 
number words from very distant places constitutes evidence 
for his theory. He also made the intriguing observation 
that in almost every numerate culture, there is an ancient 
association between the odd numbers and the male, while 
the even numbers are female.

There is certainly plenty of evidence that animals are 
aware of who is first in the pecking order, who is second, 
third and so on. Seidenberg suggests that counting origi-
nated in rituals based on rank and priority, arguing that 
counting ‘was frequently the central feature of a rite, and 
that participants in the rite were numbered’. Whether the 
first numbers or number-like words were applied to an 
ordered sequence of people, or used to assess the plurality 
of a collection of tools, it is clear that the human mind 
has been capable of learning how to count for tens of 
thousands of years. 

It is important to note that matheÂ�matics is not a universal 
human trait, as some cultures have no words for numbers 
larger than three. Furthermore, some people have a highly 
cultured sense of quantity even though they cannot really 
count, as their language has too few number words. 



24	 MATHEMATICAL THOUGHT

For  example, the Vedda tribesman of Sri Lanka used to 
‘count’ coconuts by gathering one twig for each coconut. 
The people who did this clearly understood that there was 
a corresponding plurality between the twigs and the coco-
nuts, but if asked how many coconuts a person had 
collected, they could only point to the pile of twigs and 
say ‘that many’.

The first expressions of quantity are lost deep in the 
mists of time, but it is surely safe to assume that long 
before the advent of abstract number words, people had 
one word for ‘hand’, and a different word for ‘pair of 
hands’. The move from words that convey quantities of 
specific physical things to an abstract or universally appli-
cable language of number is an example of logic at work. 
That is to say, once we have a sequence of words for 
‘counting’ something or other, it is possible to recognize 
that it is the words themselves that form an ordered, rule-
governed sequence, and they need not be bound to any 
particular thing that people are used to counting.

Making Legible Patterns
As human beings we live in a world of people and things, 
sights and sounds, tastes and touches. We don’t see a pattern 
on our retina: we see people, trees, windows, cars, and 
other things of human interest. This relates to the fact that 
we use language to think about our world, doing things 
like naming objects, or creating accounts of people or situ-
ations. My point is that human beings conceptually 
structure the perceptual flux in which we live, so our use 
of symbols, images and words is central to making sense. 

For example, imagine a young child drawing a picture 
of Daddy: a stick-man body with a circle for a head, two 
dots for eyes and a U-shape for a smile. It is significant 
that each part of this drawing can be named, as we under-
stand, for example, that two dots can represent the eyes. 
The art of 30,000 bc was probably somewhat similar to a 
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child’s drawing, not because our ancestors were simple 
minded, but because drawing nameable things is such a 
basic, human skill. Indeed, we can say that children’s draw-
ings are understandable precisely because we can talk our 
way about them. 

Our ancestors decorated caves with vivid illustrations 
of large mammals, but they also used simpler marks 
(arrangements of dots, V-shapes, hand prints, etc.). Just as 
a child might not need to draw ears and a nose before 
their marks become a face, so the caveman artist may have 
drawn some tusks and already seen a mammoth. Such 
stylized, intelligible drawings are not the same as writing, 
but there is a related logic of meaningful marks, and it is 
surely safe to assume that our ancestors talked about their 
drawings. As another example of Stone Age pattern making, 
archaeologists in central Europe found a shinbone of a 
wolf marked with fifty-seven deeply cut notches. These 
marks were arranged in groups of five, and carbon dating 
indicates that this bone is over 30,000 years old. 

People and animals alike are good at spotting patterns. 
In particular, many birds and mammals are demonstrably 
sensitive to changes in quantity. Time and time again 
humans have discovered a basic technique for clearly 
showing quantity: we group elements together in a regular 
way, so that a single ‘counting’ operation is broken into 
a combination of simpler assessments. For example, we 
can recognize four as a pair of pairs, or ten as a pair of 
fives. This means that even before one can count, it is 
easier to assess the plurality of things if they are arranged 
in regular groups, rather than scattered in a disordered 
fashion. Furthermore, once we have words for numbers, 
this practical idea can lead us to the concept of multiplica-
tion. This suggests that by the time that our ancestors had 
articulated an abstract concept of number, people were 
counting by dividing their things into regular groups and 
counting off five, ten, fifteen, twenty (say). In other words, 
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the times tables may be just as old as abstract number 
words themselves.

Mathematics has been described as the language of 
patterns, and there is a deep relationship between our 
innate tendency to recognize patterns, and our cultured 
sense of shape and number. Long before we developed 
proper number words, ancient peoples must have recog-
nized the reality of patterns, and explored some formal 
constraints. Very ancient peoples must have known that 
triangles can be arranged to produce certain shapes or 
patterns, but there are some shapes (e.g. a circle) that 
cannot be made from triangles. People have been 
exploring patterns for tens of thousands of years, using 
their Â�material ingenuity (e.g. pottery and basket weaving), 
music, dance and early verbal art forms. For example, it 
is an evident truth that if you clap your hands every 
second heartbeat, and stamp your feet every third one, 
there necessarily follows one particular combined rhythm 
and not others.

The meaningfulness of matheÂ�matical statements did not 
appear from nowhere, and we don’t need ‘proper’ matheÂ�
matics to first be aware of quantity and shape. Before 
people developed counting or abstract number words, they 
might have used a phrase like ‘as many bison as there are 
berries on a bush’, or shown a quantity with an artistic 
abundance of marks. After all, our artist ancestors surely 
strove to be eloquent, and someone must have been keen 
to show the size of a massive herd. Many generations later, 
the advent of counting gave birth to the concept of number: 
a great advance in our ability to conceptually distinguish 
between different pluralities. 

At first our ancestors must have only used their counting 
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words in particular situations, but over time we realized 
that in order to count any collection of objects, we do not 
need to keep our eyes on the qualities of the objects them-
selves. In a sense we can count any collection of objects, 
so long as we can give each object a name (e.g. by attaching 
labels). From that point on we can play the counting game 
simply by reviewing the sequence of names that we 
ourselves have given, even if our labels become detached 
from their associated objects. 

Many, many social needs require calculation and number, 
and over the long arc of prehistory matheÂ�matics continued 
to evolve along with the social systems that supported 
matheÂ�matical techniques. In return, more sophisticated 
matheÂ�matics enabled more complex social structures. For 
example, an inheritance cannot be distributed unless certain 
facts about division are known, and at a more sophisticated 
level, tax rates and monetary systems are literally incon-
ceivable without the concept of number. 

The development of agriculture revolutionized our 
ways of life, and according to many ancient historians, 
geometry (Greek for earth-measuring) came into being 
as people needed to speak authoritatively and unconten-
tiously about the size of fields. In particular, every year 
Egyptian matheÂ�maticians needed to replace the property 
markers that were washed away from the flood plains of 
the Nile. The story of geometric techniques arising with 
the need to measure fields is certainly plausible, but there 
were also prehistoric traditions for communicating 
specific plans for temples and other buildings, which 
necessarily involves a language of shape, so this claim 
may not actually be correct. What is known for certain 
is that by the third millennium bc, civilizations with 
sophisticated matheÂ�matical practices had developed along 
the fertile banks of many of the world’s great rivers. The 
Nile, the Tigris and Euphrates, the Indus, the Ganges, 
the Huang He and the Yangtze all provided ground for 
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these new ways of life. Furthermore, matheÂ�matics had a 
central role to play in the emergence of large-scale civi-
lizations, not least in the development of trade, measured 
and planned construction, administrative techniques, 
astronomy and time keeping. 

The Storage of Facts
You might guess that the oldest recorded numbers would 
be fairly small, but in fact archaeologists have found that 
some of the oldest unambiguously numerical records refer 
to the many thousands of cattle that Mesopotamian kings 
had claimed through war. It is also interesting to note that 
no civilization has ever become literate without first 
becoming numerate, and almost every numerate civilization 
is known to have used some kind of counting board or 
abacus. In other words, tools for recording the counting 
process are much, much older than tools for recording 
speech. Greeks and Romans used loose counters, the 
Chinese had sliding balls on bamboo rods, and the Ancient 
Hindu matheÂ�maticians used dust boards, with erasable 
marks written in sand. 

Because of geographical distance, it is assumed that the 
development of matheÂ�matics in the Americas was 
completely independent from that of Europe and Asia. It 
is therefore remarkable to note that around 1,500 years 
ago, the Maya were employing number symbols much as 
we do today. The Incas were a more recent civilization 
than the Maya, and although the Incas never developed a 
system for making records of the spoken word, they could 
record information by using a system of knotted cords 
called quipus. These were colour coded to represent the 
various things that were counted, and scribes would read 
the clusters of knots by pulling the cord through their 
hands. Each cluster of knots represented a digit from one 
to nine, and a zero was represented by a particularly large 
gap between clusters. 
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Quipus with as many as 1,800 cords have been found, 
and as different-coloured threads signified different kinds 
of information, these fascinating objects demonstrate that 
sophisticated record keeping is not the exclusive domain 
of the written word. Very few quipus have survived, and 
given that they are far more distant than the Incas, it is 
plausible that many prehistoric civilizations possessed 
long-lost means of embodying data. It is worth remem-
bering that only a tiny subset of equipment survives the 
ravages of time, and if people kept records by arranging 
pebbles or making scratches on bark, we might have no 
way of knowing. As the matheÂ�matical historian Dirk Struik 
has suggested, the builders of ancient monuments like 
Stonehenge must have had some idea of what it was that 
they were building. Many of the regular features of this 
construction cannot be accidental, and it seems highly 
unlikely that the builders didn’t know what they would 
do with the stones until they got them on site. Their 
means of communicating intent may well have involved 
physical artefacts that embodied data unambiguously. For 
example, they may have made shadow casting models that 
showed exactly how many stones were going to be 
arranged, and their orientation in relation to the sun’s 
path. 

The ancient civilizations of Asia used bamboo, bark and 
eventually paper to keep records of numerical information. 
Although the origins of their matheÂ�matical knowledge 
remain obscure, certain pieces of Chinese matheÂ�matics have 
been faithfully passed down through hundreds of genera-
tions. For example, consider the following ‘magic square’, 
known as the Lo-Shu. Legend has it that this matheÂ�matical 
pattern emerged from the Yellow River on the back of a 
giant turtle about 4,000 years ago. We can’t really be certain 
about the true age of the Lo-Shu, but we do know that it 
was considered to be truly ancient knowledge as far back 
as the Han dynasty (206 bc–ad 220). 
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Every row, column and diagonal contains numbers that 
add up to fifteen. The central cross of odd numbers ensures 
that every line contains either one odd number or three 
odd numbers (the ‘yang’ of the Lo-Shu). The four corners 
contain even numbers (the ‘yin’ of the Lo-Shu), completing 
this sacred symbol of cosmic harmony and balance. 

Perhaps the most famous book of Ancient Chinese 
matheÂ�matics is the Nine Chapters on the Art of Calculation. 
This book was written c.â•›200 bc, and the 246 problems it 
contained were used to test and train potential civil 
serÂ�vants. Arguably the most impressive feature of this 
matheÂ�matical tradition is the fact that the Ancient Chinese 
routinely solved systems of linear equations. For example, 
suppose we have two different kinds of weights, coloured 
red and blue. If two reds and three blues weigh eighteen 
units, while two reds and two blues weigh sixteen units, 
how much does one red weigh? In modern notation we 
have: 

2r + 3b = 18 and 2r + 2b = 16. 

The left-hand side of the first equation minus the left-hand 
side of the second is equal to b. The right-hand side of 
the first equation minus the right-hand side of the second 
is equal to 2. Therefore b, the weight of one blue is 2 
units. Substituting this value into either equation shows 
that râ•›=â•›6. Modern matheÂ�maticians and the Ancient Chinese 
alike solve this kind of problem by adding and subtracting 
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equations (or equation-like forms) in order to eliminate 
unknowns, and the same principle can be naturally 
extended to situations with more than two unknowns. 
The Chinese have been solving problems like this for over 
2,000 years, but remarkably, this extremely useful tech-
nique was not known in the West until the beginning of 
the nineteenth century, when it was independently 
invented by one of the giants of modern matheÂ�matics, 
Carl Freidrich Gauss.

Babylon, Egypt and Greece
Around 1650 bc, a scribe named Ahmes copied out a 
text from the Twelfth Dynasty of Egypt (c.â•›1990–1780 bc). 
It seems that Ahmes was matheÂ�matically educated, which 
makes him the most ancient mathematician whose name 
we know. The ‘Ahmes Papyrus’ contains eighty-five prob-
lems, and it demonstrates the Egyptians’ ability to solve 
problems that involve unknown quantities, as well as 
their systematic use of fractions of the form 1/n. For 
example, the ‘Ahmes Papyrus’ contains the line ‘a heap 
plus a quarter of that heap again makes fifteen’. Through 
trial and error Ahmes realized that the heap must be size 
twelve (because twelve plus a quarter of twelve is fifteen). 
The manuscript also states that the area of a circle of 
diameter nine can be taken to be equal to the area of a 
square of width eight. This represents an error in the 
estimate of π of only 0.6%. 

Although many modern teenagers know significantly 
more matheÂ�matics than any Ancient Egyptian, it is clear 
that the Egyptians knew how to achieve a fairly rich variety 
of computational tasks. In particular, they had a long tradi-
tion of measuring the position of the stars and planets, 
and after the annual flooding of the Nile they were more 
than capable of replacing the property markers that had 
been washed away. A particularly ancient measurement 
technique involves a form of set square, made from a loop 
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of rope marked into twelve equal lengths. The Egyptians 
and other ancient peoples knew that if you stretched out 
a rope with one side of 3 units, one side of 4 units and 
one side of 5 units, you invariably produced a right-angled 
triangle. Indeed, the word ‘hypotenuse’ is derived from 
the Greek for ‘stretched against’, reflecting this ancient 
technology. The Egyptians also knew that 32 + 42 = 52, and 
like other ancient peoples they were familiar with many 
other Pythagorean triangles. 

The matheÂ�maticians of  Mesopotamia were probably 
more advanced than their Egyptian contemporaries. By 
the time that Hammurabi became king of Babylon (c.â•›1750 
bc), his people had developed powerful methods for finding 
areas and volumes. Indeed, the Babylonians were familiar 
with the empirical content of Pythagoras’ Theorem over 
a thousand years before Pythagoras himself was born. Our 
main sources of evidence concerning Babylonian matheÂ�
matics are the many clay tablets that have survived, 
preserving the math homework of young scribes from  
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over 3,500 years ago. Like the Egyptians, the Babylonians 
would sometimes phrase questions in terms of unknown 
quantities, and remarkably, they knew effective methods 
for finding positive solutions to quadratic equations. More 
specifically, they would use their knowledge of the area 
of squares and rectangles to answer questions like the 
following: ‘A rectangular field has an area of 77m2 and 
one side is 4m longer than the other. How long are the 
two sides?’

Mesopotamian matheÂ�matics co-evolved with a desire to 
study the night sky (a feature of the natural world that 
had great religious significance for many ancient peoples), 
and it also co-evolved with the practical tasks of taxation, 
trade and measurement. Without a matheÂ�matical language, 
tax records could not have been kept, nor would it have 
been possible to record accurately the passage of the stars. 
Mathematics enabled the bureaucratic procedures that are 
required to rule a large state and, conversely, the novel 
problems that confronted the first cities must have provided 
a potent breeding ground for newly elaborated forms of 
matheÂ�matics.

The range of ancient problems and exactitude of some 
of the surviving calculations strongly suggests that symbolic 
calculation was deeply valued, and cultivated as a broadly 
applicable skill, transcending its role in any concrete, prac-
tical task. Pythagoras’ Theorem in particular has been 
applied to a huge range of both practical and poetic prob-
lems, and it is clear that ancient peoples relished the fact 
that the same numerical relationship holds whether we are 
talking about the length of fields, spears, shadows or build-
ings. For example, an Ancient Egyptian manuscript asks 
‘If a ladder of 10 cubits has its foot 6 cubits from the wall, 
how high does the ladder reach?’, and this is clearly not 
a question that needed to be answered for pressing practical 
reasons.
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It has often been argued that the oldest matheÂ�matical 
procedures were simply something that you did: a kind 
of ritual of computation that did not stand in need of 
justification. For example, the Ancient Egyptians were 
acutely concerned with the concept of Ma’at. This concept 
was personified as a goddess, whose name can be translated 
as truth, order or justice. The natural world, the state and 
the individual were all parts of the domain of Ma’at, and 
for several millennia, rulers would flatter themselves by 
being described as ‘Lords of Ma’at’, or preservers of the 
divine order. 

For the Ancient Egyptians, following the time-honoured 
ways of their ancestors was literally believed to be a matter 
of life and death. The divine order and cosmic harmony 
of Ma’at could turn to chaos and violence if the ruler or 
his people did not adhere to their traditions and rituals. 
To put it bluntly, Ancient Egyptians believed that they 
had a sacred duty to do things as they had ‘always’ been 
done, and a priest who was writing matheÂ�matics would 
not have thought it a good idea to invent a new way of 
doing things. After all, if a time-honoured way with 
symbols remains eloquent, why argue with your teachers? 
In particular, people would be shocked and angry if you 
suggested changing the way that property markers were 
replaced after the flooding of the Nile, as people’s confi-
dence in the process quite rationally depended on the fact 
that it was done the same way every year.

In contrast, later generations of Greek historians were 
justifiably proud of the fact that in Greece learned men 
debated matheÂ�matical truths, and actively tried to develop 
new forms of matheÂ�matics. Instead of merely having a 
ritual of computation, they engaged in arguments, and 
tried to deduce an expanded vision of the truth. Of course, 
earlier cultures had also made matheÂ�matical deductions. 
The difference is that when people in earlier cultures were 
initiated into matheÂ�matical practices, they were taught 
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through the presentation of examples. Teachers may well 
have made quite abstract, elucidatory remarks as to why 
particular techniques were effective, but the emphasis on 
matheÂ�matical proof, and the rigorous articulation of logical 
principles, are characteristically Greek innovations.

The Logic of Circles
As the Greeks debated, they articulated well-defined 
conceptual schemes, and deduced a range of very general 
truths. This process led to a significantly more abstract 
form of matheÂ�matics, as Greek thinkers made a point of 
stressing that they were interested in conceptual principles, 
and not simply working with particular collections of 
actual, countable things, or actual measured objects. Their 
radical innovation was to construct arguments that defini-
tively settled the facts of various matheÂ�matical matters, 
and their geometric deductions were made in the presence 
of describable, labelled diagrams. 

This final point is very important. As we shall see in 
later chapters, modern matheÂ�matical arguments often hinge 
on a kind of calculation that essentially rests on the definiÂ�
tive properties of symbols. Ancient Greek matheÂ�matics 
was somewhat different. It did involve abstract symbolism 
(e.g. a diagram might include an arbitrary length ‘AB’ or 
an angle ‘ABC’), but the matheÂ�matical objects they 
discussed were all idealizations that were not too far 
removed from our experience with actual objects. For 
example, in classical geometry a curve is said to be ‘a path 
traced by a moving point’. The movement involved is 
understood to be metaphorical, as a circle (for example) 
does not literally need to appear over time, drawn by a 
point moving at some or other speed. We simply describe 
what is meant by ‘a curve’ by talking in terms of motion, 
because we all know what it is like to follow a path with 
the mind’s eye. Indeed, this metaphor of motion is also 
found in non-matheÂ�matical language, as when we say ‘the 
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road runs through the wood’, or ‘the road goes over the 
hill’, we do not mean to imply that the road is literally 
moving. 

Similarly, in classical geometry the term ‘straight line’ 
refers to something abstract, but the meaning of the word 
is nevertheless grounded in experience. In particular, it 
seems fair to say that our grasp of the concept of straight 
lines is partly informed by our experience with taut strings. 
Of course, this doesn’t mean that our idea of a straight 
line is merely some mental image of a taut string, as even 
the finest string has some thickness, while a ‘straight line’ 
is an abstract, matheÂ�matical form that by definition has 
no thickness at all. For many centuries European matheÂ�
matics was completely dominated by geometric concepts 
of this sort, and it is worth pausing for a moment to 
remember our initiation into the language of shape. As 
children we are taught to recognize named shapes, and we 
quickly take this game for granted. However, drawing a 
loop in the sand and naming it ‘circle’ is a truly remark-
able act. Almost every aspect of the drawing is irrelevant, 
because by seeing the drawing as a circle (that is, by seeing 
the rightness of our description), we encounter the very 
sense that the geometer is interested in. 

To look for such forms is to engage in the process of 
abstraction: trying to see the thing in its most elemental 
of characteristics, and no more. We simply do not and 
should not care whether the circle is perfectly drawn, or 
whether it has been traced in sand or scratched on wood. 
This is in marked contrast to something like a portrait, 
where there is always more to talk about than the name 
of the person painted. The spherical symmetry of sun and 
moon suggests that mankind has been cognisant of circu-
larity for a very long time indeed, having the capacity to 
draw the attention of others to the visual property of 
roundness. Of course, it is comparatively easy to learn 
what a circle looks like. More difficult is the task of stating 
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the defining characteristic, namely that all the points on 
the edge are equally distanced from the centre.

Identifying the essential character of circles enables 
comprehension. For example, the fact that circles have this 
defining centre explains the shape of ripples in a pond. 
Before the stone hits, the water’s surface is flat, and every 
point on the pond is very much like all the others. The 
impact of the stone disrupts this equilibrium, and points 
that are an equal distance from the disruption experience 
the same effects (rising and falling at the same time). In 
other words, because the stone marks a centre and distance 
is the relevant feature (not the particular direction from 
the centre), circular ripples are the evident consequence 
of dropping a stone in a pond. Similarly, if we ignore the 
effects produced by rotation, a liquid planet will form a 
sphere, so that each point on the surface is equally close 
to the centre of gravity. 

The Factuality of Math
We have seen that the Ancient Babylonians could find the 
length of a rectangular field, given the area of the field, 
and the difference between its length and breadth. If these 
people only had a narrow, practical interest in the length 
of fields, they could have simply measured them. After 
all, in what bizarre circumstance does a person know the 
difference between a field’s length and breadth, without 
actually knowing either the length or the breadth? As this 
example indicates, it is clear that our ancestors’ passion 
for matheÂ�matics ran deeper than narrowly practical 
concerns. 

People are naturally drawn into investigating the world 
that our language evokes, and in many ways the matheÂ�
matics of the ancient world is still accessible to us today. 
However, even though we can replicate the procedures of 
ancient matheÂ�maticians, our attitude towards mathematic 
facts has become very different. Up until the nineteenth 
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century matheÂ�matics was considered to be a realm of ‘hard 
facts’. MatheÂ�matical axioms were taken to be absolutely 
true, and any valid deductions based on those axioms were 
accepted as being facts about the universe. In other words, 
up until the nineteenth century matheÂ�matics could be accu-
rately described as the science of shape and number, and 
nobody had thought to divide the subject into ‘pure’ and 
‘applied’.

The facts of matheÂ�matics are different from the facts 
of physics, but when we talk about straight lines, our 
words are intelligible because (among other things) we 
have encountered ‘lines’ in the real world. There is a long 
tradition of somewhat mystical rhetoric about how matheÂ�
matical lines are ‘perfectly’ straight, unlike the pieces of 
string we might use to measure a field. Nevertheless, 
matheÂ�matical truths are of a piece with the only world 
we can know, even if they are further abstracted from 
experience than most of the truths we are interested in. 
After all, every statement that humans are capable of 
understanding must have some kind of grounding in our 
cognitive capabilities and our experience of the world, 
even if our interest is in the abstract concept rather than 
its particular instantiations.

Many people are rather confused about the relationship 
between physical reality and matheÂ�matical truth, as they 
forget that physical reality is not the same thing as our 
conception of it. For example, it is sometimes said that 
‘matheÂ�matics is true in every possible world’, but that is 
only true in the sense that in every conceivable world you 
cannot force checkmate against a lone king with only a 
king and a pair of knights. Similarly, it is sometimes said 
that ‘the universe runs according to matheÂ�matical laws’, 
but that does not mean we ought to accept the quasi-
religious belief that matheÂ�matics itself somehow forces the 
world to behave as it does. For example, it is a matheÂ�
matical truth that the circumference of a circle is π times 
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its diameter, but that does not mean that the number π is 
literally present in every circular object. 

The empirical fact is that if we measure a circular object 
we need a piece of string a little over three times as long 
as the string we need to measure its diameter, but there is 
no empirical proof that the ratio between the two is precisely 
π. In fact, quantum theory tells us that there is a funda-
mental limit to the accuracy of any measurement of length, 
so physical lengths can never determine the infinÂ�itely precise 
quantities of matheÂ�matics. My point is that a circle is a 
concept, not something physical, and there is no empirical 
evidence to support the claim that the physical world is 
literally forced to obey the laws of matheÂ�matics. Of course, 
physics is deeply matheÂ�matical, as we use matheÂ�matical 
concepts to describe the regularities that are empirically 
observed. In other words, the fundamental fact is the regu-
larity of the universe, but matheÂ�matics only enters the 
picture when we try to comprehend, describe and explain 
those regularities. 

We cannot attempt to understand the world without 
using concepts, and although the gulf between matheÂ�matical 
and non-matheÂ�matical concepts is sometimes overstated, 
from the very beginning people recognized that matheÂ�
matical truths have a distinctive quality. In particular, 
number concepts are very abstract indeed, and we have a 
strong sense that when we are talking about numbers we 
are not merely talking about the actual things we happen 
to be counting. The equivalence between counting a list 
of names and counting the named objects means that as 
matheÂ�maticians we are free to disregard whatever has been 
counted, so as children learn quite quickly, it really doesn’t 
matter whether you are counting apples, pears or people. 
The abstractness of number concepts is very significant, 
but we sometimes forget that many other everyday words 
are similarly abstract. For example, we talk about the world 
in terms of colour, and have the related concepts ‘same’ 
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colour and ‘different’ colour. Talking this way suggests 
the idea of a universal colour chart, though of course we 
should take account of the fact that our perception of 
colour is highly sensitive to context, and entirely dependent 
on light conditions. 

Any particular ‘universal colour chart’ will be a rather 
arbitrary affair, as we can pick any degree of accuracy to 
qualify as ‘the same colour’, which means that we can 
squabble interminably over how many different colours 
should be on our chart. The situation is much more satis-
factory in the case of numbers, as the way we count in 
itself generates the representatives that we require. The 
obvious possibility of translation means that it doesn’t 
really matter whether we count in English or in French, 
using fingers or some beads. It is very important that we 
can use matheÂ�matical vocabulary in the marketplace or 
other specific contexts. However, the facts about our matheÂ�
matical words come from the matheÂ�matical framework to 
which those words belong, and not from any wider sense 
of meaning that such words might gain by being practi-
cally employed.

As we shall see, matheÂ�maticians in the nineteenth 
century developed non-Euclidean geometries. This imag-
inative feat subtly altered our basic conception of math, 
as only modern matheÂ�maticians would say, ‘Let’s just 
assume that these axioms are true, and then talk about 
the things we can deduce.’ The art of proper, symbol-
based reasoning has always been central to matheÂ�matics. 
What changed in the nineteenth century is that instead 
of starting with a hard fact, matheÂ�maticians now felt free 
to begin with ‘mere’ statements, which did not need to 
be ‘actually true’. To put it another way, over the centu-
ries the idea has developed that scientists study the real, 
physical world, while matheÂ�maticians study abstract 
objects that might or might not have anything to do with 
the real world.
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This subtle shift in the philosophical roots of matheÂ�
matics led to the invention of ‘pure’ and ‘applied’ math. 
It is often assumed that these are fundamental, natural 
categories, but until the late nineteenth century, no matheÂ�
matician would have known what you were talking about 
if you asked whether they studied pure or applied matheÂ�
matics. Of course, there have always been practical 
problems that require matheÂ�matical expertise. Indeed, most 
great matheÂ�maticians have made a significant contribution 
to science, and to this day, many of the most compelling 
matheÂ�matical challenges directly relate to the languages 
that we use when describing physical phenomena. Even 
though such concerns are not a part of matheÂ�matics itself, 
the problems that we are interested in solving have always 
exerted a powerful influence on the development of math.

The fundamental point is that theory and abstract 
language are inescapable parts of our attempts to describe 
the world. After all, we cannot present an account of the 
world without a language that expresses our theory. 
Furthermore, in the case of scientific theories, it is imper-
ative that our language is capable of supporting precise, 
unambiguous deductions. We don’t just want to say ‘this 
is what the world is like’; we want to say ‘because this is 
what the world is like, it follows that …’ Over time, scien-
tists and other theorists have refined our definitions, and 
as we clarify the logical import of our statements, the 
disciplines of science have moved closer and closer to 
matheÂ�matics. As the uses of matheÂ�matics have changed, 
our sense of what the subject is about has also shifted, but 
ever since the Ancient Greeks, we have appreciated that 
matheÂ�matical concepts have a certain autonomy, as all 
matheÂ�matics is logical and essentially systematic. 



Chapter 2:
FROM GREECE TO ROME

‘In arithmetic we are not concerned with objects which 
we come to know as something alien from without 
through the medium of the senses, but with objects 
given directly to our reason and, as its nearest kin, 
utterly transparent to it.’

Gottlob Frege, 1848–1925

Early Greek Mathematics
We don’t know much about Greek matheÂ�matical prac-
tice in the pre-archaic period (before 650 bc), but we 
do know that the civilizations in that part of the world 
were all numerate, they were familiar with the concept of 
measured distances, and they employed trained scribes to 
keep numerical records. The negotiations of trade and the 
invention of money must also have encouraged numeracy 
and stimulated matheÂ�matical development. Indeed, the 
legendary father of Greek matheÂ�matics Thales of Miletus 
was said to have been a merchant. 

With the older figures of Ancient Greece it is nigh-on 
impossible to separate fact from fiction, but it is thought that 
Thales visited Egypt and Babylon in the sixth century bc, 
learning something of their matheÂ�matical skills and engaging 
in learned debate. Some people’s methodologies were seriously 
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flawed, and distant matheÂ�maticians sometimes disagreed with 
one another. For example, the Egyptians were confident of 
their rule for finding the volume of a truncated pyramid, but 
the Babylonians had a conflicting one. It was clear to Thales 
that only one of them could be correct (in this case it was 
the Egyptians), and the kind of argument that he used to 
settle the fact of the matter could be considered the earliest 
form of modern, matheÂ�matical proof. 

The crucial point is that the Ancient Greeks were inter-
ested in developing a theory of matheÂ�matics, and the 
construction of meta-narratives was characteristic of Greek 
scholarship. They didn’t just write about the behaviour of 
good or bad rulers, they wrote about the theory of politics. 
Likewise, they didn’t just write about techniques for healing, 
they wrote about the theory of medicine. It is also important 
to note that for the Ancient Greeks (and many later thinkers), 
the capacity for rational thought was considered to be one 
of the cardinal virtues of humanity. Mathematics provided 
an ideal arena in which to refine our logical abilities, and by 
the end of the fifth century bc the basic principles of matheÂ�
matical deduction were firmly established.

For example, around 440 bc the Ionian philosopher 
Hippocrates of Chios wrote about the area of a crescent 
shape, and in doing so constructed arguments that logically 
led the reader from truth to truth. In other words, he 
didn’t simply tell people how to calculate the given areas, 
he showed that his answers were logical consequences of 
an explicit list of axioms. Not all Greek matheÂ�matics was 
of the form ‘by definition statement A is true, and if A is 
true B is true, and if B is true C is true …’, but the Greeks 
were certainly keen to identify the starting points of matheÂ�
matical arguments, and their axiomatic method made a 
powerful impression on countless generations of thinkers.

Before this time, people had said things like ‘to calculate 
this, follow such and such a procedure’. What was new 
about Greek matheÂ�matics was the fact that the entire means 
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of deduction were rigorously stated, using diagrams and 
writing to bring the obvious to light. Indeed, the mathema-
tician’s well-justified aversion to unstated assumptions is 
one of the great legacies of the Ancient Greeks. They did 
not simply present a pattern and then say true things about 
it: they defined their terms, and then used their definitions 
to support deductive practice. 

A system of rigid definitions is a surprisingly powerful 
thing, and the Greeks could employ their logos or language 
to remarkable effect. For example, consider the proof of 
Pythagoras’ Theorem presented in the introduction. By 
explicitly stating all the relevant facts, we can deduce 
Pythagoras’ Theorem from the statements ‘squares have 
four equal sides and four identical corners’, ‘moving a shape 
does not change its area’, and ‘a + b = b + a’. Other ancient 
cultures did not develop the same interest in elucidating 

Pythagorean Science
As the founder of a mystical tradition, Pythagoras is 
shrouded by legend. We know that he was born on the 
island of Samos around 580 bc, and that he was at least 
eighty years old when he died. It is said that he met with 
Thales, who encouraged him to visit Egypt and Babylon, 
to learn the things they had to teach there. Many of the 
Greek schools emphasized the reality of change, but 
Pythagoras and his followers looked to identify the eternal 
features of the world, particularly those that related to 
number. In search of such principles, Pythagorean scholars 

the way that one statement follows from another, but in 
Greek mathe matics the logical relationships between true 
statements are the main focus of attentions. Consequently, 
the simple and obvious statements that earlier people may 
have taken for granted acquired a new status. Henceforth 
such ‘axioms’ were not only considered to be true, they 
were seen as the foundations of an entire discipline. 
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contemplated geometry, arithmetic, astronomy and music, 
guided by their belief that the universe reveals itself in 
matheÂ�matical form, and that ‘All is Number’.

The notion of putting the things of the world into some 
kind of ordered scheme is very ancient, and very powerful. 
Such ordered schemes or catalogues were central to early 
science, including the Pythagoreans. As the philosopher 
Jacob Klein explained in Greek MatheÂ�matical Thought 
and the Origin of Algebra, ‘The general point of view 
governing the efforts of the Pythagoreans might be sketched 
out as follows: they saw the true grounds of the things in 
this world in their countableness, inasmuch as the condi-
tion of being a “world” is primarily determined by the 
presence of an “ordered arrangement” or taxis. [Conversely, 
any] order rests on the fact that the things ordered are 
delimited with respect to one another, and so become 
countable.’

The Pythagoreans’ study of number was not entirely 
matheÂ�matical (at least as we understand that term), as they 
also proclaimed to find mystical meanings in numerical 
relations. Many religious and divinatory traditions associate 
particular qualities with particular numbers or patterns 
(e.g. astrology, tarot cards, or the I Ching), and these asso-
ciations may feel far from arbitrary. For example, consider 
the following pairs of words: 

Light/Dark; Warm/Cold; Right/Wrong;
Present/Absent; Active/Passive; On/Off;
True/False; Heavy/Light; Wet/Dry.

Now consider the following trinities: 

Beginning/Middle/End; Viewer/Viewing/Viewed; 
Past/Present/Future; Mind/Body/Soul;
Father/Son/Holy Ghost; Brahman/Shiva/Vishnu.
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The matheÂ�matical fact of this matter is entirely mundane: 
counting the words in the first list proceeds ‘one, two’, 
while for the second list we have ‘one, two, three’. But 
there is also a potent metaphorical connection within each 
group: the paired words have an oppositional character, 
with one part being defined in opposition to the other. In 
contrast, the trinities have a sense of interpenetration or 
interdependence. That is to say, something of the entire 
trinity is present in each part, and to separate the parts of 
each trinity is to divide an authentic whole. 

As the integers were sacred to the Pythagoreans, they 
were motivated to grasp as much as they could of the 
character of each number, combining a mystical or meta-
phorical approach, together with what is still considered 
rational. Although it falls within a larger, extremely ancient 
tradition, Pythagorean number science was quite distinct 
from the knowledge that preceded it. A principle technique 
was to separate the integers into specific and intricately 
related categories, according to characteristics that can be 
demonstrated geometrically. For example, the Pythagoreans 
would speak about: 

Odd numbers1

Even numbers 

1	 Modern matheÂ�maticians consider one to be an odd number, a square number, and 
so on, but the Ancient Greeks would not have included it in such lists. For them, 
numbers only began when there was a multitude of countable things.
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Composite numbers
An integer is said to be composite if it is the multiple of 
two smaller integers (excluding one). Any composite 
number of dots can be arranged into a rectangle. 

Prime numbers
By definition prime numbers are not composite, so they 
cannot be formed into any rectangle (other than a line). 

Triangular numbers

Square numbers

The Pythagoreans’ belief in the supreme power of number 
found a beautiful confirmation in their study of stringed 
instruments. Halving the length of a plucked string raises 
the note by one octave, and people can clearly hear the 
harmony between two notes an octave apart. More gener-
ally, the pentatonic scale (black notes on a piano) can be 
produced by using the following sequence of lengths: 

1 (doh), 8/9 (ray), 4/5 (me), 2/3 (soh), 3/5 (la), 1/2 (doh) 

Similarly, the diatonic scale (white notes on a piano) runs 
as follows: 
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1 (doh), 8/9 (ray), 4/5 (me), 3/4 (fah), 2/3 (soh), 3/5 
(la), 8/15 (te), 1/2 (doh) 

These tunings are used because they generate a preponder-
ance of the ratios 1:2 (an octave), 2:3 (a musical ‘fifth’), 
3:4 (a ‘fourth’) and 4:5 (a ‘third’). In general, the Law of 
Small Numbers tells us that highly commensurate lengths 
of vibrating strings produce pleasing, resonant harmonies, 
while less commensurate lengths produce dissonance.

Plato and Symmetric Form
The words ‘academy’ and ‘academic’ are derived from 
‘Hekademeia’: the place in Athens where Plato had his 
school. The gates to the Hekademeia were emblazoned 
with the words ‘Let no one ignorant of geometry enter 
here,’ and Plato’s account of the world placed a special 
emphasis on the ideal forms of matheÂ�matics. He believed 
that abstract objects have a timeless, independent existence 
that stands apart from any human activity, and his rhetoric 
and philosophy encouraged the widespread belief that 
matheÂ�matical forms are perfect and eternal. At the end of 
this book I argue that this view of matheÂ�matics is funda-
mentally mistaken, but many people think that Plato was 
right, and describe themselves as Platonists or Realists. 

The claim that matheÂ�matical forms are perfect and eternal 
has proved to be a potent and appealing notion. Indeed, 
there is a direct, historical link from Plato’s rhetoric to the 
many spherical domes in churches, synagogues and 
mosques. More generally, it is striking that across the globe, 
from Mexico to Tibet, depictions of the cosmos have almost 
invariably been constructed along geometric lines. It would 
seem that when we conceive of a scheme, and relay that 
across generations, it tends to acquire an orderly, geometric 
form. For example, in many disparate cultures we find 
rings of hell; heavenly spheres; the four corners of the 
earth, and so on.
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A fascination with symmetric, regular forms can be found 
in many cultures. What made the Ancient Greeks so 
remarkable was the systematic way that they investigated 
the properties of matheÂ�matical shapes, cataloguing and 
rigorously deducing their various properties. Long before 
Plato, people spoke of triangles, squares and other ‘regular 
polygons’, but as we shall see, our understanding of such 
forms made great advances in the time of Plato. By defini-
tion, a polygon is any planar figure with an integer number 
of straight sides. In a regular polygon, every side is the 
same length and every corner is identical. Now, a particu-
larly ancient challenge is to find all of the different ways 
that we can cover a flat surface using regular polygons as 
tiles. In particular, imagine arranging a number of polygons 
so that they touch corners at one point.

If the polygons are going to completely cover a flat 
surface, the corners that meet at the given point must 
contain angles that add up to 360°. It follows that if we 
are to cover a flat surface with one type of regular polygon, 
the number of angles in one corner of that polygon must 
precisely divide 360°. Only three types of regular polygon 
satisfy this condition:

1.	Triangular tiling. Six triangles can meet at a point 
because there is an angle of 60° between adjacent 
sides of an equilateral triangle, and 360° = 6 × 60°.

2.	Square tiling. Four squares can meet at a point 
because there is an angle of 90° between adjacent 
sides of a square, and 360° = 4 × 90°.

3.	Hexagonal tiling. Three hexagons can meet at a point 
because there is an angle of 120° between adjacent 
sides of a regular hexagon, and 360° = 3 × 120°.

The angle between adjacent sides of a regular pentagon 
is 108°, so where three pentagons meet we have a total 
of 324°, and a gap of 36°. Only two polygons with more 
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than six sides can meet at a point, so triangles, squares 
and hexagons are the only regular polygons that can be 
used to tile the plane. If instead of using a palette of one 
kind of regular polygon we allow any combination of 
regular polygons while maintaining identical vertices (i.e. 
insisting that each corner is touched by an identical 
sequence of polygons), then there are exactly eight tiling 
possibilities.
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Plato studied mathematics with his friend and fellow Athenian 
Theaetetus, and it was Theaetetus who first identified all the 
different ways of enclosing a finite volume of space within 
a boundary composed from a single type of regular polygon. 
A cube is the most familiar example of a finite volume with 
a boundary composed of a single type of regular polygon, 
but – as we shall see – there are several others. Because they 
play a central role in Plato’s metaphysics, shapes of this kind 
have somewhat unfairly acquired the name ‘Platonic solids’. 
In order to find a complete list of these deeply regular shapes, 
Theaetetus needed to consider all the different types of corner 
that can possibly be constructed out of a single kind of 
regular polygon. That is to say, he needed to calculate the 
number and type of faces that could possibly meet at a point. 

It should be clear that at each corner at least three poly-
gons must meet. Two polygons or fewer cannot make a 
solid, volume containing form. Furthermore, when the 
corners of some polygons meet at a point, the total number 
of angles in those corners must be less than 360°.  If the 
angles added up to 360°, the polygons in question would 
lie flat on the page, and make a tiling instead of a volu-
metric form. By falling short of 360° an arrangement of 
polygons can close in on a space, and may fit together to 
make one of the Platonic solids.

Given these constraints, there are only five possibilities 
for any corner of a Platonic solid. Three triangles can meet 
at each corner, and we can see that this is a genuine possi-
bility because 3â•›×â•›60°â•›=â•›180°, which is less than 360°. 
Similarly, four triangles can meet at each corner, and we 
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can see that this is a possibility because 4â•›×â•›60°â•›=â•›240°, which 
is less than 360°. Likewise, we can have five triangles 
meeting at each corner, but we cannot have six. If six 
equilateral triangles touch corners they lie flat on the page, 
which corresponds to the fact that 6â•›×â•›60°â•›=â•›360°. To recap, 
if we use triangles to make the faces of a Platonic solid, 
we can have three triangles meeting at each corner, four 
triangles meeting at each corner, or five triangles meeting 
at each corner, but those are the only possibilities. Using 
square faces, the only possibility is that three of them meet 
at each corner (giving 270°), as four squares that touch at 
one corner lie flat on the page. We can also have three 
pentagons meeting at each corner, as that gives us a total 
of 324°, but that is the only remaining possibility. Hexagons 
and other polygons with more than five sides cannot 
produce a Platonic solid, as if you put three of these shapes 
together you get an angle that is at least as big as 360°.
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This argument does not complete the proof that there are 
precisely five Platonic solids. We have yet to prove that 
there are in fact shapes with vertices of the kinds described. 
Furthermore, we have yet to prove that there can only be 
one shape whose vertices satisfy the previous descriptions. 
For example, how do we know that there cannot be a 
shape that has three squares meeting at every corner, but 
which is different from a cube? Similarly, how do we know 
that there is a one-and-only shape that has three pentagons 
meeting at each of its corners? I will return to this point 
later in the book, but for the moment I think it will suffice 
to say that, greatly to their credit, the Greeks did not leave 
this final step as an assumption. 

Euclidean Geometry
On 20 January 331 bc, Alexander the Great was sailing 
along the Egyptian coast, opposite the island of Pharos. 
Recognizing the many natural advantages of this site, he 
ordered that a city should be built in his name. Within 
decades, Alexandria was home to Macedonians, Greeks, 
Arabs, Babylonians, Assyrians, Italians, Carthaginians, 
Persians, Egyptians, Gauls, Iberians and Jews. To help estab-
lish the new metropolis as a great cultural centre, Alexander’s 
successor and half-brother ordered that an enormous library 
be built. A great deal of money was spent, and scholars 
were employed to gather an encycloÂ�paedic range of texts 
into an open, secular institution, modelled on the Athenian 
schools. It was in this newly founded city that Euclid 
(c.â•›325–265 bc) started his school of matheÂ�matics. Euclid 
himself trained at Plato’s Academy, but under the rule of 
Alexander’s general, Ptolemy I, Alexandria rose to become 
the scientific capitol of the world. Indeed, within Euclid’s 
lifetime it became a greater centre of matheÂ�matical excellence 
than anywhere in Greece and, what is more, it maintained 
its pre-eminent position for five hundred years or so. 

Euclid’s Elements is the most influential textbook ever 
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written, and only the Bible has been printed in a greater 
number of editions. Although his book (or sequence of books) 
has been a major influence for more than twenty-three centu-
ries, Euclid did not invent or discover the kind of geometry 
that bears his name. Nor did he invent the axiomatic method, 
whereby basic assumptions are listed and then deductions 
made from a definitive list of axioms through a logically 
structured sequence of theorems. The messy truth is that 
there was a long and complex evolution behind the emergence 
of Euclidean geometry, but Euclid’s particular summary of 
the essential truths of Greek geometry is a tour de force, 
largely because of its exceptionally clear logical structure. 

His books start with five famous axioms, and by 
employing these explicit statements we can logically clarify 
our language for describing shapes. Instead of relying on 
our intuitive interpretation of words like ‘point’, ‘straight 
line’, ‘circle’ or ‘right angle’, Euclid stated five defining 
principles for these things – the famous axioms of Euclidean 
geometry. In order to prove all of Euclid’s theorems, we 
only need to refer to the following definitive properties 
of straight lines, points, right angles and so on.

1.	There is precisely one shortest path between any 
two points. We refer to any such finite path as a 
straight line segment. 

2.	Any straight line segment can be extended indefi-
nitely, forming a straight line. 

3.	Every straight line segment can be used to define 
a circle. One end of the segment is the centre of 
the circle, and its length forms the radius. 

4.	All right angles are essentially identical, in that any 
right angle can be rotated and moved to coÂ�incide 
with any other. 

5.	Given any straight line and a point that is not on 
that line, there is precisely one straight line that passes 
through the point, and does not intersect the line. 
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The fifth axiom effectively specifies what Euclid meant by 
the term ‘parallel’, and it also determines his interpretation 
of the term ‘direction’. For millennia it was understood 
that two straight lines point in the same direction if and 
only if they do not cross (that is, if and only if they are 
parallel). In a later chapter I shall return to the subject 
of  Euclid’s fifth axiom, and elucidate the rethinking of 
geometry that took place in the nineteenth century. In 
particular, I shall discuss non-Euclidean geometry, and the 
significance of the fact that there are geometries that are 
fundamentally different to those described by Euclid. 

First I want to point out that Greek geometry in general, 
and Euclid’s Elements in particular, have exerted a profound 
influence: an influence that has reached well beyond the 
lives of matheÂ�maticians. Art, architecture, philosophy, 
theology, science and countless other endeavours have all 
been shaped by Euclid’s example. It is therefore under-
standable that many philosophers, theologians and other 
constructors of arguments have echoed something of his 
form, thinking it only proper to start an argument with 
explicitly stated premises, and then use axioms to derive 
further implications.

As well as being a paradigm-defining example of a thor-
oughly sound argument, the practice of geometry also had 
an incalculable influence on the visual arts, particularly 
architecture. It is impossible to imagine how our world 
would have looked if it had been designed by people who 
did not use rulers and compass, as apart from a few notable 
exceptions, almost every blueprint, from medieval churches 
to modernist blocks, can be drawn using these two instru-
ments. Furthermore, in classical geometry we often say 
things like, ‘if we extend these lines we can see that they 
meet at a point’. Architects and painters have often favoured 
subtle kinds of order, where the generating pattern can be 
seen more clearly by extending the lines involved. 

Straight lines and right angles are so prevalent in architecture 
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that people who try using other shapes are often said to 
be ‘experimenting with non-Euclidean geometry’. This is 
a perfectly understandable abuse of the term, but, strictly 
speaking, geometry is more fundamental and much harder to 
rethink than our palette of shapes or forms. Our geometry 
is present in the language that we use to describe our shapes, 
but the shapes themselves are not enough to determine 
which geometry we may be using. There is no problem 
with using the same geometry to study squares, circles or 
weird, irregular blobs. The geometry itself is characterized 
by such fundamental things as the kinds of symmetry we 
can possibly exhibit in the given space, or by the definitive 
relationships between straight lines, angles, distances and so 
on. In other words, a geometry is not defined by the shapes 
that we typically or most easily talk about. We can describe 
the same shapes using the language of Euclidean geometry 
or other essentially different, non-Euclidean geometries: the 
difference is not in the shapes, but in the meanings of the 
terms we use to describe them. 

The Euclidean Algorithm 
The concept of proportion is fundamental to art, architec-
ture and matheÂ�matics. There is an ancient technique for 
characterizing or determining the ratio between given 
lengths, and although it predates Euclid this method is now 
known as the Euclidean algorithm. The first point to appre-
ciate is that proportion is a more abstract concept than a 
ratio of lengths, a ratio of areas, and so on. For example, 
if we have a piece of string that is 20 cm long and another 
that is 40 cm long, we have a ratio of 20 cm:40 cm, but we 
also find it obvious that one is twice as long as the other. 
If we consider the distances 17 miles and 34 miles, then 
although the actual lengths are completely different, we 
recognize that 20  cm:40  cm is in the same proportion as 
17  miles:34 miles. In both cases we have the proportion 
1:2, and we understand that the expression 1:2 stands as a 
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Â�representative for every equally proportioned ratio. Also 
note that in writing a proportion we do not need units, so 
the proportion 1:2 could equally well refer to a ratio of 
lengths, areas, or any other quantified property. 

In his famous book, Euclid described the well-known 
method for determining the proportion between two given 
lengths. The first step is to construct a rectangle whose 
sides possess the lengths we are interested in. Having done 
that, we can determine the ratio between the lengths of 
those two sides by employing the following technique:

1.	Draw the largest square that fits inside your 
rectangle. 

2.	Squeeze in as many of these squares as you possibly 
can. If you can fill the entire rectangle with your 
squares, you are finished. Otherwise, there will be 
a rectangular space that has not been covered by 
squares. We now take the remaining rectangle and 
apply step 1.

The Euclidean algorithm terminates when we find a square 
that fits perfectly, filling in the entire rectangle. Squares of 
this size can be used to make a grid that perfectly subdivides 
the generating shape, and this will be the coarsest square grid 
that can possibly be used to divide the rectangle into squares. 
In other words, the width of the smallest square is equal to 
the greatest common divisor of the lengths of the two sides. 
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For some rectangles, there simply isn’t any square grid 
that will fit perfectly. In this case our algorithm can be 
continued indefinitely. If the lengths of the sides are inte-
gers with no factors in common (e.g. 5  cm x 9  cm), the 
final step of our algorithm uses 1 cm squares. If the numbers 
have a common factor (e.g. 3  cm x 9  cm), we produce a 
scaled up version of some co-prime pattern (e.g. we finish 
with 3 cm squares): 

This technique makes the proportions of the generating 
rectangle evident and intelligible, and it has inspired count-
less generations of matheÂ�maticians, artists and architects. 

Archimedes
Archimedes of Syracuse (c.â•›287–212 bc) is arguably the 
greatest mathematician to ever live. He has also been 
described as the first matheÂ�matical physicist, as he devel-
oped theories that accurately predict when a thing will 
balance, and when a thing will float. As well as his 
astounding theoretical accomplishments, Archimedes was 
a brilliant engineer: people have been using the Archimedean 
screw to move water uphill for over twenty-two centuries, 
and it is still used to this day. However, the Ancient Greek 
historian Plutarch (c.â•›ad 45–125) tells us that Archimedes’ 
proudest achievement was carved onto his tombstone, 
namely his stunningly beautiful theorem concerning the 
ratio of volume between equally high cylinders, hemi-
spheres and cones:

(equivalent to 3:4) (equivalent to 3:5)
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Archimedes became famous in his own lifetime, and we 
know that at least one contemporary account was written 
about his life and work (now sadly lost). Plutarch, Livy, 
Cicero and Vitruvius all mentioned his life’s work, and he 
was helped in acquiring legendary status by defending the 
Sicilian city of Syracuse. Plutarch writes of the fear and 
respect that Archimedes struck in the Roman invader’s hearts, 
as he fought them from the city for over two years: ‘If they 
only saw a rope or a piece of wood extending beyond the 
city walls, they took flight, exclaiming that Archimedes had 
once again invented a new machine for their destruction.’

His conceptual grasp of the physical literally changed 
the world, and shaped the way that technology developed. 
For example, when he wrote On the Equilibrium of Planes, 
Archimedes gave a completely axiomatic treatment of 
mechanics, enabling logical deductions for physical systems. 
By such means he devised a powerfully general explanation 
of the functioning of rollers, wedges, levers and pulleys, 
using terms whose relevance clearly extends beyond the 
particular contraptions that are physically present. His 
strictly matheÂ�matical approach enabled the calculation of 
centres of gravity, and he was in a position to make such 
general statements as ‘The tipping point is where the centre 
of gravity is directly above the edge of the base.’ Similarly, 
he was the first person to calculate when two objects will 
balance on a see-saw.

As if that wasn’t enough to ensure his immortal fame, 
Archimedes was the first person to prove that a sphere of 
radius r must have a volume of 4/3πr3, and a surface area 
four times greater than a circle of equal radius (i.e. 4πr2). 
He proved many fundamental results, but a partiÂ�cuÂ�larly 
attractive example of his work can be found in the way that 
he considered the area of a circle. By definition of the term 
‘π’, the circumference of a circle of radius r is equal to 2πr. 

Archimedes knew that if we slice a circle into equally 
sized segments and rearrange those component shapes, the 
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total area will not change. He also knew that given any 
circle, we can draw a hexagon that is just small enough to 
fit inside the circle, and we can draw another hexagon that 
is just large enough to contain the entire circle. The area of 
our circle must be bigger than the area of the smaller hexagon, 
and smaller than the area of the larger hexagon. Furthermore, 
it is easy to calculate the area of these hexagons because 
they are composed of triangles of known size. Archimedes 
understood that in principle we can do the same for a polygon 
of any number of sides, and as we consider polygons with 
larger and larger numbers of sides, we find shapes whose 
areas are closer and closer to the area of a circle. This method 
can be used to calculate estimates of π. Indeed, Archimedes 
managed to calculate π to two decimal places by using a 
96-sided polygon. More importantly, Archimedes’ ingenious 
arguments showed that the area of circle of radius r must 
be πr2. Like all matheÂ�matical theorems, this fundamental 
truth has many different proofs, including the following 
beauty devised by Leonardo da Vinci: 

If we slice a circle of radius r into an increasing numbers 
of segments, those segments can be arranged into a shape 
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that is increasingly similar to a rectangle of width πr and 
height r. 

In many of his proofs, Archimedes argued that a given 
area or volume cannot be bigger than some given number, 
and likewise it cannot be smaller than the given number. 
For example, Archimedes proved that the area of a circle 
cannot be bigger than πr2, and it cannot be smaller than 
πr2. It follows that the area of a circle must be equal to πr2: 
a form of argument known as ‘proof by exhaustion’. The 
mathematician and astronomer Eudoxus (c.â•›408–355 bc) is 
credited with being the first person to prove that one quan-
tity is equal to another by demonstrating that it cannot be 
bigger or smaller, and over the following millennia, proof 
by exhaustion showed itself to be a neat but rather unpro-
ductive idea. However, as we shall see in Chapter 5, the 
thought of covering a shape with increasingly fine pieces 
is an ancient ancestor of the most fruitful matheÂ�matical 
idea of the modern era: the infinitesimal calculus.

Alexandria in the Age of Rome
In the centuries that followed the founding of Alexandria, 
Rome grew to dominate all of its surroundings. As Rome’s 
sphere of influence expanded, countless manuscripts were 
‘donated’ or pillaged to furnish the libraries of eminent 
Romans. For example, we know that Cleopatra gave Caesar 
a gift of tens or hundreds of thousands of manuscripts 
from the Royal Library of Alexandria. Fortunately, many 
Romans revered the matheÂ�maticians of Greece, appreciating 
both the practical and theoretical significance of matheÂ�
matical knowledge. There was a popular trade in busts 
and portraits of the famous matheÂ�maticians, and Greeks 
were often employed as tutors. The Roman Empire spread 
the practice of matheÂ�matical education throughout Europe 
(well beyond the ethnically Roman), but surprisingly the 
cosmopolitan city of Alexandria remained dominant as the 
centre for purely matheÂ�matical study. 
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Despite the unfortunate fate of the tragically flammable 
Royal Library, the city of Alexandria remained a magnet 
for matheÂ�maticians for many, many centuries. We have 
good reason to believe that Archimedes studied there, and 
it was in Alexandria that the Pythagorean scholar 
Nicomachus of Geresa (c.â•›ad 60–120) wrote his Introduction 
to Arithmetic, employing arithmetic notation and ordinary 
language to explain topics that Euclid had described from 
an essentially geometric perspective. This book was highly 
influential, and remained the standard European textbook 
on arithmetic for more than a thousand years. Some fifty 
years after Introduction to Arithmetic was published, 
Claudius Ptolemy (c.â•›ad 85–165) produced a work that 
was even more influential: The Almagest, or the ‘Great 
Collection’. 

As a Roman citizen of Egypt working in Alexandria, 
Ptolemy employed the detailed astronomical knowledge 
of the Babylonians to make improvements on Eudoxus’s 
model of planetary motion. The resulting masterpiece was 
considered to be a definitive guide to the movement of 
the heavens, and over the following millennia, countless 
people used his system to predict successfully the apparent 
location of the planets in the night sky. The Almagest also 
spread the system of longitude and latitude, and it contained 
many sophisticated arguments about the relationship 
between measurements of angles and measurements of 
length (what we call trigonometry).

Following the collapse of the Roman Empire, priests 
and laymen continued to teach and study the matheÂ�matics 
of Greco-Roman civilization. The diplomat and philoso-
pher Anicius Manlius Severinus Boethius (c.â•›ad 480–525) 
deserves particular mention in this regard. His Institutio 
Arithmetica was not a great piece of original matheÂ�matics, 
but his reverence and love for the subject helped to ensure 
that the Catholic Church would teach and preserve the 
Pythagorean knowledge of number, following Boethius’ 
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educational quadrivium of arithmetic, geometry, astronomy 
and music. 

There is a certain poetry in the fact that while so many 
practical points of reference were lost (e.g. the means of 
making concrete), the most abstract of notions remained 
unbroken. Indeed, a long line of Christian theologians, 
including Saint Augustine, have supported the view that 
God’s creation is matheÂ�matical. It is therefore understand-
able that despite the terrible upheavals following Rome’s 
collapse, crucial fragments of matheÂ�matical science were 
faithfully preserved. By the time of the Middle Ages, scho-
lastic writers were making tentative advances from the 
body of established matheÂ�matical knowledge. However, 
until Italian matheÂ�maticians started to make exciting 
advances in the late fifteenth century, ancient works such 
as Euclid’s Elements were still considered to be the pinnacle 
of matheÂ�matical knowledge.  

In later chapters we will see how Europe experienced a 
renaissance in matheÂ�matics, building on the achievements 
of Greek and Arab scholars. First, I want to focus on an 
aspect of reality that has occupied matheÂ�maticians, artists 
and architects for millennia. The notions of measure-
ment and proportion are exceptionally ancient, and in the 
next chapter I will explain how counting and continuous 
meaÂ�surement have been used to make proportion evident. 
In particular, we will see how the insights of Eudoxus and 
Dedekind extended the concept of number, from integers 
to fractions and on to irrational numbers.



Chapter 3: 
RATIO AND PROPORTION

‘The concept of number is the obvious distinction 
between the beast and man. Thanks to number, the 
cry becomes a song, noise acquires rhythm, the spring 
is transformed into a dance, force becomes dynamic, 
and outlines figures.’

Joseph de Maistre, 1753–1821

Measurement and Counting
In daily life, we don’t just count objects, we also measure 
quantities such as length, area, weight and time. First we 
select a unit of measurement: feet, acres, grams or hours 
as the case may be. We assign the relevant unit quantity 
the measure of one, and then count the number of unit 
measures that make up the quantity to be measured. For 
example, we might measure the length of a field by counting 
the number of feet between one end and the other. In 
general, the process of counting out units may not ‘come 
out even’. For example, our field might be longer than 
sixty feet, but shorter than sixty-one feet. In that case we 
may measure the remaining distance by using some subunit 
measure, obtained by subdividing our original unit into n 
equal parts. 

The Ancient Egyptians and numerous other cultures 
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studied this kind of process. In ordinary language the 
standard units and subunits are given their own names, as 
feet are subdivided into inches, hours are subdivided into 
minutes, and so on. In general we divide our unit measure 
into n subunits, and when we measure something we need 
to count out m of these subunits to make up the quantity 
to be measured. In that case we say that we have measured 
a fraction m/n. Note that the ‘denominator’ n tells us what 
kind of subunit we are using, while the ‘numerator’ m tells 
us how many of the subunits we have counted. 

Over the course of several centuries, the ancient equiv-
alents to the modern symbols m/n gradually lost their 
association with the process and units of measurement. In 
other words, people began to consider fractions as ‘pure’ 
numbers, much like the integers. How do we justify 
extending the word ‘number’ from the counting numbers 
onto the fractions? Well, we might say that just as it doesn’t 
matter whether you are counting apples, pears or people, 
it doesn’t matter whether we are measuring fractional quan-
tities of distance, weight, time, etc. It is also absolutely 
fundamental that we can add and multiply the fractions 
alongside the counting numbers. Indeed, the rules for 
adding and multiplying fractions can be summarized as 
follows:

a

b
+

c

d
=

ad + bc

bd
, 

a

b

c

d
=

ac

bd

a

a
=1 and 

a

b
=

c

d
 if and only if ad = bc.

From a modern perspective we accept the fractions as a 
legitimate number system because the rules for adding and 
multiplying fractions satisfy the same, axiomatic laws as the 
addition and multiplication of integers. More specificÂ�ally, 
the following statements are true whether p, q and r are 
integers or fractions:
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p + q = q + p, p + (q + r) = (p + q) + r, pq = qp,

p(qr) = (pq)r and p(q + r) = pq + pr. 

For many centuries it was believed that the only conceiv-
able quantities were fractional or ‘rational’. However, as 
I shall show in the next section, this plausible claim is not 
in fact true. As an initial observation, consider the following 
diagrams:

In each case we have combined a pair of identical shapes 
to produce a similar shape with double the area. The sides 
of these larger shapes are √2 times greater than the sides 
of the original, component shapes. We can prove this fact 
using Pythagoras’ Theorem. More generally, we can use 
Euclid’s axioms to prove that rescaling a two-dimensional 
shape by making the lengths n times longer changes the 
shape’s area by a factor of n2. Because the second, larger 
shapes have double the area (n2â•›=â•›2), the lengths of the 
sides must have increased by a factor of √2. Similarly, we 
can combine three hexagons to produce one with triple 
the area, and sides √3 times that of the originals:
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Because the ratios 1:√2 and 1:√3 are geometrically construct-
ible, we intuitively feel that √2 and √3 must be numbers 
of some kind. In other words, we readily accept that each 
of these things has a single, definitive size. This notion is 
extremely ancient, and hundreds of generations from across 
the globe have pondered the question, ‘How long is the 
diagonal of a square, given the length of the sides?’ Indeed, 
a Babylonian clay tablet from c.â•›1800–1600 bc tells us that 
this ratio of lengths can be expressed as:

 1 to 1+
24
60

+
51
602 +

10
603  

(a solution that is exact enough for any practical purpose, 
as the error in this approximation is only 0.00004%). 

As we saw in the previous chapter, Pythagorean science 
used the language of the integers, and in that language we 
might say that a quantity simply is a ratio of two integers. 
However, during the fifth century bc, the Ancient Greeks 
proved that √2 cannot be expressed as a ratio of integers, 
and nor can √3 or √p where p is any prime. 

Reductio Ad Absurdum
In order to prove that √2 cannot equal any fraction, we 
must first prove the Fundamental Theorem of Arithmetic. 
Both of these proofs can be established by the mathemati-
cian’s gambit: reductio ad absurdum. As the mathematician 
G.  H.  Hardy remarked, ‘It is a far finer gambit than any 
chess gambit: a chess player may offer the sacrifice of a 
pawn or even a piece, but a mathematician offers the game.’ 
I shall return to this idea, but for now let us just accept 
that we do not say contradictory things about matheÂ�matical 
objects. In short, we cannot work with a logically incon-
sistent system, so if a putative set of axioms is inconsistent 
but we want to continue doing matheÂ�matics, we have to 
change one of our assumptions. Somewhat surprisingly, this 
negative principle (the ban on inconsistency) enables us to 
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prove positive new conclusions, including facts concerning 
the relationship between fractions and measured lengths. 

Euclid’s proof of the Fundamental Theorem of Arithmetic 
begins with an axiomatic observation: ‘Every collection of 
positive integers contains a smallest number.’ In particular, 
suppose that there are integers that are neither prime nor 
the multiple of primes (integers with property P, say). It 
follows from our axiom that if there are any integers with 
property P, there must be a smallest integer (called k) that 
has the property P. In other words, if the Fundamental 
Theorem of Arithmetic were false, there would have to be 
an integer k, which is the smallest number that is neither 
prime nor the multiple of primes. If k is not the multiple 
of any two integers (apart from k x 1 of course), then by 
definition k is prime, which would mean that it does not 
have property P after all. 

The other possibility is that there are two integers s and 
t, such that s x t = k. In that case, k must be larger than 
either s or t. This implies that s and t cannot have property 
P, which means they must be prime or the multiple of 
primes. This follows because by definition k is the smallest 
number with property P. But the multiple of any two 
multiples of primes is itself a multiple of primes, which 
means that k cannot have property P. Since there cannot 
be an integer k with property P, it must be true to say 
that every integer can be factorized. 

Reductio ad absurdum is a simple trick, but it reveals a 
wealth of truth: every integer must either be prime or it 
must be equal to the product of some primes. In other 
words, given any positive integer N (other than N = 1), 
there is a collection of prime numbers p1, p2, …, pn such 
that Nâ•›=â•›p1,â•›×â•›p2â•›×â•›…â•›×, pn. Euclid also proved that for every 
integer N, there can only be one collection of primes that 
multiply together to give the number N. For example, 
2â•›×â•›3 = 6 and 3â•›×â•›2 = 6, but every other multiplication of 
primes equals something other than 6. 
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Using a similar method, we can prove that √2 is not 
equal to any ratio of integers. Suppose for the sake of 
argument that we have found a fraction N/M, which satis-
fies the equation N/M = √2. We can rewrite this equation 
by multiplying both sides by M and then squaring both 
sides, giving us the equation N2 = 2M2 . By the Fundamental 
Theorem of Arithmetic, we must be able to rewrite the 
integers N and M as a sequence of prime numbers. We 
therefore have something of the form: 

( p1 × p2 × … × pn)
2 = 2(q1 ×q2 × … × qm)2, or equivalently 

p1
2 × p2

2 × … × pn
2 = 2 × q1

2 × q2
2 × … × qm

2 .

If it is indeed the case that the left-hand side equals the 
right, then the prime factors of the left-hand side must be 
identical to the prime factors of the right. But it cannot 
be true that both sides have the same prime factors, because 
the factors of the left-hand side are two lots of p1, two 
lots of p2, and so on up to two lots of pn, while on the 
right we have two lots of q1, two lots of q2, and so on up 
to two lots of qm, plus a single factor of 2. This solitary 
factor of 2 cannot have a counterpart on the left-hand side, 
which means that the two sides of the equation cannot be 
equal to one another. We must therefore reject our assump-
tion that for some pair of integers N and M we have 
N2 = 2M2. In other words, we must conclude that there 
cannot be a fraction N/M = √2. 

The proof that √R cannot equal any fraction when R is 
any prime is very similar. First we suppose that we have 
found a fraction N/M, which satisfies the equation N/M 
= √R, which is equivalent to supposing N2 = RM2. The next 
step is to rewrite N and M as a sequence of prime numbers, 
giving us something of the form: 

( p1 × p2 × … × pn)
2 = R(q1 ×q2 × … × qm)2, or equivalently 
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p1
2â•›×â•›p2

2â•›×â•›…â•›× pn
2â•›=â•›Râ•›×â•›q1

2â•›×â•›q2
2â•›×â•›…â•›×â•›qm

2â•›.

As in the case where R = 2, the solitary factor of R on 
the right-hand side cannot have a counterpart on the left-
hand side, which means that there cannot be a pair of 
integers N and M such that N2â•›=â•›RM2. Hence, there cannot 
be a fraction N/M = √R. 

Once the Greeks had constructed this beautiful little 
argument, they were faced with a considerable challenge. 
How could they maintain the link between proportion 
(measuring lengths against one another) and the familiar 
laws of arithmetic (counting, adding and multiplying)? 
Given that √2 is irrational (i.e. given that √2 cannot be 
expressed as a ratio of integers), how can we justify calling 
it a number? How can we justify the assumption that we 
can add and multiply √2 together with the fractions? To 
put it another way, how can we numerically express a 
geometric length when we know that the length in ques-
tion does not equal any fraction?

Eudoxus, Dedekind and the Birth of Analysis
Thanks to the widespread use of graphs most people find 
the concept of a number line highly intuitive. The basic 
idea is that every point on a number line represents a 
number: a subtle form of metaphor with a long and complex 
history. Although graphs as we know them are a relatively 
recent innovation, the mathematician and astronomer 
Eudoxus (c.â•›408–355 bc) understood that although a contin-
uous number line necessarily contains more than just 
fractions, it is made intelligible through a rational frame-
work. Eudoxus’s insight was one of the most pivotal events 
in the history of matheÂ�matics, and to understand the 
mystery from which this clarity emerged, let us return to 
Pythagoras’ Theorem. We have already seen that whenever 
we have a right-angled triangle whose sides are of length 
a, b and c, it must be the case that a2â•›+â•›b2â•›=â•›c2. Conversely, 
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every solution to the equation a2â•›+â•›b2â•›=â•›c2 corresponds to a 
right-angled triangle with sides of length a, b and c. 

We can be certain that every solution to this equation 
corresponds to an ‘actual’ triangle because we can draw 
two lines at right angles, and let the lengths of those lines 
equal any pair of positive numbers a and b. When we 
connect our endpoints, the hypotenuse that we draw must 
have a length equal to our third number c, because we 
have already specified that our triangle is right angled, and 
so by Pythagoras’ Theorem the length of the hypotenuse 
must satisfy the relationship a2â•›+â•›b2â•›=â•›c2. 

People could draw and identify right-angled triangles 
long before the time of Pythagoras. Indeed, some people 
believe that as far back as 1800 bc the Babylonians knew 
that if a triangle was formed by joining lines of length a, 
b and c, then the triangle will be right angled whenever 
a2â•›+â•›b2â•›=â•›c2. The main evidence for this claim is a clay tablet 
known as Plimpton 322, which systematically lists fifteen 
pairs of integers {a, c}. In every case there is some integer 
b, such that a2â•›+â•›b2â•›=â•›c2. For example, the tablet contains 
the pairs of integer {45, 75}, {1679, 2929} and {12709, 18541}, 
which form ‘Pythagorean triples’ with the integers 60, 2400 
and 13500. 

The connection between the geometric facts of right-
angled triangles and purely arithmetic facts such as 
32â•›+â•›42â•›=â•›52 has greatly impressed hundreds of generations. 
On first inspection there appears to be little connection 
between arithmetic and geometric knowledge, for as John 
Stillwell writes in his excellent Mathematics and its History:

Arithmetic is based on counting, the epitome of a 
discrete process. The facts of arithmetic can be clearly 
understood as outcomes of certain counting processes, 
and one does not expect them to have any meaning 
beyond this. Geometry, on the other hand, involves 
continuous rather than discrete objects, such as lines, 
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curves, and surfaces. Continuous objects cannot be 
built from simple elements by discrete processes, and 
one expects to see geometric facts rather than arrive 
at them through calculation.

Despite the many differences between arithmetic and 
geometry, Pythagoras’ Theorem hints at a depth of inter-
connection. Indeed, his now legendary contribution was 
to demonstrate that the following statements are logically 
equivalent:

1.	A triangle whose sides are of length a, b and c 
(where c is the longest length) is in fact a right-
angled triangle if and only if 

2.	A square whose sides are of length c contains the 
same area as a square of side a plus a square of 
side b. 

We could say and understand these individual sentences 
long before we could prove their logical equivalence, so 
Pythagoras’ achievement is a very striking one. It should 
also be noted that as a formula the theorem reads as a state-
ment about the addition and multiplication of quantities, 
because the lengths of the given sides are numbers that are 
related by the formula a2â•›+â•›b2â•›=â•›c2. The Greeks certainly knew 
how to add and multiply fractions, but the lengths mentioned 
in the formula may well be irrational, as one can certainly 
consider triangles with irrational sides. For this reason (and 
many other related ones), it was imperative that the process 
of adding and multiplying Â�arbitrary quantities was under-
stood, and related back to the standard methods for adding 
and multiplying fractions. 

This problem is far less daunting to the modern reader, 
as most people think of a number as being something like 
2.713… (a possibly infinite string of digits). With such a 
representation, one can naturally extend the operations of 
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addition, subtraction, multiplication and division in a rela-
tively straightforward way. For example, suppose that we 
want to find x = 2.713…â•›×â•›3.425… It isn’t very difficult to 
work out how to calculate each of the digits of x in turn: 
you just need to be systematic about it. Indeed, just by 
looking at the first digits we can deduce that x is bigger 
than 2â•›×â•›3 and smaller than 3â•›×â•›4. By looking at the second 
digits we can work out that x is bigger than 2.7â•›×â•›3.4 and 
smaller than 2.8â•›×â•›3.5, and so on. Crucially, if you want to 
find a finite number of digits of x, you only need to look 
at finitely many digits to the right of the equals sign. My 
point is that when we imagine doing sums with an infinite 
string of digits, we simply keep on adding and multiplying 
in the time-honoured way, but accept that when we are 
using infinite decimals, there is quite literally no compu-
tational end in sight, even for a single multiplication. 

That is all well and good, but the central problem 
remains. Is it possible to prove that two infinite decimals 
are equal (as they may be in Pythagoras’ Theorem)? To 
make sense of this question, we must first be clear about 
the defining relationships greater than, smaller than and 
equal to. For fractions, we have a very simple criterion 
for equality:

a

b
=

c

d
 if and only if ad = bc.

For example, we say that 1/2 = 3/6 precisely because  
1â•›×â•›6 = 2â•›×â•›3. Similarly, we say that:

a

b
<

c

d
 if and only if adâ•›<â•›bc.

In other words, we can compare rational numbers by 
multiplying and comparing integers. Eudoxus realized that 
not only are there well-defined criteria for the comparison 
of fractions, there is also a reasoned sense of measure that 
applies to every ‘real number’. The crucial and deceptively 
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simple observation is that two real numbers (points on a 
continuous number line) are said to be ‘different’ if and 
only if there is a gap between them. If there is a gap, then 
there must be a fraction that is bigger than one of the 
numbers, and smaller than the other, because every stretch 
of the number line contains fractions. This means that two 
real numbers are in fact one and the same if and only if 
it is impossible to find a fraction that is larger than one 
number and smaller than the other. 

It is highly significant that equality between real numbers 
is defined in terms of computational failure (that is, the 
failure to find a fraction that is bigger than one number 
and smaller than the other). On a more positive note, we 
can show that two different definitions pick out the same 
real number by demonstrating that being larger than one 
definition and smaller than the other is a logical impos-
sibility for any fraction. In other words, we can prove 
equality between real numbers within a rational framework, 
and we don’t need to worry about irrational numbers 
messing things up. 

The other crucial point about Eudoxus’s brilliant idea 
is that in order to speak of a number’s size (that is, its 
defining characteristic), all that we require is the ability 
to say if it is bigger, smaller or equal to any given frac-
tion. For example, we can compare any fraction f to √2 
by calculating fâ•›2 and comparing this number to 2. Our 
ability to add, multiply and compare fractions is firmly 
rooted in our ability to count, as the proper way to add, 
multiply and compare fractions is strictly determined by 
the proper way to add, multiply and compare integers. 
We can therefore be absolutely certain that every fraction 
rightly belongs in one of two sets: the set of ‘smaller than 
√2’ fractions, and the set of fractions ‘at least as big as 
√2’ (which is exactly the same as the set of fractions bigger 
than √2). 

The idea of partitioning the fractions into ‘smaller’ and 
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‘larger’ is critically important. Among other things, a rule 
for sorting any fraction into either ‘smaller than √2’ or 
‘larger than √2’ provides us with a strictly deterministic 
method for generating the decimal expansion of √2. The 
procedure runs something like this: 

12â•›=â•›1 which is less than 2, so 1 must be less than √2. 

22â•›=â•›4 which is greater than 2, so 2 must be greater than 
√2. 

1.42â•›=â•›1.96 which is less than 2, so 1.4 must be less than 
√2. 

1.52â•›=â•›2.25 which is greater than 2, so 1.5 must be greater 
than √2. 

1.412â•›=â•›1.9881 which is less than 2, so 1.41 must be less 
than √2. 

1.422â•›=â•›2.0164 which is greater than 2, so 1.42 must be 
greater than √2, …

There are many other techniques that we can use to effec-
tively sort any fraction into ‘smaller’ or ‘larger’. For 
example, consider the following method for calculating 
whether some fraction a/b is more or less than π, bearing 
in mind that π is normally defined as the circumference 
of any circle divided by the diameter of that circle, but π 
is also equal to the area of a circle with radius one.
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We can calculate π by drawing circles on grids of increas-
ingly tiny squares. These squares are coloured white if 
they lie completely outside the circle, black if they lie 
inside the circle, and grey if the circle crosses them. As 
we use finer and finer grids, the black area gets closer and 
closer to π, while the grey area becomes arbitrarily small. 

If a fraction a/b is different to π (as every fraction is), 
then one of these pixellated images will be detailed enough 
to show this fact. As Eudoxus understood, ‘a/b is different 
to π’ simply means ‘there is a detectable gap between a/b 
and π’. That is to say, the sufficiently fine images will 
demonstrate that one (and only one) of the following state-
ments is true: 

1.	The area of the black region is larger than a/b, so 
a/b is smaller than π, or 

2.	The area of the black region plus the area of the 
grey region is less than a/b, so a/b is larger than π. 

Notice that in each case we are comparing our fraction 
a/b against other fractions (the relevant areas). We can 
correctly fill in any grid by using Pythagoras’ Theorem, 
which tells us the distances between the corners in the 
square grid and the centre. Hence our procedure for 
checking the relative size of a/b and π depends on nothing 
more or less than the knowledge of how to add and multiply 
integers.

Another way to specify a particular real number is to 
write it as the ‘limit case’ of an infinite sum. For example, 
the Indian mathematician Nilakantha Somayaji (1444–1544) 

demonstrated that 4  is smaller than 1, bigger than 1 1
3, 

smaller than 1 1
3 + 1

5 , bigger than 1 1
3 + 1

5
1

7 , and 

so on. This sequence of approximations defines a specific 
real number because we can always use a finite number 
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of these approximations to tell whether any given fraction 
is greater or smaller than π. It should also be noted that 
many different sequences can specify precisely the same 
real number, as the following equations indicate: 

Nilakantha Somayaji (c.â•›1500):  

François Viète (1593): 

2
=

1
2

1
2

+
1
2

1
2

1
2

+
1
2

1
2

+
1
2

1
2

...

John Wallis (1655):  

2
=

2
1

2
3

4
3

4
5

6
5

6
7

8
7

...

Leonhard Euler (c.â•›1750):
2

6
=

1
12 +

1
22 +

1
32 +

1
42 +

1
52 +

1
62 +

1
72 + ...

2

6
=

22

(22 1)
32

(32 1)
42

(42 1)
52

(52 1)
62

(62 1)
...

Recurring Decimals and Dedekind Cuts
When Eudoxus clarified the fundamental relationships 
‘greater than’, ‘smaller than’ and ‘equal to’, matheÂ�matics 
was essentially geometric in character. However, later 
generations have taken a more algebraic approach, and by 
the nineteenth century matheÂ�maticians were once again 
wanting to clarify precisely what is meant by a ‘real 
number’. Intuitively speaking, real numbers correspond 
to points on a number line. As we shall see, this is a rather 
subtle concept, despite its intuitive appeal. The modern 

=1
1

3
+ 1

5

1

7
+ 1

9

1

11
+ 1

13

1

15
+ ...

4
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definition of the real number line is due to Richard 
Dedekind (1831–1916), but the idea that numbers could 
be identified as points on a line was first articulated by 
René Descartes (1596–1650). 

We know exactly how to do arithmetic with some of 
the points on a number line (e.g. the integers), but the 
problem with saying that every point on a number line is 
actually a number is that it isn’t obvious how we are 
supposed to do arithmetic using an arbitrary point on a 
geometric line. Dedekind recognized that there is a better 
way to define what is meant by a real number, which did 
not appeal to the geometric notion that a line is the path 
traced by a moving point. Dedekind insightfully observed 
that every real number can be identified with a pair of 
sets, namely the set of fractions smaller than x, and its 
inverted twin, the set of fractions at least as big as x. This 
complementary pair of sets is called a ‘Dedekind Cut’, for 
obvious reasons. 

It may be more intuitive to think of real numbers as 
being points on a number line, but when rigour is called 
for matheÂ�maticians clarify the notion of ‘a point on a 
number line’ by turning to the formalism of Dedekind 
Cuts. That is to say, specifying a real number x is under-
stood as being the same thing as specifying a way to divide 
the set of fractions into two, such that every fraction in 
the ‘smaller’ set is smaller than every fraction in the ‘larger’ 
set. By definition a number x is bigger than y if and only 
if there is a fraction that is in the set ‘larger than y’, which 
is also in the set ‘smaller than x’. Similarly, the number x 
is equal to y if and only if the set ‘smaller than x’ is iden-
tical to the set ‘smaller than y’. 

Now, when we first learn about fractions we tend to 
think of one number being divided by another (fractions 
as a kind of verb). By gaining experience of the addition 
and multiplication of fractions, we learn to think of them 
as nouns (‘completed things’ in their own right). We must 
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make a similar conceptual transition from verb to noun 
when we specify a number using recurring decimals (e.g. 
0.3333…). The idea behind this notation is that we can 
use an infinite sequence of terms (0.3, 0.33, 0.333, …) to 
pick out one particular number. That is to say, we can 
specify one particular Dedekind Cut by putting fractions 
in the ‘smaller’ set if and only if they are smaller than one 
of the terms 0.3, 0.33, 0.333, … This leads us to our next 
question: are there any numbers that have regular, recur-
ring digits, but which do not equal any fraction? In 
particular, could √2 have recurring digits, or must it 
continue forever un-repeating? 

We can answer this question by appreciating some of 
the algebraic qualities of recurring decimals. Consider, for 
example, the number 0.234523452345… By naming this 
number x, we can make the following argument: 

Dividing both sides by 9999 gives us the equation

x = 0.2345… = 2345
9999â•›. 

We can shift the recurring digits along by adding an appro-
priate number of zeroes to the denominator. For example, 

0.00234523435 …â•›
2345

999900â•›. We can also find an equivalent 

fraction when there is a finite string of digits before the 
recurring ones. For example,

0.6623452345 … =â•› 66
100

â•›+â•› 2345
999900

â•›=â•›662279
999900â•›.

It should now be clear that every recurring decimal can 
be written as a fraction. This means that √2 definitely 

 10000 x = 2345.23452345… and
 x = 0.23452345… therefore
 9999x =  2345 (subtract the second equation from the 

first). 
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cannot have recurring digits, because unlike numbers with 
recurring digits, √2 cannot be written as a fraction. One 
particular application of this argument highlights the intui-
tion refining power of Eudoxus’s conception of equality. 
When x = 0.999… we have: 

	 10x	= 9.9999… and
	 x	= 0.9999… therefore
	 9x	= 9 and so x = 1.

Many people are somewhat perturbed to find that the 
recurring decimal 0.999… is equal to one. But we can see 
that this is true, because if a fraction is smaller than one 
of the numbers 0.9, 0.99, … , then it must also be smaller 
than one. Furthermore, the number one is the smallest 
fraction that is not smaller than any of the fractions 0.9, 
0.99, 0.999, … This implies that one is the smallest member 
of the set ‘larger than 0.999…’ Hence the symbols 1 and 
0.999… indicate precisely the same Dedekind Cut, which 
is another way of saying that they are one and the same 
real number. 

The notion that there is an infinitesimal difference 
between 0.999… and 1 is not a part of ordinary matheÂ�
matics (though there are forms of matheÂ�matics that include 
infinitely small quantities). In other words, the number 
one is the only real number that 0.999… can equal. It may 
seem strange to say that the difference between 1 and 
0.999… is actually zero, but in the words of the great 
mathematician Leonhard Euler, ‘To those who ask what 
the infinitely small quantity in matheÂ�matics is, we answer 
that it is actually zero. Hence there are not so many 
mysteries hidden in this concept as they are usually believed 
to be.’ More generally, our analysis shows that every recur-
ring decimal is equal to some fraction, and by considering 
the process of long division we can see that the converse 
of this statement is also true. In other words, every frac-
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tion has an infinitely repetitive decimal expansion, and 
every recurring decimal is equal to some fraction. 

Continued Fractions
Decimal notation is an extremely powerful and convenient 
way to represent numbers. However, it is far from being 
the only system, and there is an alternative form of repre-
sentation, which is particularly elegant and interesting. The 
forms I am referring to are known as continued fractions, 
and many historians believe that they were studied by the 
Ancient Greeks (who were certainly familiar with the key 
ideas). Although he didn’t claim to invent them, our earliest 
unambiguous record of the use of continued fractions 
comes from a book called L’Algebra, which was written 
by Raphael Bombelli in 1572. 

So what are these things called continued fractions? Well, 
we are all familiar with the idea that one divided by two 
is a number, which can be written in the form 1

2 . We are 
also familiar with the idea that if 1

2
 is a number, then so 

is 2â•›+â•›12 . But since 2â•›+â•›12  is a number, does it not follow that 
one divided by this number is also a number, namely  

1
2â•›+â•›12 â•›? And why shouldn’t we continue adding integers and 

dividing the resulting number into one? For example, it 

should be clear that 1
3â•›+â•› 1

2â•›+â•›12

 is also a specific number, it 

has just been written in an unusual manner.
Numbers of this form are called continued fractions. In 

the case of a finite chain we can always rewrite our number 
as an ordinary fraction, but that may not be the case if our 
numbers form an infinite chain. As we are most used to 
thinking of arbitrary numbers in terms of an infinite 
sequence of decimals, it is instructive to think about how 
we can convert a decimal number into the form of a 
continued fraction. The fundamental observation is that 
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every real number x can be written in the form ⎣x⎦â•›+â•›Δ(x) 
where ⎣x⎦ is the integer part of x and Δ(x) is some remaining 
real number between 0 and 1. For example, the integer part 
of 2.269 is 2, while the remainder ∆(2.269) is 0.269. A greater 
insight comes from observing that for every non-integer 
real number x, there is an integer part ⎣x⎦ but there is also 
an integer part corresponding to the real number 1

Δ(x)â•›.
For example, when x = 2.269 we have an integer part 

2. The remainder is 0.269, and 1
0.269â•›=â•›3.71 … The integer 

part of 3.71 … is 3, and this tells us that the number 2.269 
is close to 21

3 . By an iterative process of inverting a sequence 
of remainders and taking integer parts, we can generate a 
specific sequence of integers that represent our real number 
x. In this example the first integer is 2 and the second 
integer is 3, but more generally for every real number x 
there is an integer ⎣x⎦ and a (possible infinite) sequence of 
positive integers r1,r2, … such that:

x = x +
1

r1 +
1

r2 +
1

r3 + ...

Writing a number x in terms of the above notation is known 
as ‘expressing x as a continued fraction’. Furthermore, 
finding this sequence of integer parts is equivalent to 
applying the Euclidean algorithm. In other words, given 
a real number x, we can find the corresponding continued 
fraction by drawing a 1:x rectangle, and then systemati-
cally filling in as many squares as we can, using the largest 
possible square at each step.

When x = 2.269 we have ⎣x⎦â•›=â•›2, and we can fit two squares 
inside the rectangle. 
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We can fit three squares into the space that remains, which 
tells us that r1â•›=â•›3. 

We can only fit one square in the space that remains, which 
tells us that r2â•›=â•›1.

If there is a length that exactly divides both sides of the 
rectangle, then our procedure comes to a halt when we 
find that length. This happens if and only if the number 
x is expressible as the ratio of two integers. As a repre-
sentation of number continued fractions are rather like 
decimal fractions, in the sense that the first numbers tell 
us the most about the overall size of x. Furthermore,  

the rational sequence 2, 2â•›+â•›13 , 2â•›+

â•›

1
3â•›+â•›11

 is comprised of 

increasingly accurate approximations for our real number 
x = 2.269, just as the sequence 2, 2.2, 2.26, … is composed 
of increasingly accurate approximations for the underlying 
number 2.269 (say). 

We can rewrite the terms ⎣x⎦, ⎣x⎦â•›+â•›1r1

, ⎣x⎦â•›+â•› 1
r1â•›+â•›1r2

  

as ordinary fractions, and as the sequence progresses the 
terms become arbitrarily close to x. This is crucial, 
because it means that sequences such as these determine 
one partiÂ�cular Dedekind Cut. Furthermore, the odd-
numbered terms in the sequence are all at least as small 
as x. For example, our first estimate ⎣x⎦ must be at least 
as small as x. Similarly, the rounding down in the third, 
fifth and seventh approximations produces a number that 
is at least as small as x. Conversely, all the even-numbered 
terms are at least as big as x. This follows because ⎣x⎦ is 
at least as small as x, which means that 1

⎣x⎦
 must be at 

least as big as 1
xâ•›.
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Quadratic Equations and the Golden Ratio
Finite continued fractions can be rewritten as ordinary 
fractions, which means that finite continued fractions can 
be used to specify precisely the same real numbers as recur-
ring decimals. But what kind of real number can be specified 
by an infinitely recurring continued fraction? Consider 
the following example: 

1+
1

1+
1

1+
1

1+ ...

This is a highly exalted number, and in keeping with tradi-
tion I shall label it  (or phi). By definition, the number 

 satisfies the equation =1+
1

. If we multiply both sides 

by 2â•›, we get 2 = +1. We can solve this equation  
using the standard ‘quadratic formula’, which tells us  

that =
1+ 5

2
, or 1.618033989 … Alternatively, the  

equation =1+
1

 can be used to generate its own solution 

(as a continued fraction), by an iterative process of repeated 
substitution. We simply replace each occurrence of  with 

1+
1

, and by doing this over and over again we generate 

the continued fraction 

            

=1+
1

1+
1

1+
1

1+ ...
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The ratio 1:1.618… (or equivalently 0.618… : 1) is called 
the ‘golden ratio’, and rather like π it seems to crop up 
everywhere. Many natural patterns exhibit the golden ratio, 
as do many of the world’s most famous works of art. For 
example, the Ancient Greeks believed that the ideal human 
form should be full of golden ratios (e.g. the ratio from 
navel-to-toe to head-to-toe ‘should’ be golden), the Mona 
Lisa was carefully proportioned by the repeated use of the 
golden ratio, and the modernist Le Corbusier advocated 
the use of the golden ratio when designing buildings or 
furniture.

I will return to this particular example of a continued 
fraction presently. First I want to point out a very general 
connection between quadratic equations and continued 
fractions with a repetitive structure. For example, consider 
the number 

x = 2 +
1

1+
1

2 +
1

1+ ...

Because this continued fraction has a repetitive structure, 

we can replace the second occurrence of 2 +
1

1+ ...
 with an 

x, to give us the equation 

x = 2 +
1

1+ x â•›
.

It is possible to prove that given any equation that describes 
a repetitive, continued fraction, we can algebraically  
rearrange that equation into the form ax2â•›+â•›bxâ•›+â•›câ•›=â•›0, where 
a, b and c are ordinary fractions. Equations of this form 
are known as ‘rational quadratic equations’. In our 
particuÂ�lar example of a repetitive continued fraction, some 
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elementary algebra can prove that x2â•›−â•›2xâ•›−â•›2â•›=â•›0, so we have 
x = 1 + √3. In other words:

3 =1+
1

1+
1

2 +
1

1+
1

2 + ...

We have just seen that repetitive continued fractions can 
solve rational, quadratic equations. When he was only 
seventeen, the wildly original and tragically short-lived 
Evariste Galois (1811–1832) demonstrated that there is also 
a converse to this argument. In other words, it is an alge-
braic fact that a real number x can be the solution to a 
rational quadratic equation if and only if x can be written 
in the form of a repetitive continued fraction. For example, 
suppose that we start with the equation x2â•›=â•›2. We are free 
to add an x to both sides of the equation, because this 
operation preserves equality. Furthermore, xâ•›+â•›x2â•›=â•›2â•›+â•›x is 
equivalent to x(1â•›+â•›x)â•›=â•›(1â•›+â•›x)â•›+â•›1. Dividing both sides by 

(1 + x) gives us xâ•›=â•›1+
1

1+ x
. By repeatedly substituting 

1+
1

1+ x
 for every occurrence of x, we effectively home in 

on the only positive solution to the equation x2â•›=â•›2, which 
is 1+

1

2 +
1

2 + ...

 or 1.41421.

Galois’ other great achievement was even more remark-
able. The night before he was killed in a duel, he spent 
his time writing an explanation of what is now known as 
‘Galois Theory’. His conclusion was that equations that 
involve a term x5 are fundamentally different to equations 
that only involve x, x2, x3 or x4. As you may recall, if we 
are given any equation of the form ax 2 + bx + c = 0, we can 
use a simple formula to find all the values of x that solve 
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our equation (namely x =
b ± b2 4ac

2a
). Similarly, there 

is an equation for finding the solutions to cubic equations, 
and there is also an equation for finding the solutions to 
equations involving x4. Many matheÂ�maticians had tried to 
find a general rule for solving equations in x5, but Galois 
is famous for proving that an equivalent formula cannot 
possibly exist.

Structures of Irrationality
If a real number is expressible as the ratio of two integers, 
we say that it is a rational number. Every real number 
is either rational or irrational, but some numbers are 
more irrational than others. That is to say, some irrational 
numbers are even less like fractions than other irra- 
tiÂ�onal numbers. To understand why this is so, imagine 
picking a point on a number line, then trying to find a 
rational approximation that is both simple and accurate. 
For every integer n, we can find the best (or joint best) 
estimate of the form m/n.

It should be clear that every real number is at most 
1

2n
 

away from one of these fractions, and this maximum error 

occurs when x is halfway between 
m

n
 and 

m +1
n

. Also 

notice that if x is close to halfway between 
m

n
 and 

m +1
n â•›

, 

that means it is close to mâ•›+â•›1
2  

n
â•›=â•› 2mâ•›+â•›1 

2n â•›â•›
.

If we use larger and larger values of n, we can find 
increasingly accurate approximations to our number x. 
Furthermore, for every integer K there is a ‘best rational 
approximation’ of the form m/n, where mâ•›≤â•›K. The previous 

1/n 2/n x 3/n 4/n
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statement must be true because there are finitely many 
‘sensible’ approximations of this form, so there must be 
at least one approximation that is as close to x as any of 
them. 

For any particular integer K there will be some numbers 
that are very close to their best rational approximation, 
while other numbers will be relatively distant from their 
best rational approximation (where we insist that any 
approximation m/n is such that mâ•›≤â•›K). Later in this chapter 
we will see that some numbers are poorly approximated 
for every integer K. In the case of these highly irrational 
numbers, every integer ratio is a relatively poor approxi-
mation for the actual number. 

To understand the structure of irrationality a little 
better, we need to appreciate a particular fact about the 
sequence of approximations generated by the Euclidean 
algorithm. Suppose that we generate the approximation 
m/n by our method of taking integer parts. It is possible 
to prove that for any fraction a/b, one of the following 
must be true: 

1.	m/n is closer to x than a/b, or 
2.	a is greater than m. 

In other words, given a real number x, the Euclidean algo-
rithm generates approximations of x that are the best 
rational approximations. The next step is to appreciate the 
pivotal relationship between the accuracy of these approxi-
mations, and the size of the next integer in the continued 

fraction. For example, r1 =
1
(x)

 

  
 

  
 is large whenever ∆(x) 

is small. Furthermore, if the remainder Δ(x) is small,  
our initial approximation ⎣x⎦ must have been close to x. 
More generally, the larger the value of rn , the smaller the  
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difference between rn 1 and rn 1 +
1
rn

, and the smaller  

the difference between consecutive approximations. 
As we work our way along the sequence of approxima-

tions generated by the Euclidean algorithm, we find an 
under-estimate, followed by an over-estimate, followed by 
an under-estimate, and so on. Because we alternate between 
under- and over-estimates, the difference between the n’th 
approximation and the true value of x must be less than 
the difference between the n’th approximation and the 
n+1’th approximation. It follows that if the integer  is 
large, the n’th remainder must be small, and the n’th 
approximation must be very accurate.

As an example, 3 +
1
7

=
22
7

 is a pretty good approxima-

tion of π. We might say that π is well approximated by 
single-digit fractions, because most real numbers don’t 
have such a simple but accurate approximation. 
Correspondingly, the third fraction approximation of π 

is 3+
1

7 +
1

15
. One fifteenth is fairly small, so improving 

our estimate by including this factor results in a relatively 
small decrease in the overall size of our approximation. 
This implies that our original estimate must have been 
close to π (as indeed it was). On the other hand, π is 
poorly approximated by fractions with two-digit denom-
inators, in the sense that most numbers can be 
approximated more accurately. This corresponds to the 
fact that the fourth digit in π’s continued fraction is a 
one (as are almost half of the first million integers of π’s 
continued fraction). 

In a far more extreme case, it occurred to the Indian 
mathematician Srinivasa Ramanujan (1887–1920) that the 
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number e 163  must be almost exactly an integer. In fact, 
there are seventeen digits before the decimal point, followed 
by thirteen zeroes. Correspondingly, the second term in 
the continued fraction form of e 163  is a whopping 
1,333,462,407,511. 

The Fibonacci Sequence
Leonardo Fibonacci (c.â•›1170–1250), also known as Fibonacci 
of Pisa, was an Italian merchant who travelled extensively, 
studying with Arab scholars. His influential book Liber 
Abaci was the first European textbook to cover decimal 
notation, and the now familiar techniques of multiplication 
and long division (operations that are much, much easier 
to carry out with decimals than Roman numerals). 
Fibonacci also helped to spread the basic ideas of algebra: 
a development that we shall examine in the next chapter. 
Ironically, most people have heard of Fibonacci because 
in 1877 a number theorist called Edouard Lucas was stud-
ying the sequence 1, 1, 2, 3, 5, 8, 13, … , and he decided 
to pay tribute to Fibonacci by calling that sequence the 
Fibonacci sequence. Fibonacci himself said very little about 
this sequence, but he would have recognized that it was 
the solution to one of the more whimsical problems he 
included in his book. That is to say, Fibonacci once posed 
the following question: If we start with a single pair of 
baby rabbits, how many pairs of rabbits will we have each 
month assuming that: 

1.	There are no deaths, and 
2.	Every month each pair produces one new pair, 

which becomes productive in the second month 
after birth.

The answer for each successive month can be found in the 
following sequence: 
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At each stage we add the two preceding terms to get the 
next in the sequence. The previous term accounts for all 
the rabbits that are surviving, and the term before that is 
equal to the number of mature pairs. As each mature pair 
produces a new born pair each month, the total of these 
two terms is equal to the total number of pairs of rabbits. 
As we move along this sequence, the ratio between succes-
sive terms gets closer and closer to 1.618… (the golden 
ratio). This is related to the fact that terminating the 

continued fraction =1+
1

1+
1

1+ ...

 after finitely many steps 

generates the following sequence of best rational approx-
imations for :

 

1
1

, 2
1

, 3
2

, 5
3

, 8
5

, 13
8

, 21
13

, 34
21

, ...

Both the numerators and the denominators form the 
sequence we found with Fibonacci’s rabbit problem, and 
so the sequence of integers 1, 1, 2, 3, 5, 8, 13, 21, … is 
known as ‘the Fibonacci sequence’. Returning to the golden 
ratio, the above sequence of rational approximations to  
have a fascinating and highly significant property. Because 
1/1 is the largest fraction of the form 1/n, the infinite part 
of our continued fraction (the bit we effectively ignore by 
stopping after finitely many steps) makes as big a differ-
ence as possible. In other words, every single step changes 
our approximation by the maximum possible amount, given 
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our method of taking integer parts. This tells us that we 
have the maximum possible gap between every consecutive 
pair of under- and over-estimates, which means that none 
of our approximations are very good. 

Because our method of generating continued fractions 
gives us the best possible approximations (for their size), 
the golden ratio really is the hardest number to approxi-
mate using fractions. This means that  is the most irrational 
number of all! To reveal the beauty of this truth, consider 
a kind of automated drawing machine. These machines 
operate in a step-by-step fashion, moving a single shrink-
able arm that pivots around the centre of each drawing. 
At each step the arm rotates through some fixed angle R, 
shrinks by some fixed proportion P, and then leaves a 
mark. To make the point clearer, I have also drawn lines 
around the edge of a containing circle to show the different 
directions that the arm was pointing in as it left the marks. 

If we use a fraction or an integer for our angle R the 

marks lie in straight lines. Indeed, when R =
1
n

360°  we 

generate n radial lines. More generally, when R =
m

n
360° 

(and m and n have no factors in common), we generate n 
radial lines.

Using rational values of R generates straight lines, while 
using an irrational angle guarantees that no two marks will 
lie on a straight line through the centre. This follows 
because finding two marks that lie on a straight line through 
the centre is equivalent to finding three integers a, b and 
c, such that:

(a R) = (b R) + (c 180°) .

But in that case we would have R =
c

a b
180°, which  

can only be true if R is rational. Although there is this 
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fundamental difference between the patterns produced by 
rational and irrational values of R, similar values produce 
similar patterns, so every finite drawing looks like a (more 
or less) twisty version of some fraction. Reasonably 
straight lines indicate the presence of a ‘good’ fraction 
approximation: 

R = 60.2°, just over one sixth of a circle.

If the length of the arm stays relatively constant (i.e. if P 
is relatively close to one), there will be more points near 
the edge of our containing circle, so the eye tends to pick 
out a larger number of spiralling lines. This means that if 
we increase P we tend to notice that R is similar to some 
new fraction (one with a larger denominator). If R is very 
similar to the fraction in question, then the spiralling lines 
are relatively straight, and the marks around the edge of 
our containing circle are closely bunched. 
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R = 2 60° for all three drawings, and P increases from 
left to right. 

The left most drawing has four spiral arms, illustrating 

the approximation 2 60° = 84.85 1
4

360° . The third 

drawing shows that 2 60°
4

17
360° , which is a much 

better approximation. 
When R = 360° (or equivalently, if R = 137.508 …), 

we generate the pattern that is most different from any 
fraction: 

R = 137.5°, P = 0.98.

When R = 360° we can use any value for P and our 
drawing will still spiral dramatically. That is because there 
simply isn’t any good approximation for the eye to notice! 
Furthermore, the lines around the edge of our containing 
circle are always evenly spaced, no matter how many points 
we add. Indeed, each new line around the edge falls into 
the largest gap left by the previous marks. 
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Many plants avoid growing branches, petals or leaves 
directly above one another, and such arrangements 
frequently contain golden ratios. Sunflowers, pineapples, 
raspberries, daisies and pinecones all exhibit particularly 
clear patterns that are based on the golden ratio. If you 
count the number of clockwise spiral lines formed by the 
pieces of these things, you (almost) always find a number 
in the Fibonacci sequence. The number of anticlockwise 
spiral lines will be an adjacent number in the sequence. 
Because the total number of pieces is the same whichever 
direction you count, the average number of points along 
the clockwise spirals will be in a golden ratio to the average 
number of points along the anticlockwise spirals. 

People have marvelled at the natural preponderance of 
golden ratios for millennia. In particular, since the early 
nineteenth century biologists and matheÂ�maticians have been 
intrigued by the phenomena of spiral phyllotaxis: the 
golden arrangement of leaves, flowers or other lateral 
organs sticking out of a central axis or stem. It is clearly 
inefficient to grow a leaf directly above another leaf because 
one would put the other in the shade, so we might expect 
that plants would evolve non-overlapping leaf arrange-
ments. Furthermore, the non-overlapping patterns that 
plants form ought to be ones that can be extended to 
accommodate more and more leaves, as plants grow more 
leaves over time.

As we have seen, growing each leaf at a golden angle 
relative to the one below is an excellent strategy, as it 
ensures that no matter how many leaves you grow, none 
of them will be directly above the leaves you have already 
grown. However, it is far from obvious that selective pres-
sure to avoid overlapping necessarily produces the golden 
ratio, rather than one of the many other non-overlapping 
arrangements. It is only in recent years that the key mech-
anisms determining the location of leaves have begun to 
be understood, and, in particular, we now know that the 
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plant hormone auxin plays a critical role. Cells with high 
levels of auxin tend to grow more rapidly, and high levels 
of auxin tend to induce the production of a leaf. 
Furthermore, cells actively pump the auxin they contain 
though special export channels, and the export channels 
of each cell tend to face whichever neighbouring cell 
contains the most auxin.

As a result of this process cells that contain relatively 
high levels of auxin tend to accumulate even more, while 
the neighbouring cells tend to deplete their stores. 
Furthermore, when a cell acquires higher and higher levels 
of auxin, a leaf begins to form. This process effectively 
drains the auxin from the neighbouring cells, inhibiting 
the growth of other leaves in the immediate vicinity. As 
the stem continues to grow, it is unlikely to grow a leaf 
directly above another leaf, because that part of the stem 
will have grown out of a region where the auxin concen-
tration is particularly low (since the cells in that region 
are busy pumping auxin back towards the newly forming 
leaf). The fact that some cells grow faster than others 
means that there are asymmetric mechanical forces as 
the growing cells push against their neighbours, and in 
many plants the interplay between growth dynamics and 
auxin transport means that the places where leaves will 
grow tend to be related to one another by the golden 
angle. 

Of course, nothing in biology is matheÂ�matically exact, 
but the patterns produced by many different plants closely 
resemble the patterns of the golden angle. Indeed, through 
a combination of computer models, physical models and 
biological experiments, it is becoming increasingly clear 
that the relationship between the golden angle and non-
overlapping works both ways. Not only does the golden 
angle produce patterns with minimal overlaps, it is also 
the case that growth procedures that avoid overlapping 
have a strong tendency to produce golden angles. 
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We will have more to say about the role of matheÂ�matical 
models in biological science. But before we can appreciate 
the importance of this exciting new branch of knowledge, 
we should return to the beginnings of matheÂ�matical science. 
In particular, we should examine two ideas that have funda-
mentally shaped the way we think about the world: decimal 
notation and algebraic equations. Over the course of the 
next chapter I shall discuss the invention of zero, and we 
will see how the key ideas of algebraic number theory passed 
from India to the Muslim world, before reaching Europe.



Chapter 4: 
THE RISE OF ALGEBRA

‘There are the nine figures of the Indians: 9 8 7 6 5 
4 3 2 1. With these nine figures, and with the sign 0 
which in Arabic is called zephirum, any number can 
be written, as will be demonstrated.’

First lines of the Liber Abaci, written by 
Leonardo Fibonacci in 1202

Zero and the Position System
The modern system of writing numbers as a sequence of 
digits is so simple and convenient that we tend to take it 
for granted, but it is difficult to overstate the importance 
of this brilliant innovation. As the mathematician Alfred 
North Whitehead (1861–1947) once wrote:

Before the introduction of [decimal notation], multi-
plication was difficult, and the division even of the 
integers called into play the highest matheÂ�matical 
faculties. Probably nothing in the modern world 
could have more astonished a Greek mathematician 
than to learn that, under the influence of compulsory 
education, the whole population of Western Europe, 
from the highest to the lowest, could perform the 
operation of division for the largest numbers. This 
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fact would have seemed to him a sheer impossibility. 
… Our modern power of easy reckoning with 
decimal fractions is the most miraculous result of a 
perfect notation.

Crucially, you cannot have decimal notation without a 
symbol for zero. The idea that nothing can be viewed as 
a number is a rather strange and subtle concept, but it is 
terribly important. Indeed, it is no exaggeration to say that 
matheÂ�matics, and therefore science, technology and culture, 
could not possibly be what they are today without the 
number zero. The number zero as we understand it today 
originated in India, but historians now believe that the 
proper place to start the story of zero is in Ancient 
Mesopotamia, where a succession of civilizations used clay 
tablets to keep numerical records. A wide range of number 
systems have been used over the ages, but a major advance 
occurred around the third dynasty of Ur (c.â•›2100 bc), when 
the Sumerians began to use position as part of their numer-
ical system. 

The nameless scribe who first began to use positional 
numeration was a real genius, and this exceptionally 
convenient idea is central to the modern decimal system. 
For example, we all know that ‘23’ represents two lots of 
ten plus three, while ‘32’ represents three lots of ten plus 
two. This demonstrates the fact that our notation is posi-
tional, which means that changing the relative position of 
our digits yields a different number. The same digit ‘3’ can 
stand for three (as in ‘23’), thirty (as in ‘32’), three hundred 
(as in ‘302’), and so on. This contrasts with Roman numerals 
or the notation used by the Ancient Greeks, where the 
symbol v always stands for five, the symbol x always 
stands for ten, and so on. 

There is, however, one crucial difference between modern 
numeration and the earliest position based systems: they 
didn’t have a symbol like ‘0’. To understand how this 
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exceptionally important change occurred, it is instructive 
to consider something like the counting boards or abaci 
that almost every civilization has developed. That way we 
can appreciate how people could do without such a symbol, 
and how helpful it was when the symbol was first intro-
duced. The Sumerians used a system based around the 
number sixty, rather than base ten. Indeed, the fact that 
we divide circles into 360 degrees, hours into 60 minutes 
and minutes into 60 seconds is part of our inheritance 
from Mesopotamian civilizations. However, for the sake 
of simplicity, let us consider the example provided by a 
Madagascan method for counting armies. 

What would happen is that soldiers were led in single 
file, and as each one passed, a pebble was dropped into a 
bowl. Once the bowl contained ten pebbles it was emptied, 
and a single pebble would be dropped into a second bowl, 
used for counting groups of ten soldiers. Similarly, once 
the second bowl contained ten pebbles it was emptied, and 
a single pebble would be dropped into a third bowl, used 
for counting groups of a hundred soldiers. Now, imagine 
that the authorities wanted to keep a record of how the 
counting process had gone. This record might have read 
‘The third bowl held six pebbles, the second bowl was 
empty, and the first bowl held four pebbles.’ This account 
would tell the reader that there were six hundred and four 
troops. Note that whatever words or notation were used 
to say that the second bowl was empty played an essential 
role, and this role is now performed by the symbol ‘0’. 
However, counting and record keeping in this manner does 
not require us to think of zero as a proper number. 

Even when this kind of number record becomes highly 
abbreviated or systematized, we are not necessarily led to 
the concept of zero. For example, suppose people wrote 
‘6E4’ to indicate six pebbles in the third bowl, an empty 
second bowl and four pebbles in the first. Our symbol ‘E’ 
can still be read as something rather like a punctuation 
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mark, and not as something that is equivalent in kind to 
the other numerals ‘6’ and ‘4’. Indeed, the same comment 
could be made about modern decimal points. They appear 
in numerical expressions alongside the digits 0 to 9, but 
no one thinks the decimal point is a number. 

Returning to the Ancient Sumerians, it is remarkable to 
note that even though they developed positional notation, 
and (somewhat later) a symbol comprised of two diagonal 
lines that worked rather like the modern ‘0’, their system 
did not spread to other civilizations. I say that this is 
remarkable because compared with Roman numerals (say), 
positional numeration is awesomely convenient. For 
example, imagine trying to multiply lxxxvii by cxi, and 
then think how much easier it is to multiply 87 by 111. 
The crucial point is that Roman numerals, like the English 
words for numbers, have very little connection to the work-
ings of an abacus. That is to say, adding groups of ten is 
entirely akin to adding groups of a thousand, but this 
matheÂ�matical truth is not well reflected in the English 
language or in Roman numerals.

In particular, if you want to multiply a pair of numbers 
that are represented as Roman numerals, you cannot simply 
break down the problem by multiplying one digit at a 
time. In contrast, positional notation naturally leads us to 
the observation that 87â•›×â•›111â•›=â•›8,700â•›+â•›870â•›+â•›87. For similar 
reasons, addition and subtraction are much easier with 
positional notation, as like an abacus, the notation shows 
us that we can add one numeral at a time. Furthermore, 
positional notation makes it much easier to write large 
numbers, as the same numerals are used for numbers of 
every size. Indeed, in Roman numerals, even a number as 
small as one million can be represented only by an unwieldy 
and easily misread string of one thousand Ms. 

Alexander the Great must have encountered important 
records that were written with positional notation, and so 
presumably the idea made its way back to Greece, but for 
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whatever reason it didn’t catch on, and was soon forgotten. 
In any case, our modern number system doesn’t just require 
the basic idea of positional notation. Negative numbers 
are another essential concept, as it is hard to believe that 
any civilization could even invent the number zero without 
first using negative numbers. The use of negative numbers 
started sometime around 200 bc, when the Chinese started 
using red sticks on a counting board to indicate a credit, 
while black sticks indicated a debt. Ancient textbooks for 
Chinese civil servants included instructions that said ‘If 
your board contains red sticks and black sticks, remove 
an equal number of both.’ In other words, they understood 
that equal-sized positive and negative numbers cancel each 
other out. 

Of course, using the integers to represent both credits 
and debts is not the same thing as having a single number 
system that incorporates both positive and negative 
numbers, even if it is well understood that subtracting a 
credit of n from someone’s ledger is equivalent to adding 
a debt of n, while subtracting a debt of n is equivalent to 
adding a credit of n. My point is that to have a proper 
system of positive and negative integers, we need to be 
able to add, subtract and multiply any pair of integers to 
get another integer, and we cannot have a number system 
of this type without first conceptualizing ‘nothing’ as a 
number. This conceptual leap was a key event in the history 
of ideas, and it took place in India.

Nobody knows who invented the symbol zero, but there 
is little doubt that such a symbol was in existence in parts 
of India as far back as 500 bc, although back then it was 
not widely used. At first this symbol acted as a kind of 
placeholder, which represented an empty column on a 
counting board. It was a brilliant and convenient addition 
to the local positional system, but for a thousand years or 
so, the zero symbol did not really represent a number as 
such. The first truly definitive remark concerning the 
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number zero was made by a mathematician and astronomer 
called Brahmagupta of Gujarat (c.â•›598–670). He said that 
zero is the number you get when you combine a credit 
and a debt of equal value (i.e. he observed that ‘nâ•›−â•›n = 
0’). He also stated that one plus zero is one, one minus 
zero is one, and one times zero is zero. These axioms were 
crucially important, because they put zero into the same 
conceptual domain as the other numbers. For example, we 
might say six minus five leaves a credit of one, five minus 
six leaves a debt of one, while six minus six leaves zero, 
viewing all three statements as being of a similar kind. 

Brahmagupta’s name for the number zero was ‘sunya’, 
which means void or empty, and long before the time of 
Brahmagupta, the word sunya was used to describe a 
column on a counting board that did not contain any 
markers. Sunya could also be translated as ‘space’, since 
Ancient Indian architects noted that they did not design 
walls so much as the space (sunya) between the walls. The 
various uses of the word sunya before the invention of the 
number zero are telling, and it is no coincidence that 
the  matheÂ�maticians who developed the concept of zero 
belonged to the Vedic tradition, where discussions of the 
qualities of the void or ‘emptiness’ had been taken seri-
ously for thousands of years. Indeed, I think it is 
significant that where Christians, Muslims and Jews tend 
to associate the divine with the infinite, Hindus, Buddhists 
and Jains more frequently associate the divine with a 
conception of emptiness, as the very essence of nirvana is 
the absence of desire. 

When the Arabs adopted Indian numeration in the tenth 
century, the word sunya was translated to the Arabic word 
for empty, sifr. The English words cipher and decipher are 
derived from the word sifr, as when the modern, decimal 
system was introduced to Europe, many people needed to 
decipher such numbers into Roman numerals before they 
could understand them. The word zero comes from the 
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same root, as in the early thirteenth century the word sifr 
was Latinized into zephirum, which later developed into 
the word zero.

Al-Khwarizmi and the Science of Equations
The history of matheÂ�matics would be very different if it 
were not for the influence of people from Iran and Iraq. 
Before and after the rise of Islam, the ruling elite in that 
part of the world took a serious and scholarly interest in 
the intellectual developments of their neighbours, which 
included the exceptionally sophisticated matheÂ�maticians 
of Constantinople, Alexandria, India and China. Their great 
legacy of exact science was based on a remarkably broad 
assessment of humanity’s matheÂ�matical knowledge, with 
scholars searching far and wide in order to further their 
own intellectual interests. For example, translations were 
made of the Siddhantas (important Hindu texts concerned 
with matheÂ�matics and astronomy), and it is highly prob-
able that there were scholars of Brahmagupta’s masterpiece 
the Brâhmasphutasiddhânta, which was the world’s most 
advanced number-theoretic text when it was written back 
in adâ•›628. As well as introducing zero and rules for manipu-
lating negative and positive numbers, this influential work 
introduced a fully general form of the quadratic equation, 
which we still use today. Most advanced of all, Brahmagupta’s 
masterpiece also contained a technique for solving certain 
‘Pell equations’, such as x 2 92y 2 =1. 

Arab scholars studied widely, acquiring matheÂ�matical 
knowledge that was utterly unknown to Europeans. They 
also preserved and studied the works of Ancient Greece, 
maintaining traditions that Europe had lost. As well as 
performing the invaluable service of pooling and consoli-
dating the world’s matheÂ�matical knowledge, the Arabs also 
developed their own innovations, and crucially they intro-
duced Europeans to the many benefits of the decimal 
position system. The most famous and influential of the 
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Baghdadi matheÂ�maticians was Abu Ja’far Mohammed ibn 
Musa al-Khwarizmi (c.â•›adâ•›780–850), or al-Khwarizmi for 
short. The word algorithm is a Latinization of his name, 
and the word algebra is derived from the title of his most 
famous book, Al-Jabr W’al Mûqabalah, or ‘Calculation 
by Restoration and Reduction’. 

It is hard to overstate the importance of the basic ways 
that scientists and matheÂ�maticians manipulate the symbols 
in equations to produce other, equally valid equations. For 
example, following al-Khwarizmi, we learn that we can 
collect a number of terms together on one side of the 
equals sign, or multiply both sides of an equation by any 
convenient number. Although al-Khwarizmi fully deserves 
his fame, it is only fair to stress that his general methods 
for finding unknown quantities were developments based 
on a number of ancient traditions. In particular, some people 
refer to Diophantus (c.â•›210–294) as the father of algebra. 
Very little is known about Diophantus, but he lived in 
Alexandria in the second century ad, and famously worked 
to identify integer solutions to various kinds of polynomial 
equation. That is to say, he studied equations involving 
the addition and multiplication of integers together with 
some unknown quantity, such as 2x2â•›+â•›10â•›=â•›60. His distinc-
tive contribution was not only to use a single symbol to 
represent an unknown quantity x (as earlier authors are 
thought to have done): he also used a symbol for the square 
of an unknown quantity, as well as the cube of an unknown 
quantity. 

The matheÂ�matics of Diophantus was highly original 
because he was the first person to relate unknown quantities 
in equations that can have an infinite number of solutions. 
However, the equations that he studied were always related 
to geometric problems, and in that context his work did 
not naturally lead to a radically new branch of math. 
The fundamental ways that we can legitimately rearrange 
or manipulate equations were essentially Â�identified by 
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al-Khwarizmi, and his Al-Jabr was accepted for centuries 
as the definitive text on the science of handling arithmetic 
problems involving unknown quantities. 

The crucial difference between the Ancient Greeks and 
the Arabs was that the Arabs considered linear equations, 
quadratic equations, cubic equations and so on to be distinct 
and fundamental categories of problem. The Greeks treated 
such problems as part of their assault on geometry, while 
the Arabs saw that the language of equations can be applied 
to a whole range of matheÂ�matical areas of interest, including 
geometry and number theory. They therefore recognized 
that finding the legitimate ways to manipulate equations 
is a worthy enterprise in its own right. For example, 
although al-Khwarizmi worked with word equations, and 
not a symbol like the modern x, he effectively stated that 
an equation of the form xâ•›=â•›40â•›−â•›4x can be rewritten as 
5xâ•›=â•›40. Furthermore, he made it clear that collecting terms 
together was a fundamental and general principle, as his 
principles of ‘Reduction’ and ‘Restoration’ effectively tell 
us that we can do whatever we like to one side on an 
equals sign so long as we do the exact same thing to the 
other side as well. This basic technique can be used in all 
manner of situations, as, for example, we can divide both 
sides by 5 in order to reduce the equation 5xâ•›=â•›40 to the 
simpler form xâ•›=â•›8.

The stated purpose of al-Khwarizmi’s celebrated work 
was to show ‘what is easiest and most useful in Arithmetic, 
such as men constantly require in cases of inheritance, 
legacies, partition, lawsuits, and trade, and in all their deal-
ings with one another, or where the measuring of lands, 
the digging of canals, geometrical computations, and other 
objects of various sorts and kinds are concerned’. 
Al-Khwarizmi clearly understood that the principles he 
was explaining were exceedingly general, holding true 
across all of the matheÂ�matical subject matters considered 
by the ancients. Indeed, al-Khwarizmi rather charmingly 
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remarked on this unity of matheÂ�matics with the simple 
comment, ‘When I consider what people generally want 
in calculating, I found that it is always a number.’

The notion that techniques for handling equations might 
constitute an independent branch of matheÂ�matics was an 
extremely important development, which the Arabs were 
uniquely placed to make. As John Stillwell wrote in his 
classic Mathematics and its History:

‘In Indian matheÂ�matics, algebra was inseparable from 
number theory and elementary arithmetic. In Greek 
matheÂ�matics, algebra was hidden by geometry. Other 
possible sources of algebra, Babylonia and China, were 
lost or cut off from the West until it was too late for 
them to be influential. Arabic matheÂ�matics developed 
at the right time and place to absorb both the geom-
etry of the West and the algebra of the East and to 
recognize algebra as a separate field with its own 
methods. The concept of algebra that emerged – the 
theory of polynomial equations – proved its worth 
by holding firm for 1000 years. Only in the nineteenth 
century did algebra grow beyond the bounds of the 
theory of equations, and this was at a time when most 
fields of matheÂ�matics were outgrowing their estab-
lished habitats.’

Algebra and Medieval Europe
In Europe, the basic syllabus of early medieval science 
could be found in a fairly small number of famous books, 
each of which was written in Latin. To surpass their peers 
in matheÂ�matics and science, scholars turned to Ancient 
Greek texts, and the science of the Arab world. European 
scholars were slow in learning from the Arabs, but it seems 
clear that their influence was ultimately pivotal. A particu-
larly early example of European Christians learning Arabic 
science can be found in the truly remarkable figure of 
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Gerbert  of Aurillac (c.â•›946–1003). Gerbert was born in 
France, but in 967 he moved close to Barcelona, studying 
under the direction of Atto, Bishop of Vic. There was 
conflict in Spain between the Christians and the Muslims 
of al-Andalus, and in the face of a Christian defeat, Atto 
was charged with delivering a request for a ceasefire. 

Atto was received as an honoured guest, and soon found 
himself mesmerized by the palaces in Cordoba. His brilliant 
student Gerbert shared his fascination with the Arabs, whom 
he greatly admired for their knowledge of matheÂ�matics, 
astronomy and science. A prolific scholar and a gifted teacher, 
Gerbert is credited with reintroducing Europeans to the 
abacus and the armillary sphere: a kind of visual aid for 
teaching matheÂ�matics and astronomy that had been lost to 
Europe since the end of the Greco-Roman era. Remarkably, 
Gerbert’s abacus incorporated Arabic numerals (many centu-
ries before modern, decimal notation was used elsewhere 
in Europe), and it was rumoured that when he was young, 
Gerbert would sneak out from the monastery at night to 
study under the guidance of the Arabs. 

Gerbert was appointed as a teacher to the Holy Roman 
Emperor Otto II, and in 999 he reached the very head of 
the Western Church, becoming the first French pope (Pope 
Sylvester II). On 31 December he celebrated a solemn 
mass as the people of Rome trembled before the impending 
apocalypse, but contrary to expectations the sun rose on 
the year 1000, and Gerbert remained as pope until his 
death on 12 May 1003. In those turbulent times knowledge 
of advanced science was rare, and for several centuries 
very few Europeans were familiar with decimal numbers. 
The spread of knowledge was much slower in those times, 
but by the twelfth century Arabic texts were being trans-
lated into Latin and distributed across Europe. 

Perhaps surprisingly, there was a gap of several centuries 
between the introduction of decimal numbers and their 
widespread use by merchants and administrators. The first 
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widely read book on decimal numbers was Leonardo 
Fibonacci’s Liber Abaci, written in 1202, but the popular 
response to this innovation was largely hostile. Indeed, in 
1299 the city of Florence went so far as to make the use 
of decimal numbers a criminal offence! Generations of the 
general public suspiciously dismissed them as a form of 
financial trickery, and it was not until the end of the four-
teenth century that ever increasing numbers of people 
abandoned Roman numerals for the superior decimal 
system. For example, the largest and most powerful bank 
in Europe, the Medici Bank, did not switch their account 
books to the decimal system until 1439.

Decimal numeration is a very powerful system, and the 
introduction of algebra also had a massive impact on the 
development of European math and science. We have seen 
that even in Ancient Babylon, people could answer ques-
tions such as: ‘A rectangle has an area of 77m2, and one 
side is 4m longer than the other. How long are the two 
sides?’ In modern notation, we would write x(xâ•›+â•›4)â•›=â•›77, 
or x2â•›+â•›4xâ•›−â•›77â•›=â•›0. My point is that the form of writing 
known as an equation is a relatively modern innovation, 
though it can be used to rewrite ancient problems, and 
this powerful innovation has Arabic roots. Indeed, in the 
modern world, our uses and misuses of equations have 
become central to our attempts to understand the world. 

A critical point is that we can use the very same equa-
tions to summarize all manner of analogous things, not 
just the geometric facts that the first ‘equations’ referred 
to. As everybody knows, modern science is filled with 
equations. Furthermore, Jacob Klein and other scholars 
have convincingly argued that using equations to study 
the integers has led to a subtle shift and abstract expansion 
of our conception of number. For example, we know that 
every integer or counting number is either even or odd. 
If the integer N is even, it can be written in the form 
Nâ•›=â•›2x, (where x is simply another integer). Similarly, if N 
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is odd it can be written in the form Nâ•›=â•›2xâ•›+â•›1. More gener-
ally, given any positive integer M, any integer N must be 
expressible in one (and only one) of the following forms:

Nâ•›=â•›Mx (where x is some integer), or Nâ•›=â•›Mx+1, 

or Nâ•›=â•›Mx+2, or Nâ•›=â•›Mx+3, … , or Nâ•›=â•›Mxâ•›+â•›M-1.

In other words, every integer N is either a multiple of M, 
or it is one bigger than a multiple of M (so dividing N by 
M leaves a remainder of one), or it is two bigger than a 
multiple of M (so dividing N by M leaves a remainder of 
two), and so on up to the largest possible remainder, M-1. 

This kind of observation was explored by the eminent 
lawyer and mathematician François Viète (1540–1603). 
Viète wanted to understand the different kinds of pattern 
that are produced when we divide various integers and 
examine the remainders. He carried out this investigation 
in a systematic fashion, introducing an algebraic notation 
that is much like the one used today. More specifically, if 
N divided by M leaves a remainder of n, we say that N is 
equivalent to n modulo M, and write Nâ•›≡ n (mod M). For 
example, 3â•›≡â•›1 (mod 2), because three divided by two leaves 
a remainder of one. Similarly, 10â•›≡â•›1 (mod 3), because ten 
divided by three leaves a remainder of one. 

Now suppose that we have three integers A, B and M, 
such that A divided by M gives a remainder a, while B 
divided by M gives a remainder b. A profound question 
to ask is whether it is always true that Aâ•›+â•›Bâ•›≡â•›aâ•›+â•›b (mod 
M), and Aâ•›×â•›Bâ•›≡â•›aâ•›×â•›b (mod M). As an example, suppose 
that Mâ•›=â•›10, Aâ•›=â•›53 and Bâ•›=â•›12. Dividing by 10 and taking 
the remainder is equivalent to looking at the final digit of 
the numbers A and B. If you want to know the final digit 
of 53â•›×â•›12, you simply calculate 3â•›×â•›2. The larger digits only 
affect the first digits of the answer – they cannot affect 
the final digit.  
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This observation suggests that if we divide by M and 
take the remainder, then do our sums with a and b, we 
must get exactly the same answer as when we do our sums 
with the numbers A and B and then divide by M and take 
the remainder. Indeed, this very general fact is easy to 
prove using algebra. We simply write A in the form aâ•›+â•›xM 
and B in the form bâ•›+â•›yM, where x and y are integers, and 
a and b are non-negative integers smaller than M. We now 
note that:

(a + xM) + (b + yM) = a + b + (x + y)M , and

(a + xM) (b + yM) = a b + (bx + ay + xyM)M .

Aâ•›+â•›Bâ•›≡â•›aâ•›+â•›b (mod M) and Aâ•›×â•›Bâ•›≡â•›aâ•›×â•›b (mod M). Hence 
we can prove statements like ‘odd times odd is always 
odd’ without needing to consider specific integer cases. We 
simply note that an integer is odd if and only if it can be 
written in the form 1â•›+â•›2x, and that:

(1+ 2x) (1+ 2y) =1+ 2(x + 2xy + y).

In other words, we have proved that 1â•›×â•›1â•›≡â•›1 (mod 2). 
Similarly, it is very easy to show that 1â•›+â•›1â•›≡â•›0  (mod 2). 

The crucial point is that following the precedent set by 
François Viète, one can conceive of settling facts such as 
‘odd times odd is odd’ by exploiting a purely algebraic 
system. By doing this we find ourselves systematically 
dealing in ‘species’ of number (such as even or odd), 
without needing to refer to the counted collections that 
were the ultimate point of reference for ancient matheÂ�
maticians. Such equations correctly summarize the 
individual facts where x and y are some definite, counted 
out pair of integers, but they also state a more general, 
abstract truth.

This proves that if A ≡ a (mod M) and B ≡ b (mod M), then 
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We can read the equation (1â•›+â•›2x)â•›×â•›(â•›+â•›2y)â•›=â•›1â•›+â•›2(xâ•›+â•›2xyâ•›
+â•›y) even when we interpret the symbols x and y as inher-
ently variable. In other words, we can read 2xâ•›+â•›1 as our 
way of symbolically representing the general form called 
‘odd’. What is more, the expression 2xâ•›+â•›1 is seen as having 
an essentially numerical character precisely because it can 
serve as an item within a computational system. That is 
to say, we know how to add and multiply expressions such 
as 2xâ•›+â•›1 and 2yâ•›+â•›1, and doing these kinds of sum does 
not require us to ever substitute any specific integer values 
for the variables x and y. 

Fermat’s Little Theorem
By the seventeenth century European matheÂ�maticians were 
taking full advantage of the basic techniques of algebra. 
By working with symbols for unknown quantities and by 
studying general forms of equation, matheÂ�maticians could 
now prove new kinds of number-theoretic results. A 
particularly beautiful example of this relatively modern 
form of number theory is Fermat’s Little Theorem: one 
of the many important results proved by Pierre de Fermat 
(1601–1665). As Fermat stated in a letter from 1640, if we 
take any prime number p and any integer n, we can be 
certain that:

npâ•›≡â•›n (mod p).

In the next section we will see how this theorem underpins 
the construction of the matheÂ�matical padlocks we use to 
protect electronic business transactions. First, I want to 
sketch a proof of remarkable theorem.

The fundamental observation behind Fermat’s Little 
Theorem concerns the way that we multiply brackets filled 
with additions. For example, a(bâ•›+â•›c)â•›=â•›abâ•›+â•›ac, and (aâ•›+â•›b)
(câ•›+â•›d)â•›=â•›acâ•›+â•›adâ•›+â•›bcâ•›+â•›bd. In general, when we multiply out 
a sequence of bracketed terms, we take one thing from 
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each bracket and multiply them together to form one of 
the terms on the right-hand side. Once we have taken one 
term from each bracket every different way we can, we 
add up all the resulting terms to get our final answer.

In particular, consider how we would rewrite the 
following expression without using brackets:

 

(x1 + x2 + ... + xn )2 = (x1 + x2 + ... + xn ) (x1 + x2 + ... + xn ).

Taking the first term from each bracket and multiplying 
them together gives us x1

2 . Similarly, taking the second 
term from each bracket and multiplying them together 
gives us x2

2 , taking the third term from every bracket and 
multiplying them together gives us x3

2, and so on. When, 
for example, we take the first term from the first bracket 
and the second term from the second bracket, we get x1x2â•›â•›. 
If we take the second term from the first bracket and the 
first term from the second bracket we also get x2x1 = x1x2 â•›. 
Because we can pick the term x1 from either the first or 
the second bracket, our final expression will contain the 
term 2x1x2â•›. More generally, our final expression will have 
the form 

x1
2 + x2 + ... + xn

2 + 2 f (x1, x2, ... , xn ).

where f (x1, x2, ... , xn ) is a polynomial expression involving 
the variables x1 to xnâ•›. Now let’s consider how we would 
rewrite the following expression without using brackets:

(x1 + x2 + ... + xn )p = (x1 + x2 + ... + xn ) ... (x1 + x2 + ... + xn ).

Taking the first term from every bracket and multiplying 
them together gives us x1

p, taking the second term from 
every bracket and multiplying them together gives us x2

p

â•›â•›, 
and so on. When, for example, we take the first term from 
the first bracket and the second term from every other 
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bracket, we get the expression x1x2
p 1. Similarly, if we take 

the first term from the second bracket, and the second 
term from every other bracket, we also get x2x1x2

p 2 = x1x2
p 1â•›. 

Because we can pick the term x1 from any of the p different 
brackets and still get the same answer, our final expression 
must contain the term px1x2

p 1. More generally, we must 
be able to write our final expression in the form 
x1

p + x2
p + ... + xn

p + pf (x1, x2, ... , xn ), where f (x1, x2, ... , xn ). 
is a polynomial expression involving the variables x1 to xn â•›.

We have just argued that

(x1 + x2 + ... + xn ) p = x1
p + x2

p + ... + xn
p + pf (x1, x2, ... , xn ),

which nearly completes the proof of Fermat’s Little 
Theorem. All we need to do is consider the case where 
x1 = x2 = ... = xn =1. In this case we have

(1+1+ ... +1) p =1p +1p + ... +1p + pf (1, 1, ... , 1) 
and so n p = n + pf (1, 1, ... ,1).

Since f is a polynomial equation with integer coefficients, 
it follows that f (1, 1, ... ,1) must be an integer. Hence, we 
have proved that for every integer n and every prime 
number p, n p must equal n plus some multiple of p. In 
other words, for every integer n and every prime number 
p, n p is equivalent to n modulo p. If we divide both sides 
by n we can see that n p 1 1 (mod p), and as we shall see 
in the following section, this fact lies at the heart of 
Internet security.

How to Make a MatheÂ�matical Padlock
For every composite number n, there is a very simple 
proof of the fact that n is composite. All we require are 
two numbers (a and b), such that a b = n. In contrast to 
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this short and simple proof that the number n is composite, 
a proof that a given number is prime is (necessarily?) large. 
That is to say, every known method for factorizing numbers 
involves a huge amount of brute calculation, and showing 
that a number has no factors is similarly time-consuming. 

Some astronomically large numbers have been shown 
to be prime. In fact, the largest known primes are much 
bigger than astronomical, as the largest known prime is 
much, much bigger than our best estimates for the number 
of atoms in the universe. Strangely enough, large prime 
numbers have a financial value, because they are essential 
for the construction of the matheÂ�matical padlocks that are 
used to protect electronic business transactions. 

These matheÂ�matical padlocks are rules that convert an 
input into an output. Corporate entities publish these rules 
(i.e. they freely distribute padlocks), and someone who 
wants to encode the message ‘I will buy a million shares’ 
simply feeds their message into the rule, which converts 
their message into some large number C. The person then 
transmits the number C, and at the other end this number 
is fed into a secret rule (the key to the padlock), which 
converts the encoded message back into ordinary text. 

Someone who eavesdrops on these transmissions can, 
in principle, work out what any encoded message says 
without being told the secret rule. For example, they could 
try encoding every possible statement in turn, and compare 
the results with the encoded message C (that is, the scram-
bled version of the message that they want to read). If one 
of our hacker’s made-up messages happens to encode to 
exactly the number C, that tells our hacker that their 
made-up message is actually the same as the unscrambled 
version of the message that they want to translate. Of 
course, encrypting every possible message that a person 
might have sent is not a practical way to eavesdrop, and 
it is believed that successfully cracking these codes requires 
an astronomical number of calculations (unless you know 
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the secret rule, of course). That is to say, finding the key 
by examining the padlock is practically impossible. 

One standard form of matheÂ�matical padlock is called 
the RSA system, after the trio of matheÂ�maticians and 
computer scientists who first published the algorithm.1 
This kind of matheÂ�matical padlock takes a fixed number 
of binary digits as its input. Any sequence of binary digits 
can be interpreted as an integer M. Given such an integer 
M, the output of the system is 

C M e (mod n), 

where e and n are fixed integers, specified by the people 
who are handing out the padlock. Most real-life RSA 
cryptoÂ�systems use values for e and n with over a thousand 
digits. Because we are doing these calculations modulo n, 
it is actually quite simple for a modern-day computer to 
calculate the correct output. However, doing this procedure 
‘backwards’ is riddled with difficulties and very, very time-
consuming. It is somewhat analogous to trying to piece 
together something that has gone through a shredder – even 
the person who put the message in can’t undo it. By way 
of contrast, the secret rule is very simple: we just take the 
encoded message C, and calculate Cd (mod n).

The whole point of this system is that Cd = (M e )d = M ed  
(mod n). To make this system work, all we require are 
three numbers, e, d and n, such that for every message M, 
we have M M ed  (mod n). That way, if we run a message 
through the padlock and then through the key, we get 
back what we started with. 

1	 The RSA system is named after Ron Rivest, Adi Shamir and Leonard Adleman, 
who devised the algorithm in 1977. In fact, an equivalent scheme was described 
in 1973 by the British mathematician and cryptographer Clifford Cocks, but 
since Cocks was employed by the Government Communications Headquarters 
at the time, his work was classified top-secret, and did not enter the public 
domain until 1998.
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Given two prime numbers p and q, we can find the 
required numbers by putting n = p q. The integers e and 
d must be smaller than (p − 1) times (q − 1), and it is also 
essential that ed 1  (mod (p − 1)(qâ•›−â•›1)). In other words, 
there must be some integer t such that edâ•›=â•›1â•›+â•›t(p-1)(q-1). 
Given any two prime numbers p and q, it is actually quite 
easy to find a pair of integers e and d with the desired 
property. 

Now, given any prime number p, Fermat’s Little Theorem 
tells us that:

M p 1 1 (mod p). 

Raising both sides of this equation to the power s gives 
us the following relationship: 

M s (p 1) 1 (mod p), for every integer s. 

In particular, M t(q 1)( p 1) = M ed 1 1 (mod p). In other words, 
M ed 1 1 is a multiple of p. A similar argument shows that 
M ed 1 1 is also a multiple of q. Since p and q are both 
prime numbers, this tells us that M ed 1 1 must be a multiple 
of n = p q. In other words, M ed 1 1 (mod n). By multi-
plying both sides of this equation by M, we get the result 
we were looking for, namely that:

M ed M (mod n).

To recap, raising the message M to the power e gives us 
the coded message C M e  (mod n). Raising the coded 
message C to the power d gives us M ed M (mod n), which 
means that our secret rule correctly decodes messages. It 
is theoretically possible to calculate the secret code number 
d by using the public padlock numbers n and e. The only 
difficult bit is factorizing the integer n, because everything 
else can be calculated relatively quickly. 
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This means that the security of the world’s financial 
markets rests on the assumption that factorizing vast 
numbers is very difficult (or to be more accurate, that 
cracking RSA is very difficult). It is reasonable to assume 
that this is so, but it really is an assumption. Although 
matheÂ�maticians can prove that huge classes of problems 
are equally difficult (in a particular well-defined sense), 
there are serious difficulties in proving that some problems 
are harder than others! We can see that a particular method 
for solving one problem is more time-consuming than some 
particular method for solving a second problem, but that 
is not the same thing at all. There is literally a million-
dollar reward for the person who can prove an inherent 
distinction of difficulty, where we show that any possible 
method for solving one class of problem necessarily takes 
longer than some given method for solving a second class 
of problem. 

Time and again, great progress has been made when one 
branch of matheÂ�matics has been brought to bear on another. 
For example, Fermat’s Little Theorem and modern matheÂ�
matical padlocks are both examples of algebraic number 
theory. As we shall see in the following chapter, the basic 
techniques of algebra were also pivotal in enabling the 
development of algebraic geometry. Without this new 
approach to the ancient discipline of geometry, modern 
science could not have developed, and we would not have 
scientific equations as we know them today. 



Chapter 5: 
MECHANICS AND THE 

CALCULUS

‘The heart of matheÂ�matics consists of concrete exam-
ples and concrete problems. Big general theories are 
usually afterthoughts based on small but profound 
insights; the insights themselves come from concrete 
special cases.’

Paul Halmos, 1916–2006

The Origins of Analysis
In this chapter I will examine the origins of calculus, and 
the co-evolution of two very different branches of matheÂ�
matical science: analysis and mechanics. Roughly speaking, 
matheÂ�matical analysis is the study of infinite, matheÂ�matical 
sequences, while mechanics is the study of moving objects. 
As we shall see, the science of mechanics played a critical 
role in the development of analysis, particularly the infini-
tesimal calculus. On the other hand, many ideas relating 
to infinite sequences are extremely old, predating our ability 
to matheÂ�matically analyze motion. Indeed, we have already 
encountered the oldest analytic concepts, such as the intui-
tive idea of generating an infinite sequence, and finding 
the limit case. 

For example, one of Archimedes’ most elegant proofs 
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concerns the area under a parabola. Imagine, for example, 
that we have fired a projectile up into the air from a hori-
zontal firing range. The projectile will follow a parabolic 
path, and we can draw a triangle between the firing point, 
the highest point in the arc, and the point where the projec-
tile lands. It was obvious to Archimedes that if this triangle 
has an area A, the parabola must have an area greater than 
A (precisely because the triangle fits inside the parabola). 
As a small part of the parabola was left uncovered, he 
added two more triangles, and he did this in a clever way 
so he could prove that those two triangles must have a 

total area of A
4

. After adding those triangles an even smaller 

part of the parabola remained uncovered, so he added a 

further four triangles with a total area of A42â•›. Furthermore, 

he made it clear that you can continue adding smaller and 
smaller triangles indefinitely, where at each stage the total 
area of the additional triangles was one quarter of the 
previous stage. 

Archimedes could prove that the triangle marked A has 
four times the area of the two triangles directly above A. 
He could also prove that those two triangles have four 
times the area of the four triangles directly above them, 
and so on. 

Up until the nineteenth century, the area under a curve 
was taken to be a given quantity. In other words, Archimedes 
simply assumed that a truncated parabola defines a definite 
quantity, namely the area underneath it. Not every curve 
has a well-defined area underneath it, but up until the time 
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of Carl Friedrich Gauss (1777–1855), matheÂ�maticians only 
studied curves that had well-defined areas underneath them. 
Because it was intuitively obvious that the shapes in ques-
tion had a definite area, matheÂ�maticians were justifiably 
confident when using an infinite sequence to calculate that 

area. My point is that we don’t need to worry about whether 

or not A(1â•›+â•›14 â•›+â•›â•›1â•›
42â•›+â•›â•›1â•›

43â•›+â•›…) defines one specific quantity. Our 

geometric intuition is enough to convince us of the fact that 
the area under a particular parabola is equal to one particular 

quantity, and this leads us to accept the fact that 1â•›+â•›14 â•›+â•›â•›1â•›
42â•›+â•›

â•›1â•›
43â•›+â•›… picks out exactly one real number. Given that this 

limit case is indeed a number, we can safely make the 
following argument:

Since x =1+ 1
4 + 1

42 + 1
43 + ...

it follows that 4x = 4 +1+ 1
4 + 1

42 + 1
43 + ...

Subtracting the first equation from the second tells us that 
3xâ•›=â•›4, which means that x = 4

3 . 

Archimedes could see that 1+ 1
4 + 1

42 + 1
43 + ... = 4

3â•›
, 

but he was understandably wary of any argument that 
built on the idea of an infinite sequence. He therefore 
established the validity of his answer by using Proof by 
Exhaustion. In other words, he rigorously proved that the 

area under a parabola cannot possibly be smaller than 4A
3â•›â•›, 

and it cannot be larger than 4A
3â•›, so it must equal 4A

3â•›â•›. 
Although Archimedes’ proof does not depend on the prop-
erties of infinite sequences, the notion of slicing a shape 
into thinner and thinner pieces is at least twenty-two centu-
ries old. We know that this is so because Archimedes 
explained this ingenious idea in a work entitled The Method.
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This remarkable text had been lost since the Middle 
Ages, so the modern inventors of calculus certainly hadn’t 
read it. Indeed, until very recently, everything we knew 
about the matheÂ�matics of Archimedes was ultimately 
derived from just two manuscripts (codices A and B). 
However, in 1906 the Danish philologist J. L. Heiberg 
discovered a third ancient source (codex C), which included 
The Method. This particular collection of works of 
Archimedes had been overlooked for so many generations 
because it had been copied onto parchment in the tenth 
century, but a couple of hundred years later the precious 
material had been washed down, rebound, and inscribed 
with prayers. The original text was almost invisible, but 
in the Monastery of the Holy Sepulchre, Istanbul, it lay 
waiting to be discovered. Fortunately for us, parts of the 
original text could still be seen, and thanks to x-ray tech-
nology almost all of it has now been restored. 

In the course of The Method Archimedes reveals that 
many of his deepest and most original results were found 
by using questionable infinitary arguments, and only later 
did he go on to prove his results using the rigorous Proof 
by Exhaustion. In other words, Archimedes’ constructed 
arguments using infinite sequences, but as the logical foun-
dations of such arguments were unclear, he refused to rely 
on them while stating his proofs. Nevertheless, The Method 
tells us that ‘It is of course easier to supply the proof when 
we have previously acquired some knowledge of the ques-
tions by the method, than it is to find it without any 
previous knowledge.’ In other words, it is easier to write 
a rigorous proof when you already know the right answer.

Since the 1970s scholars have also known about another 
form of ancient analysis, which was hidden in the 
astronomy of medieval India. In particular, the Kerala 
region in the south-west of India produced one of the 
great matheÂ�matical visionaries: Madhava of Sangamagrama 
(c.â•›1350–1425). All the matheÂ�matical writings of Madhava 
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have been lost, though some of his texts on astronomy 
have survived. We know about his brilliant matheÂ�matical 
work through reports from later centuries, most of which 
were written in the regional language of Malayalam. 
Trigonometric problems routinely arise while plotting the 
course of the stars, and Madhava discovered and extended 
rules for solving these kinds of problem. Crucially, his 
technique involved infinite sequences. For example, he 
knew that:

4 =1 1
3 + 1

5
1

7 + ...

Madhava needed numerical answers to put in the ledgers 
of astronomy, and, most impressively, when he used an 
infinite sequence to generate an approximate answer, he 
commented on the size of his margin of error. For example, 

in the case of finding 4â•›, he knew that using n terms gives 

an approximation that is within a margin of error of 1
2nâ•›â•›. 

In a remarkable passage describing the construction of this 
kind of sequence, the mathematician-astronomer Jyesthadeva 
(c.â•›1500–1575) states that care must be taken ‘otherwise the 
correcting term [or margin of error] will not tend to the 
vanishing magnitude’. This line indicates that Madhava’s 
work prefigured the modern definition of a limit case by 
four or five hundred years.

The crucial point is that some sequences do not have a 
limit case, and we cannot always rely on geometric intui-
tion to reassure us that a limit must exist. For example, 
the sequence 1, 1â•›−â•›1, 1â•›−â•›1â•›+â•›1, 1 – 1â•›+â•›1 – 1, … is funda-

mentally different to 1, 1 1
3, 1 1

3 + 1
5 , … The first 

sequence hops between 1 and 0, and never settles on a 
limit. The second sequence narrows in on one particular 
number, and the margin of error becomes arbitrarily small. 
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For this reason we say that 1 1
3 + 1

5
1

7 + ... is a conver-

gent series, which defines a real number. In contrast, the 
string of symbols 1 1+1 1+ ... is said to be divergent, and 
this second sequence does not define a real number.

Modern matheÂ�maticians say that by definition, a 
sequence x1, x2, x3, ... converges to a limit L if and only if: 

For every positive number , there is some number n 
such that every term xn , xn +1, ... is bigger than Lâ•›−â•›  and 
smaller than Lâ•›+â•› .

In other words, a point L is the limit of a sequence if 
and only if any ‘target region’ containing L contains all 
but a finite number of the points in our sequence. As we 
shall see in a later chapter, it is crucial that our definition 
uses the logical words ‘and’, ‘every’ and ‘some’, because 
this kind of vocabulary can support various forms of 
logical deduction. Furthermore, we should note that 
although certain analytic ideas have ancient origins, this 
logical, axiomatic foundation for modern analysis did not 
arise until the early nineteenth century. Before that time 
the scope of calculus was not fully apparent, and in the 
hands of less expert men, many more mistakes could have 
been made.

Measuring the World
Most branches of matheÂ�matics have been influenced by 
empirical science, but the matheÂ�matical ideas presented in 
this chapter have a particularly close relationship with the 
study of moving objects. It is a fundamental fact that 
the study of moving objects requires the measurement of 
time. For example, countless generations have tried to 
calculate the time it takes for the planets to complete their 
orbits across the heavens, and this kind of inquiry was 
critical to the development of modern, matheÂ�matical 
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science. In order to convey something of the intellectual 
traditions that preceded Newtonian mechanics, let’s 
consider the work of two masters of measurement: al-Biruni 
and Galileo Galilei. 

The Persian scholar Abu Rayhan Muhammad ibn Ahmad 
al-Biruni (973–1048) was an exceptionally advanced scholar, 
and we can use him to gain an impression of the best of 
medieval science. A great polymath, al-Biruni was right at 
the cutting edge of matheÂ�matics, science and the humani-
ties. His most famous book was Tarikh Al-Hind (or 
‘History of India’), a remarkable account of the ritual, 
matheÂ�matical and astronomical knowledge of Hindu India. 
He was also an expert on Greek matheÂ�matics and science, 
but unlike many of his contemporaries, he was prepared 
to challenge Aristotle. For example, it was widely believed 
that cooling an object makes it shrink, but al-Biruni chal-
lenged this assumption, noting that a glass full of water 
will crack when the water freezes. An expert writer of 
lists, he was also the first person to define explicitly the 
concept of relative density, compiling tables of the empir-
ically determined densities of various gemstones and metals. 

In Europe it took longer for matheÂ�matical physics to 
develop, and until the time of Galileo Galilei (1564–1642), 
Ancient Greek texts remained the pinnacle of science. The 
route to further progress required a combination of theo-
retical and empirical work, but the defining spirit of the 
scientific revolution could be summarized by Galileo’s 
powerful slogan: ‘Measure what is measurable, and make 
measurable what is not.’ Galileo was appointed to the chair 
of matheÂ�matics in Pisa, and over the course of a long and 
varied career, his careful measurements of moving bodies 
led to a deeply matheÂ�matical understanding of motion. He 
gave an accurate, matheÂ�matical account of the swinging of 
a pendulum, and he was the first person to argue that 
projectiles should follow a parabolic path. He was also 
one of the first people to explore the night sky with a 
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telescope, identifying the moons of Jupiter, and observing 
that the haze of the Milky Way is comprised of countless 
stars.

Because of his many achievements, and the fact that 
he explicitly elevated matheÂ�matical reasoning and empir-
ical data as the ultimate guides to nature, Galileo is 
sometimes called the father of modern science. One of 
his most impressive insights was a claim that was essen-
tial to the development of Newtonian mechanics. That 
is to say, Galileo famously stated that under the force of 
gravity alone, all objects accelerate at the same rate. In 
other words, it is only air resistance that stops stones 
and feathers from falling side by side. Galileo argued that 
this statement must be true, not because of the results of 
some physical experiment (though he was certainly a keen 
experimentalist), but because of a matheÂ�matical thought 
experiment. 

This conceptual experiment began with the assumption 
that heavy bodies fall faster than lighter ones, as Aristotle 
claimed. If this were a fundamental truth (as most people 
assumed), Galileo wondered what would happen if you 
dropped a heavy cannon ball attached to a lighter musket 
ball. According to Aristotle’s theory, the musket ball would 
trail behind the cannon ball because of its lighter weight. 
This would mean that if the two balls were attached to 
one another, the slower moving, lighter ball would slow 
down the faster moving, heavier ball, so the combination 
of two balls would fall more slowly than the cannon ball 
on its own. 

On the other hand, the combined weight of a musket 
ball and a cannon ball is greater than the weight of a 
cannon ball on its own. Hence Aristotle’s theory also 
implies that the combination of two balls should fall faster 
than the cannon ball on its own. This analysis is devastating 
for Aristotle’s account of gravity. It cannot possibly be 
the case that a heavy ball falls both faster and slower than 
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the even heavier system of a heavy ball attached to a light 
ball. Now, given that Aristotle’s theory of falling bodies 
has been shown to be unworkable, what should we put 
in its place? The same line of reasoning would destroy 
the absurd notion that lighter objects fall faster than heavier 
ones, leaving only one readily conceivable option: the 
effect of earth’s gravity is to make all objects fall at the 
same rate. 

The Age of Clocks
Ancient accounts of motion or change were largely focused 
on classifying the form or ‘cosmic purpose’ of the various 
kinds of change that people had observed. Properly quan-
tifying how quickly objects fall (for example) was a kind 
of science that did not develop until the Renaissance, with 
Galileo being a key, transitional figure. It is worth stressing 
that mechanics is essentially concerned with the movement 
of objects over time, and towards the end of the medieval 
period, the common understanding of time itself underwent 
a fundamental shift: a shift that enabled this new kind of 
science. All people are aware that certain activities or events 
have a characteristic duration, and life on this planet has 
always followed the beat of an ancient rhythm. Day after 
day the sun rises and sets, year after year the seasons are 
repeated, and it is surely obvious to everyone that a day 
is not the same as a year. 

Ancient people could refer to periods of time (e.g. the 
time taken to boil a certain quantity of water), but it was 
the activities themselves that had a duration, and time 
was not typically conceived as an abstract concept, sepa-
rate for the events whose duration we might care to 
measure. It is a characteristically modern sensibility that 
thinks of time as a fundamentally abstract sequence of 
units (days, hours, seconds, etc.). After all, at its root a 
clock is a mechanical representation of our planetary 
system: the clouds may cover the sun, but the hands of 
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a clock will carry on ticking regardless, showing us the 
moment when the sun should be overhead. Only a modern 
person would ever think of saying that 24 hours is 24 
hours, regardless of the rate at which the earth happens 
to revolve!

Clocks were first used in the monasteries of Europe, 
where the daily routine was highly regimented, and the 
desire to stick to a strict schedule of prayers was reason 
enough to keep careful track of time. Eventually the use 
of clocks spread from monasteries, to clock towers, and 
out into the cities beyond. This was a mixed blessing, as 
accurate time keeping enabled the rationing of time, and 
it permanently changed the way human affairs are organ-
ized. After all, clocks not only measure time; they are also 
used to synchronize the actions of men, telling us when 
to work, when to eat, and when the play begins.

In a world of clocks it seems self-evident that the passage 
of time is an empirical fact, and we can even come to 
believe that the facts that a clock can verify are somehow 
more real than our direct, subjective experience of the 
passage of time. In short, the psychological significance 
of the clock is that it separates time from human activity, 
or the events we can observe in Nature. As the writer 
and historian of technology, Lewis Mumford, remarked 
in Technics and Civilization, the spread of clocks ‘disso-
ciated time from human events and helped to create the 
belief in an independent world of mathematically measur-
able sequences: the special world of science.’ This ‘special 
world of science’ is one in which individual objects of 
study can be measured and probed in isolation, and the 
relevant features for understanding are taken to be those 
that can be agreed upon by any suitably qualified panel 
of experts. 

Objective measurement is central to the scientific enter-
prise, and in the words of the computer scientist Joseph 
Weizenbaum:
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This rejection of direct experience was to become one 
of the principal characteristics of modern science. It 
was imprinted on western European culture not only 
by the clock but also by the many prosthetic sensing 
instruments, especially those that reported on the 
phenomena they were set to measure by means of 
pointers whose positions were ultimately translated 
into numbers [e.g. barometers, thermometers or 
scales]. Gradually at first, then ever more rapidly and, 
it is fair to say, ever more compulsively, experiences 
of reality had to be represented as numbers in order 
to appear legitimate in the eyes of the common 
wisdom.

It was in this unquestionably measurable world that great 
thinkers such as Descartes, Newton and Leibniz made 
their mark. As we shall see in the following section, the 
youngest of these men, René Descartes, developed a philos-
ophy and an approach to matheÂ�matics that were both 
radical and influential. This was a critical step in developing 
a science that went beyond that of the ancients, though as 
the preceding quotations should make clear, this move to 
modernity was not without a price.

Cartesian Coordinates
For the last four hundred years or so the study of geometry 
has become increasingly tied to algebraic methods, and it 
is this development that enabled Isaac Newton to describe 
the paths of moving objects in terms of an equation. This 
cross-fertilization between geometry and algebra was a 
massively important event, and not only because it gave 
rise to the use of equations in our descriptions of motion. 
In the words of the great mathematician Joseph Lagrange 
(1736–1813), ‘As long as algebra and geometry travelled 
separate paths, their advance was slow and their applica-
tions limited. But when these two sciences joined company, 
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they drew from each other fresh vitality and then forward 
marched at a rapid pace.’ There are many matheÂ�matical, 
historical and philosophical factors behind this momentous 
shift, but François Viète (1540–1603) and René Descartes 
(1596–1650) are clearly pivotal figures. 

As a man of undoubtable talent, Descartes was unusu-
ally hostile towards the other intellectual giants of his age. 
He was happy to work in relative isolation, and it seems 
that his preferred audience was one that would understand 
him without daring to challenge his sometimes erroneous 
views. For the most part Descartes’ lifestyle was simple 
but leisurely, and up until the year of his death he refused 
to get out of bed before eleven o’clock. Unfortunately he 
agreed to teach Queen Christina of Sweden who wanted 
her philosophy lessons to begin at 5 a.m., and after a few 
weeks of early mornings in the depths of the Swedish 
winter, Descartes contracted a fatal case of pneumonia. 

Like many great thinkers of his age, Descartes believed 
that we should rely on a ‘general method of reason to find 
the truth in the sciences’. I would be tempted to dismiss 
this goal as absurd and unattainable, were it not for the 
fact that his attempts to summarize the general principles 
of valid reasoning revolutionized matheÂ�matical thought. 
One of Descartes’ most influential innovations (which 
Pierre de Fermat independently conceived) was the idea 
of using coordinates, as when we draw a graph with an 
x- and a y-axis.

The story goes that as Descartes was lying in bed, he 
realized that the apparent location of the fly buzzing above 
his head could be described using two numbers: its distance 
from the wall behind his head, and its distance from the 
wall that stood to his left. This was a simple observation, 
but Descartes’ genius was to recognize important ways in 
which this idea could be employed. Coordinate-based 
graphs are enormously convenient, as can be appreciated 
from their ubiquity in the modern world. Coordinates are 
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also crucial for another, fundamental reason: they enable 
the practice of drawing a shape, while describing that shape 
through the use of a function (that is, a rule that takes a 
number as an input and gives a number as an output). In 
other words, coordinate systems make it possible to think 
of curves as functions, and to think of functions as curves.

For example, imagine drawing a graph of the function 
y = x 2. Once we have this graph, we can gain insights about 
the shape (a parabola) by studying and manipulating the 
equation. The Ancient Greeks had achieved the converse 
of this feat: they gained insights into equations by making 
geometric arguments. However, Ancient Greek ‘equations’ 
were not the concise, formal statements of modern matheÂ�
matics. Instead, they wrote out relationships like yâ•›=â•›x2 
using complete sentences. What is more, they considered 
such relationships to be properties of the underlying curves, 
and they did not consider the corresponding equations as 
matheÂ�matical objects in their own right. Consequently, 
they did not develop the basic algebraic techniques that 
Descartes had inherited from the Arabs.

For the Greeks, a curve was something that was traced 
by a moving point, and particular curves were produced 
by using a ruler and compass, by slicing a cone, or through 
some other idealization of a physical act. Following his 
idea of adopting a coordinate system, Descartes took the 
novel step of defining curves through his use of equations. 
Crucially, once we have defined a pair of curves yâ•›=â•›f(x) 
and yâ•›=â•›g(x), it is rather obvious that we can also consider 
the curve yâ•›=â•›fâ•›+â•›g, where the value of the function fâ•›+â•›g at 
any point x is simply f(x)â•›+â•›g(x). Likewise, we can also 
consider the curves, yâ•›=â•›fâ•›−â•›g, yâ•›=â•›fâ•›×â•›g and yâ•›=â•›fâ•›÷â•›g, though 
the last of these curves will be undefined at any point 
where g(x)â•›=â•›0. Note that the addition, subtraction, multi-
plication and division of functions or curves are entirely 
new concepts. These important ideas are a natural exten-
sion of arithmetic using numbers, but the Ancient Greeks 
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did not use symbols in this way, and they did not imagine 
that you could add or multiply curves.

Mathematics is now dominated by our use of discrete, 
algebraic symbols, but until the modern period, European 
matheÂ�matics was dominated by geometric reasoning. 
Descartes was an influential figure in bringing about this 
fundamental change, because of his philosophy as well as 
his contributions to matheÂ�matical technique. Because he 
was sceptical of the evidence of our senses, he thought 
that the real essence of matheÂ�matical statements lay in their 
‘rational’ character. So, for example, if we were to discover 
that we are just brains floating in a jar, almost everything 
we thought we knew about the world would be wrong. 
Nevertheless, when we imagine this bizarre scenario we 
can also imagine doing math in the same old way, and 
Descartes took this thought experiment as proof that the 
rule-governed use of symbols is our most certain form of 
knowledge. 

Before Descartes’ time, questions concerning linear equa-
tions were understood as being substantial precisely because 
those equations could be understood in terms of physical 
lengths. Similarly, quadratic terms could be understood in 
terms of areas, while cubic terms referred to volumes. We 
can still make those connections, but generally speaking, 
we don’t. For example, we are happy to employ algebraic 
techniques to solve the equation ‘ x 2 + x =110 ’. Very few 
modern people would worry that x 2  represents an area, 
while x represents a length, and it doesn’t make much 
sense to add an area to a length. 

In contrast the Greeks, like the Egyptians and Babylonians 
before them, oriented their matheÂ�matics around geometric 
interpretations. For them, the equation ‘ a2 + b2 = c 2 ’ was 
invariably interpreted as a true description of the relation-
ship between the areas of three different squares. Indeed, 
they didn’t even write the equation that we know so well: 
they simply used words and diagrams to state the relation-
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ship between the relevant areas. Students today often think 
of Pythagoras’ Theorem as primarily a recipe for generating 
a number given two other numbers. Of course, they know 
that the numbers in question refer to the lengths of a triangle, 
but in looking at the equation, they may not think of areas 
at all.

In short, Descartes made us recognize the fact that we 
can take a collection of lengths (or other measured quan-
tities) as purely symbolic statements, divorced from any 
worldly sense of measurement. In other words, we can 
systematically name a length ‘2’ instead of ‘2  cm’ (say). 
The validity of this step marks the dividing line between 
matheÂ�matics and physics, because as far as abstract matheÂ�
matics is concerned, the meaning of our units really isn’t 
relevant. As a mathematician, Descartes was happy to 
consider adding x to x 2  or any other power, as we can 
remain oblivious to any intuitions that might motivate our 
use of any numerical symbol. For example, the expression 
x 2  does not have to be read as the area of a square of side 
x. It could just as easily apply to a line of length x 2 , and 
as a person performing a given sum, we do not need to 
care which of these is ‘really’ the case. 

This emphasis on the use of formal symbols is charac-
teristically modern. Indeed, I would argue that for modern 
matheÂ�maticians it is the symbolic representability of concepts 
that seems to mark them out as grounded or ‘properly 
defined’, being parts of a symbolic system that others can 
employ. For example, the ancients had considerable concep-
tual difficulty in reconciling something like √2â•›=â•›1.414… with 
their notion of number. I believe that there has been a subtle 
but significant shift in our sense of number, as most people 
today find it natural to think of a number as any sequence 
of digits whatsoever. In other words, symbolic forms such 
as ‘1.414…’ are part of our system of numerals, and learning 
to use this system of numerals is at the heart of our initia-
tion into the number concept.
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At this point I want to clarify the history of coordinates 
and number lines, as I don’t want you to get the impres-
sion that they were all invented in a single stroke. The use 
of coordinates, and the concept of longitude and latitude, 
had been used by astronomers and cartographers since 
Hipparchus (c.â•›150 bc). In fact, the idea of using coordi-
nates while studying geometric curves dates back to Nicole 
Oresme (1323–1382), but Oresme did not develop this 
idea in quite the same radical fashion. What was new in 
Descartes’ time was the use of axes together with equa-
tions, expressed in a concise, symbolic form. Descartes’ 
understanding of the word ‘line’ was essentially classical, 
taking it to refer to the paths traced by moving points. 
His flash of insight was to realize that we can identify 
points in geometric space by their distance from the axes. 
The Greeks would have had difficulty developing this idea, 
as they did not have a concept of zero. They thought of 
numerical quantity in terms of counting and ratios between 
lengths, so they did not think of a line with a point corre-
sponding to zero. It was Newton who added the 
innovation of having positive numbers on one side and 
negative numbers on the other (Descartes’ graphs just had 
positive numbers), and as we shall see the modern concept 
of the number line was not fully formed until the end of 
the nineteenth century. 

Linear Order and the Number Line
Number lines are a rather subtle concept, as it is far from 
obvious what numbers have to do with geometric lines. 
The most basic facts relate to a deep rooted, physically 
grounded understanding that applies whenever we have 
three objects, A, B and C, lined up in a row. We know 
that if object A is to the left of B, and B is to the left of 
C, it must also be the case that A is to the left of C. 
Similar statements also apply when we replace the words 
‘to the left of’ with the words ‘bigger than’, ‘higher than’, 
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‘hotter than’ or ‘heavier than’. We approach the world 
with the knowledge that we can put things in order of 
size, height, temperature or weight, and we understand 
that every such order is metaphorically akin to the spatial 
form of linear order. 

This axiomatic truth concerning linear order is not some 
arbitrary convention like the rules of chess: the world 
seems to work that way, and it is very hard for us to 
imagine it being otherwise! Indeed, to use the number 
concept properly is to accept (among other things) that if 
x is smaller than y and y is smaller than z, then x must be 
smaller than z, just like the case of physical objects arranged 
in a line. That is to say, real numbers and points on a line 
both satisfy the following axioms: 

1.	Given a pair of numbers x and y, either xâ•›<â•›y, or 
xâ•›>â•›y, or xâ•›=â•›y. Likewise, if we are given a couple 
of points on a line, either the first point is before 
the second, or the first point is after the second, 
or both points are in fact the same point.

2.	If xâ•›<â•›y and yâ•›<â•›z, then xâ•›<â•›z. Likewise, if point x is 
to the left of y and y is to the left of z, then x is to 
the left of z.

In short, the relationships between numbers are struc-
tured in the same way as the relationships between points 
on a line. On the other hand, numbers and the points 
on a line are fundamentally different because geometric 
lines are continuous, with no gaps between their parts, 
while numbers are essentially discrete. Although the 
number line is ‘continuous’ in the sense that it is not 
missing any real numbers (i.e. the number line does 
not have a gap located at any real number), the number 
line is not continuous in the geometric sense, because 
the parts of a number line are points, and these parts do 
not touch. Points on a number line cannot touch, because 
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if there is no distance between a pair of real numbers 
(as there would be if they touch), they are in fact one 
and the same number/point. 

Crucially, once we have identified one point as ‘being’ 
the number 0 and another point as ‘being’ the number 1, 
every point on a line determines a unique real number. 
More specifically, there is some distance between the point 
in question and the point 0, and there is some other distance 
between the points 0 and 1. Given any point, the ratio 
between those two lengths determines a quantity in the 
classical sense, and we can think of that number as being 
the distance between the point and the origin (that is, the 
point that we identify with 0). Conversely, we can use the 
concept of ‘distance from the origin’ to associate each real 
number with some or other point on the line, with different 
real numbers picking out different points in space. It was 
Richard Dedekind who explicitly made the final conceptual 
leap, when he asserted that we can define the number line 
as being the set of real numbers, where the point identified 
by the number r is r units from the origin.

This new definition says that fundamentally, a line is 
an infinite set of points. That is subtly but significantly 
different from the classical, geometric conception of a line, 
which says that a line is the path traced by a moving point. 
In the case of the classical, geometric line, the lines them-
selves are primary, and points on a given line are merely 
infinitely precise locations on that line, not the thing that 
the line is made of. Furthermore, in classical geometry the 
lines themselves are understood to have certain intrinsic 
properties. For example, a line that forms a closed loop 
constitutes the boundary of a region in space, and we 
understand that this is so because of our conception of 
lines, rather than the points that are on that line. 

By Dedekind’s definition the points are always the 
primary entities. Lines are redefined as being infinite sets 
of discrete points, and in this framework the properties 
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of lines need to be redefined in terms of relationships 
between those points. In fact, because points have zero 
length, there is no end to the number of points that we 
can fit onto a geometric line, and we are not obliged to 
assume that there is one and only one point for every real 
number. However, by adopting Dedekind’s definition we 
acquire a system in which the arithmetic of points on a 
line is fully determined, and, what is more, we can prove 
all of classical geometry within this new, fundamentally 
discrete system.

Isaac Newton
Newton’s father was an illiterate free-hold farmer who died 
months before his birth. When his mother Hannah 
Ayscough remarried some three years later, Newton’s stepÂ�
father insisted that she leave her son with the Ayscough 
family. Newton grew up to be a rather neurotic and secre-
tive individual, prone to fits of rage. He never married, 
loathed criticism, and was intensely curious about the Bible 
and the world around him. Indeed, his curiosity about the 
nature of man’s vision almost drove him blind. Among 
other things, he carefully described what happens when 
you stare at the sun all day, and how your field of vision 
distorts when you squeeze your eyeballs with a wooden 
stick. When the plague struck Cambridge in 1665, a young 
and largely unnoticed Isaac Newton (1642–1727) left his 
lodgings at Trinity College and moved back to Woolsthorpe, 
the Lincolnshire village of his birth. Although Newton was 
only in his early twenties, he at his creative peak, there is 
a strong case for arguing that no scientist ever achieved 
more in a two year period than Newton did between 1664 
and 1666. In this brief period Newton conceived of three 
of his greatest insights (any one of which would have earned 
him a prominent place in history): the Law of Gravity, the 
idea that white light is physically comprised of all the colours 
of the rainbow, and the beginnings of the calculus. 
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Unlike his more speculative predecessors, Newton did 
not try to explain why things moved, he simply focused 
on giving a matheÂ�matical account of how things move, in 
the language of force, mass and acceleration. While 
Aristotle and his followers had tried to distinguish between 
heavenly motion and the motion of things on earth, 
Newton boldly stated that all matter attracts all other 
matter, and this ‘gravitational’ attraction is a truly universal 
force. That is to say, what Newton realized in a flash of 
insight was that the sun and the earth are not the only 
things that exert a gravitational pull, as an apple or a lump 
of soil or rock attract mass just like any other object (of 
the given mass). Furthermore, given any pair of objects, 
the size of the force of gravity will be proportional to 
each of the masses, and inversely proportional to the square 
of the distance between them. In other words, where the 
first object has mass m, the second object has mass n, and 
they are a distance r units apart, the force F pulling the 
two objects together will be

F = G
mn

r2

where G is a number known as the ‘universal gravitation 
constant’. This simple statement is almost a complete 
summary of Newton’s famous theory. All we are missing 
is a definition of what happens when an object experiences 
a force of a given size. The question ‘What is a force?’ is 
far from trivial. Nevertheless, to understand the success 
of Newton’s theory, we only need to understand the motion 
that forces produce. By definition, if an object of mass m 
is subject to a force of size F, that object will accelerate 
at a rate F/m. 

Newton’s Law of Gravity has been justifiably described 
as the greatest generalization achieved by the human mind. 
This simple ‘inverse square law’ has many implications, 
the first of which is easy to deduce. Suppose that we have 
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two objects of different mass, located in the same place 
on earth. Newton’s Law implies the result that Galileo 
first suggested: both objects will accelerate at the same 

rate, namely Gm
r2 , where m is the mass of the earth, and 

r is the distance from the objects to the centre of the earth. 
The very same law can also be used to explain the 

motion of the planets, the path taken by a projectile, 
the existence of the tides, the eccentric orbits of comets, the 
precession of the earth’s axis, and many other measurable 
phenomena. In particular, the German astronomer and 
mathematician Johann Kepler (1571–1630) made a famous 
study of some very detailed observations of the motion 
of the planets across the night sky. He tried to summarize 
this information in a number of ways, and in 1609 he 
finally formulated a simple scheme that fitted his data 
extremely well. Kepler’s three famous rules are as follows:

1.	As the planets move about the sun, they make the 
shape of an ellipse, with the sun at one of the foci.

2.	If you draw a line from a planet to the sun, and 
measure the area that is swept out in a fixed period 
of time, you always get the same answer. 

3.	If you square the amount of time it takes for a 
planet to complete an orbit, and divide this number 
by the cube of the width of the planet’s ellipse, 
you always get the same number (a constant that 
depends on the weight of the sun). Among other 
things, this means that the length of a planet’s year 
can be calculated from its average distance from 
the sun, and vice versa.

Famously, all of these results are logical consequences of 
Newton’s Law of Gravity. Indeed, it should be emphasized 
that Newton’s singular achievement was not so much 
conceiving the Law of Gravity, as elucidating its matheÂ�matical 
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consequences. Indeed, we know that in 1684 Edmond 
Halley, Sir Christopher Wren and Robert Hooke met in 
a London coffee shop to discuss the idea that the motion 
of planets is governed by an inverse square law, and at 
that time Newton’s ideas could be found only in his private 
notebooks. Halley, Wren and Hooke tried and failed to 
calculate the path that a planet will follow if it is subject 
to an inverse square law, and later that same year Halley 
asked Newton if he knew how to solve the problem. 
Newton immediately responded that an inverse square law 
produces elliptical motion, as he had known that result 
for nearly twenty years. Halley was delighted by Newton’s 
response, but when he asked Newton for a rigorous proof, 
it took him nearly three months to reconstruct this argu-
ment from his youth. Halley recognized the supreme 
importance of Newton’s work, and thanks to his encour-
agement and financial backing, Newton was persuaded to 
spend the next year and half writing the most influential 
physics book ever written: the Principia Mathematica.

Newton could not have written his masterpiece without 
developing calculus. In light of this fact, it is somewhat 
surprising to learn that Principia does not directly employ 
the language of calculus. Instead, Newton relied on geometric 
arguments that were very much in the tradition of Ancient 
Greece, combined with physical intuitions about motion, 
and appeals to geometric notions of a limit case. That is to 
say, as far as possible, Newton used very traditional means 
for finding tangent lines or the areas under curves. 
Nevertheless, to develop the new science of mechanics, 
Newton needed to answer questions that were beyond the 
Ancient Greeks. In particular, he needed a way of handling 
the notion of a rate of change. For example, it is clear that 
if an object moves four metres in one second, it is moving 
with a speed of four metres per second. Similarly, if an 
object moves two metres in half a second, it is moving with 
a speed of four metres per second. But how can we define 
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the speed of an object in an instant, when it doesn’t have 
time to move any distance at all?

The Fundamental Theorem of Calculus
As far back as the fourteenth century, the French mathemati-
cian Nicole Oresme realized that we can represent the motion 
of an object with changing position and velocity through 
the use of a graph. For example, we can use the x-axis to 
represent time, while the y-axis represents distance from the 
origin. As we move from left to right, our curve can go up 
or down, representing the changing location of the object 
in question. The faster our object moves, the steeper our 
curve will be. Indeed, given such a representation of motion, 
we can define the instantaneous speed of our object to be 
the gradient of this curve. This idea connects mechanics with 
one of the two fundamental procedures of the calculus: 
finding the gradient of a curve (differentiation). The other 
fundamental procedure of the calculus is called integration. 
In many cases we can identify the process of integration 
with the process of finding the area under a curve, though 
strictly speaking that is not how integrals are defined.

Archimedes and other ancient matheÂ�maticians were 
familiar with the concept of a tangent. They also knew 
how to find the areas underneath certain curves. However, 
their proofs were quite specific to the shape in question, 
and you couldn’t easily adapt their arguments when 
confronted with a new curve. Newton and Gottfried 
Wilhelm Leibniz (1646–1716) independently developed 
calculus, which is a much more general method. Over the 
centuries calculus has been used in countless ways, but 
the simplest thing we can use it for is to calculate the areas 
and gradients of a curve, given an equation that describes 
that curve. 

As a simple example, imagine that we wish to find the 
gradient at a point on a parabola. Because our graph is 
perfectly described by the equationâ•› f (x) = x 2 , we can find 
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the gradient by examining the equation. This is in contrast 
to the kinds of geometric reasoning that would have 
occurred to the Greeks. The graph becomes increasingly 
steep, so we can find a line that will be slightly steeper 
than the tangent by drawing a line between the points  
(1, 1) and (1+ d,(1+ d)2) . Some simple algebra shows that 
this line has a gradient of 2â•›+â•›d (for any number d greater 
than zero), which means that the tangent line must be 
smaller than any number of this form.

To draw a line between these two points, we move 2d + d2 
units up for every d units that we move across. Therefore 
the gradient of the line between these two points is:

2d + d2

d
= 2 + d .

Similarly, the tangent line must have a gradient greater 
than 2â•›−â•›d, for any number d greater than zero. Therefore, 
the tangent line has a gradient of 2 (no more, no less). 
More generally, the tangent line at the point (x, x2) has a 
gradient less than 2xâ•›+â•›d but greater than 2xâ•›−â•›d, which 
implies that the gradient is equal to 2x.

In other words, the gradient at the point (x, x2) is 2x. 
We now have a second equation, namely f '(x) = 2x, which 
tells us the gradient at any point on our original curve 

1 1 + d 

1 

(1 + d) 2 

 d 

(1 + d) 2 – 1 = 2 d + d 2 
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f (x) = x 2. The equation f ' is called the derivative of f, and 
as we shall soon see, the equation f is called the integral 
of f '. Note that we have found f ' by analyzing f: making 
a deduction based on the way that we multiply out xâ•›+â•›d2. 
There is also a second connection between the equations 
f (x) = x 2 and f '(x) = 2x :

The area between the x-axis, the y-axis, the line yâ•›=â•›2x and 
the line xâ•›=â•›a is equal to a2 for all values of a. In the notation 
of Leibniz, we write: 

2xdx = a2

0

a

.

In 1684, Leibniz published the Fundamental Theorem of 
Calculus. In other words, he proved that finding the area 
under a graph (integration) is the converse of finding the 
gradient of a graph (differentiation). We will examine 
Leibniz’s theorem below. First I want to mention that 
Newton had been familiar with this result for about 
eighteen years. Newton was able to make this step because 
he had immersed himself in the new matheÂ�matics of alge-
braic geometry. In particular, he was a virtuoso at working 
with ‘power series’. That is to say, he learned that certain 
geometric and trigonometric relationships were expressible 
in terms of sequences of non-negative powers of x. For 

y = 2x 

x 

y  

a 

a 

2a 

2 

y = 2x 

x 

y  

b 

2b 

2 

b 
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example, like the mathematician-astronomers of Medieval 
Kerala, Newton knew that:

sin(x) = x
x 3

3 2 1
+ x 5

5 4 3 2 1
...

 

Newton also knew another fundamental fact: if the func-
tion f integrates to F, and the function g integrates to G, 
then the function fâ•›+â•›g integrates to Fâ•›+â•›G. This is intuitively 
obvious, as by definition we find the function fâ•›+â•›g by 
adding together f and g. It follows that if we want to know 
the area under the function fâ•›+â•›g, we can simply find the 
area under f, and add it to the area under g. Similarly, if 
the function F differentiates to f, and the function G differ-
entiates to g, then the function Fâ•›+â•›G differentiates to fâ•›+â•›g.

Because Newton knew how to differentiate and integrate 
every term in a power series, he realized that he knew 
how to differentiate and integrate any function that can 
be expressed as a power series. At least, that is how I 
would describe his approach: Newton himself did not use 
the words function, integrate or differentiate. Nevertheless, 
in 1666 Newton prepared a manuscript entitled On Analysis 
by Equations with an Infinite Number of Terms, and he 
showed it to a couple of his peers. Several years later 
Newton was ready to publish his ideas on calculus as a 
technical appendix to a book concerning optics, but 
following a dispute with his hated rival Robert Hooke, 
Newton withdrew the entire work.

Newton was obsessed with the ideas that gripped 
his  mind, and he alternated between being suspicious, 
indifferent or disdainful of what the wider world might 
think. In contrast, the great polymath Leibniz always had 
one eye open for an appropriate audience, and he would 
happily work on any problem that might earn him money 
or enhance his reputation. Like Newton, Leibniz found 
a way to use the principles of arithmetic in thinking about 



	 MECHANICS AND THE CALCULUS� 145

rates of change, but there were significant differences in 
the forms of calculus that the two men developed. Newton 
argued geometrically, looking at the limit case of a sequence 
of tangents. In contrast, Leibniz’s argument explicitly 
referred to a ratio of infinitely small quantities. 

From a modern perspective, the concept of an infinitely 
small quantity is perfectly respectable, even though (by 
definition) such infinitesimals are smaller than any real 
number. I say that infinitesimals are perfectly respectable 
because they have a clear definition in set theoretic terms, 
yielding a number system called the ‘hyperreals’, and a form 
of matheÂ�matics called ‘non-standard analysis’. However, as 
that name suggests, matheÂ�maticians do not usually admit 
infinitesimals as part of their number system. By using the 
concept of a limit case we can do calculus without referring 
to infinitely small ‘numbers’, and since that is the standard 
method, modern matheÂ�maticians follow Newton rather 
than Leibniz. On the other hand, it is Leibniz’s superior 
notation that we use today. 

Leibniz’s proof of the Fundamental Theorem of Calculus 
is particularly elegant, and it exemplifies his remarkable 
ability to spot the crucial point. We begin by imagining a 
continuous, unbroken curve described by an equation f(x). 
Any matheÂ�matical rule that takes a number as input and 
gives a number as output is called a ‘function’, and our 
equation f(x) is a function because for each point a there 
is unique output, namely f(a). As shown below, we can 
turn this equation into a drawing of a curve, where the 
height of the curve at the point a is f(a). Note that at each 
point, there is a certain amount of distance between the 
x-axis and our curve. Furthermore, we can enclose a finite 
area between the x-axis, the y-axis, the curve yâ•›=â•›f(x) and 
the line xâ•›=â•›a. Leibniz denoted this area with the symbols 

f (x)dx
0

a

, but for simplicity’s sake, I will use the symbols 

F(a) to denote the area between 0 and a.
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If we vary the constant a, we change the area in question. 
In other words, our original curve also determines a second 
function, as for any positive number a there is a unique 
number F(a), which is equal to the area under the curve 
up to the point a. Now, if we change a to aâ•›+â•›dx (where 
dx is an ‘infinitesimal’ amount), the area in question gets 
infinitesimally larger. Assuming that f(a) is positive, 
F(aâ•›+â•›dx) is larger than F(a), because the area F(aâ•›+â•›dx) 
contains an additional strip of height f(a) and width dx.

By definition, the gradient of F(x) at the point xâ•›=â•›a is 
given by a ratio: the change in F(x) as we increase x from 
a to aâ•›+â•›dx, divided by the change in x (a change that equals 
dx by definition). In other words, the gradient of F(x) at 

the point xâ•›=â•›a is F(a + dx) F(a)

dx
. We have just seen that 

F(a + dx) F(a) = f (a)dx. Hence the gradient of F(x) at 
xâ•›=â•›a is:

F(a + dx) F(a)

dx
= f (a)dx

dx
= f (a) .

Since F(x) is the integral of our arbitrary, continuous func-
tion f(x), it follows that if we integrate a function and then 
differentiate the result, we get back to our original func-
tion. In other words, the Fundamental Theorem of Calculus 
holds true.

f (x)

x x 

y y 

F(a + dx) F(a) 

a a + dx 

f (x)
f (a) f (a)
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From Algebra to Rates of Change
In the previous section, I recounted Leibniz’s proof of the 
Fundamental Theorem of Calculus. Apart from being in 
English, my version of the argument is very similar to his 
original proof. There is, however, a subtle but significant 
difference in the way that we follow the argument. Unlike 
seventeenth-century matheÂ�maticians, modern readers will 
be familiar with the concept of a function. Strictly speaking 
a function is a kind of set, where each acceptable input is 
paired with a unique output. Even if we are not familiar 
with this formal definition, we are used to the idea of rules 
that map inputs to outputs. For example, when we learn 
how to square numbers, we might be told that fâ•›=â•›x2 ‘is a 
function’. Consequently, we now think of functions as 
basic matheÂ�matical objects. For earlier generations, finding 
the area of a square of side x was a process, while the 
objects were the numbers (or areas) themselves.

Leibniz was an important figure in bringing about this 
change. As a philosopher, he was fascinated by the idea 
that we can capture knowledge in the form of a rule, and 
I think it is fair to say that in some sense, Leibniz had a 
function-based perspective. Nevertheless, the modern, 
totally general definition of a function was not put forward 
until 1755, when Leonhard Euler wrote his Institutiones 
Calculi Differentialis. Indeed, one could argue that the 
concept was not fully developed until the work of David 
Hilbert (1862–1943). In particular, Hilbert wrote about 
‘operators’, which are rules that take a function as an input, 
and give a function as an output. From his modern, highly 
abstract perspective, the set of all real-valued functions is 
a typical matheÂ�matical object, much like the set of all real 
numbers.

Integration and differentiation are both operators, as 
when we differentiate a function, we produce another func-
tion. For example, we have seen that the function f (x) = x 2 
differentiates to f '(x) = 2x, and that f '(x) = 2x integrates 
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to f (x) = x 2. It is also worth mentioning that other basic 
calculus results were known to matheÂ�maticians before 
Newton and Leibniz. For example, the Dutch mathemati-
cian Johann van Waveren Hudde (1628–1704) knew that 
if we differentiate the function xk, we get kxk 1. Of course, 
he didn’t use the term ‘differentiate’, but he calculated the 
tangents of some algebraic, geometric curves, including 
ones of the form y = xk. As I have mentioned, this kind 
of equation-based approach to geometry was the form of 
matheÂ�matics that immediately preceded the invention of 
calculus, and Leibniz and Newton were both familiar with 
Hudde’s work. 

An even older result is that the area under a curve x k 

is equal to 
xk +1

k +1
 (provided that k is not equal to −1). We 

can deduce this fact by combining the previous result and 
the Fundamental Theorem of Calculus. Also note that 
particular cases of this result correspond to standard, 
geometric problems. For example, finding the area under x 2 
corresponds to the problem of finding the area under a 
parabola. Indeed, the special cases where kâ•›=â•›1, 2, 3 or 4 
were known to the Arab mathematician Ibn al-Haytham 
(c.â•›965–1039). Six centuries later, the Italian Bonaventura 
Cavalieri reinvented Archimedes’ idea of slicing a shape 
into infinitely many pieces, and proved this result for values 
of k up to 9. He conjectured that it is true for all integers 
k, and in the 1630s the French matheÂ�maticians Fermat, 
Descartes and Roberval proved that his conjecture was 
correct. Before calculus was even invented, Fermat had 

effectively proven that xkdx =
0

a ak +1

k +1
 for fractional values 

of k.

In the centuries that followed the invention of calculus, 
European science underwent a massive expansion. As 
Newton had forcefully demonstrated, calculus and the new 
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matheÂ�matics could prove invaluable to science. As ever, 
the developing matheÂ�matical theory co-evolved with the 
questions people sought to answer. In particular, later 
generations of matheÂ�maticians developed the theory of 
differential equations. By definition, a differential equation 
is one that relates a function f to its derivative f '. For 

example, f (x) = x

2
f '(x) is a differential equation (though 

not a very interesting one), and we can see that f (x) = x 2 
is a solution. Differential equations play a prominent role 
in engineering, physics, economics, chemistry, biology and 
many other disciplines. In some ways this is not surprising. 
Whenever we have a rule that tells us how a quickly 
continuous quantity changes over time, we almost always 
end up producing a differential equation. 

For example, if we have a few bacteria in a dish, it is 
reasonable to assume that the number of bacteria ‘born’ 
per minute will be proportional to the number of bacteria 
that are currently in the dish. In other words, if there is 
no shortage of resources, it is reasonable to model the 
population size by saying that the derivative fâ•›' is propor-
tional to f, where f(t) is the population size at time t. This 
is one of the simplest differential equations, and if the 
constant of proportionality is a positive number, the solu-
tion to this equation is exponential growth. In other words, 
our assumption about the rate of change fâ•›' implies that if 
the number of bacteria has increased from n to 2n by time 
t, there will be 4n bacteria at time 2t, 8n at time 3t, 16n 
at time 4t, and so on. 

A more interesting differential equation is described 
when we specify that taking the derivation of the deriva-
tive of our function f produces an equation that is 
proportional to our original equation f. This kind of differ-
ential equation can be used to describe a plucked string, 
as when we pluck a guitar string, it accelerates back towards 
its starting point at a rate that is proportional to the distance 
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by which the string has moved. So, for example, parts of 
the string that have moved a distance 2x from their starting 
point accelerate towards their starting point at twice the 
rate of those parts that have been moved a distance x. This 
particular differential equation is known as the ‘Wave 
Equation’, and it is one of the most important equations 
in the physical sciences. The initial questions that inspired 
this equation came from the study of vibrating strings, as 
people wanted to describe and explain all the different 
ways that a string could be made to vibrate. More specifiÂ�
cally, finding ‘a solution to the Wave Equation’ meant 
finding one possible form of vibration, while ‘solving the 
Wave Equation’ meant finding every possible solution. 

Several matheÂ�maticians tried to summarize all the 
possible forms of vibration, and arguments over the best 
approach helped to extend and clarify the concept of a 
function. For example, if we look at my account of Leibniz’s 
proof of the Fundamental Theorem of Calculus, it isn’t 
really clear how free we can be in picking our function f. 
The argument certainly holds true for polynomial equa-
tions, but can we imagine that f is any rule for pairing an 
input with an output? To put it another way, just how 
arbitrary is an arbitrary, continuous function? Similarly, 
until the language of analysis was refined, it wasn’t clear 
whether every ‘function’ could be expressed in terms of a 
power series. 

We now know that the Wave Equation has all manner 
of applications. It plays a crucial role in describing and 
predicting the behaviours of liquids, gasses, electromagnetic 
phenomena and many other things. Indeed, it may be fair 
to say that vibrating strings have inspired more matheÂ�
matics than any other object. Many different branches of 
math, from partial differential equations, to Fourier series 
and set theory, have deep roots in the study of vibrating 
strings. It is also remarkable to note that with our current 
knowÂ�ledge, it has become clearer than ever that if you 



	 MECHANICS AND THE CALCULUS� 151

want to study the general phenomenon of vibration and 
oscillatory form, stringed instruments are the best place 
to start (much easier, say, than studying the vibrations of 
the skin of a drum). 

The fact that matheÂ�maticians have been studying stringed 
instruments for thousands of years takes on particular 
significance when we reflect on the supreme importance 
of selecting the objects of study that yield the matheÂ�matical 
models of the greatest simplicity. After all, finding a 
particular, easily managed case, analyzing it, and using that 
analysis to develop a broadly applicable framework or 
theorem is a central and recurring theme in all of our 
attempts to understand the world. That is because when 
we are faced with a problem that we do not know how 
to solve, we usually make progress by recognizing that 
the problem at hand is somehow akin to some other 
problem that we do know how to solve. Because of this 
pervasive pattern, relatively simple, exemplary cases are 
an essential part of every kind of expertise (including matheÂ�
matics), as our general sense of how the world works is 
deeply grounded by our understanding of particular, 
concrete cases. 

The importance of simple, concrete cases is sometimes 
underplayed in the case of matheÂ�matics, as we might reason-
ably claim that if matheÂ�matics is ‘about’ anything, it is 
about general principles rather than particular, concrete 
cases. However, that does not mean that special cases are 
anything less than essential. We might always want to move 
on to the most general statement we can make, but as 
Hilbert remarked, ‘The art of matheÂ�matics consists in 
finding that special case which contains all the germs of 
generality.’ 



Chapter 6: 
LEONHARD EULER AND THE 

BRIDGES OF KÖNIGSBERG

‘True eloquence consists in saying all that is required 
and only what is required.’

François de La Rochefoucauld, 1613–1680

Leonhard Euler
Leonhard Euler (1707–1783) is widely recognized as being 
one of the greatest and most prolific matheÂ�maticians to 
ever live. He is famous for many reasons, and has often  
been called the father of modern matheÂ�matics. The matheÂ�
matical notation that we use today is largely due to Euler 
(pronounced ‘oiler’), and because Euler was one of the 
first people to understand the power of the calculus, he 
was able to make many major contributions to physics, 
engineering and astronomy. 

During Euler’s lifetime, the Grand Prix of the Paris 
Academy of Sciences was the most prestigious and lucra-
tive award a scientist could win. When he was only 
nineteen, the Paris Academy posed the following question: 
‘What is the best way to arrange the sails on a ship?’ Euler 
was born in Basel, and had never left the land-locked nation 
of Switzerland. Despite only having seen pictures of large, 
sailing ships, the young Euler conceived of the concept of 
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‘an equivalent sail’. Essentially, this is the position that a 
single mast and sail would need to be in if they were to 
match the net propulsive force of some collection of masts 
and sails. 

At the time, the matheÂ�matical study of forces and 
Newton’s laws of motion were novel innovations, but 
Euler was supremely confident in the new science of 
mechanics. His ‘Thoughts on a Nautical Problem’ would 
surely have shocked many an experienced shipbuilder, as 
the teenager boldly stated that ‘I did not find it necessary 
to confirm this theory of mine by experiment because it 
is derived from the surest and most secure principles of 
mechanics, so that no doubt whatsoever can be raised on 
whether or not it be true and takes place in practice.’ Sure 
enough, Euler’s analysis was sound, and his ideas were 
incorporated into the next generation of English and 
French naval ships.

Euler continued to publish a stream of brilliant ideas 
right up until the day he died, even though he was 
completely blind for the last twelve years of his life. He 
was uniquely willing to share his preliminary guesses and 
partial proofs with anyone who was interested, and no 
mathematician in history has been more prolific.

Unlike many matheÂ�maticians, he constantly sought to 
explain himself as simply and directly as possible, often 
working to prove and prove again already established 
results. He wrote the most influential textbooks since 
Euclid, and did more to create our efficient, modern nota-
tion than any other author. For example, his particular 
way of writing the facts of trigonometry is that taught 
today: he started the practice of writing f(x) to denote a 
function of a variable x, and he introduced the symbols e 
for 2.718… and i for 1. 

In Euler’s time it was just about possible for one indi-
vidual to learn the entire body of European matheÂ�matical 
knowledge. This is what Euler did, and he possessed an 
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exceptional ability to cut through the clutter of centuries’ 
of matheÂ�matical practice, revealing the necessary concepts 
through particularly perspicuous representations. Indeed, 
I think it is fair to characterize his genius by saying that 
more than any mathematician that preceded him, Euler 
lived by the principle that Wittgenstein articulated: ‘The 
mathematician has no right to be surprised.’ When experiÂ�
mental scientists put nature to the test, they must keep 
their eyes open for surprising results. By way of contrast, 
matheÂ�maticians are struck by the fact that established 
concepts may be far more fruitful and rich in patterns than 
anyone had realized. 

For example, in the case of Pythagoras’ Theorem we 
may start by being surprised by the regularity in the ratio 
of sides, because we don’t yet understand the result. 
However, the effect of the proof is to make us see the 
result as obvious, as we might say: ‘It’s no surprise that 
the area of a2 plus b2 equals c2, since all you have done 
is rearrange the triangles.’ Many of the greatest matheÂ�
maticians have used their understanding to penetrate a 
mystery, and presuming themselves exceptionally able, 
they have left the result as something difficult to see. 
Euler’s genius was to realize that if matheÂ�maticians are 
convinced of a particular conclusion, it is wise to have 
faith that the relevant reasoning can be stated with a 
simple precision. Time and time again he searched for 
more ever direct ways of proving already established 
results, and he is credited with crisply formalizing much 
of the matheÂ�matics and physics of his day.

The Bridges of Königsberg
Königsberg was a town in Prussia, but it is now an enÂ�-
clave of the Russian Federation, and has been renamed 
Kaliningrad. The old town of Königsberg was famous for 
its seven bridges, and in the early eighteenth century, 
people sometimes posed a challenge: ‘Can you walk 
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through town crossing every bridge once and only once?’ 
Euler’s analysis of the problem is a beautiful example of 
a mathematician ignoring the irrelevant, saying all that is 
required and only what is required. More specifically, he 
realized that it doesn’t matter how you wander about 
within each of the districts in town. We can draw each 
bridge as a line and each district as a point, and the re-
sulting map captures all the relevant facts. In other words, 
we can move about the town crossing each bridge once 
if and only if we can move about the following simplified 
map by crossing each line once:

We have to start in a district, and we have to stop in a 
district, and there are four districts in Königsberg. This 
tells us that there are at least two districts where we neither 
start nor finish. Imagine someone trying to find a path 
that crosses each bridge once. As they visit one of the 
districts where they neither start nor finish, they must 
leave on a different bridge to the one they used to enter, 
so each ‘entry’ bridge must be paired with a different ‘exit’ 
bridge. This tells us that any region where we neither start 
nor finish must have an even number of bridges. In other 
words, to complete the task of crossing each bridge once, 
the districts where we neither start nor finish must contain 
an even number of bridges. All four regions in Königsberg 
have an odd number of bridges, which means that the task 
must be impossible.

As well as being a charming little puzzle in its own 
right, Euler’s solution pointed towards some new and 
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beautiful math. Indeed, when Euler published his thoughts 
about the problem, he entitled his paper, ‘The Solution 
of a Problem Relating to the Geometry of Position’. This 
is a very suggestive title, and in the next chapter we will 
see how matheÂ�maticians developed the idea of multiple 
geometries. First, I want to explore the concept of a 
network, and the notion that there is a subset of geometric 
truths, namely the truths where distance is not relevant. 
Euler had some understanding of this powerful idea, but 
as we shall see in a later section, a rigorous and fully 
general presentation of the basis of ‘topology’ had to 
wait until Henri Poincaré, who tackled the subject in 
1895. 

On Drawing a Network
A very basic matheÂ�matical idea is that of a ‘network’ or 
‘graph’, which is the name we give to a collection of labelled 
points that are connected together by lines. To qualify as 
a single, connected network, we must be able to reach 
every point by crossing the lines of the network. 
Furthermore, the end of every line counts as a point, as 
does every intersect point (where two or more lines meet). 
To develop this idea further, we need to notice that we 
can draw any network (starting with a point) using three 
different types of move: 

1.	Draw a new line to a new point. 
2.	Draw a new point on an old line. 
3.	Draw a new line between two old points. 

Now, imagine any connected network. A simple way to 
characterize that network is to count the number of speci-
fied points (giving a number P), and count the number of 
lines L. We can also count the number of regions R that 
a drawing contains. Intuitively speaking, a region is just 
an area contained within a set of lines. So, for example, if 
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our network was a square with a point at every corner, 
we would have Pâ•›=â•›4, Lâ•›=â•›4 and Râ•›=â•›1.

We now have three numbers which we can use to describe 
any given network. To gain a further insight, let’s look 
back at our three network–generating rules. After move 
(I), we have one extra point and one extra line, so our 
total number of points P goes up to Pâ•›+â•›1, while the total 
number of lines L goes up to Lâ•›+â•›1. The same is true of 
move (II). As you can verify with a pencil and a piece of 
paper, move (III) always gives us one extra line and one 
extra region, so L goes to Lâ•›+â•›1 and R goes to Râ•›+â•›1. We 
can now make a startling observation: after any of our 
three moves, the number Pâ•›−â•›Lâ•›+â•›R remains the same. In 
other words, no matter what we draw on our piece of 
paper, Pâ•›−â•›Lâ•›+â•›R must always equal one! 

All of the networks we have considered have two things 
in common. First, they have an ‘Euler number’ P – 
Lâ•›+â•›Râ•›=â•›1, and, second, they are all drawn on a piece of 
paper. Suppose that we had drawn them on a sphere 
instead. In that case we would start our drawing with one 
region and one point, as opposed to no regions and one 
point. This tells us that the Euler number of a drawing 
on a sphere is 2. This is true of every drawing on a sphere. 
The argument is almost exactly the same as for networks 
on a piece of paper, it is just that the drawing we start 
with (a single point) has an Euler number of 2 instead of 

P
L
R

6
– 9
+ 4
= 1

5
– 4
+ 0
= 1

8
– 8
+ 1
= 1

9
– 10
+ 2
= 1
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1. In particular, we can draw the edges of a cube onto a 
sphere: just imagine a cubic balloon that has been over-
inflated into a sphere. The important point is that a cube 
that has been inflated into a sphere has the same number 
of faces, corners and edges as any other cube. Our theorem 
also applies to the other Platonic solids. These kinds of 
shape have their own vocabulary, so instead of counting 
‘numbers of points’ we talk about ‘number of corners’, 
‘number of lines’ becomes ‘number of edges’, and ‘number 
of regions’ becomes ‘number of faces’. Our analysis of 
drawing networks shows that all manner of faceted solids 
have an Euler number of 2.

	 4â•›−â•›6â•›+â•›4â•›=â•›2	 6â•›−â•›12â•›+â•›8â•›=â•›2	 20â•›−â•›30â•›+â•›12â•›=â•›2 

The Platonic Solids Revisited
We saw earlier in the book that there are five Platonic 
solids. That is to say, there are five ways to enclose a 
volume V, where the surface is composed of multiple 
copies of a regular polygon P. At each vertex the total 
angle of the polygons must add up to less than 360º, and 
there are only five cases that can satisfy this demand. 
However, we have not yet proved that there is only one 
regular shape for each of the following types of corner 
arrangement: 

	 3 Triangles	 4 Triangles	 5 Triangles	 3 Squares	 3 Pentagons  
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The completed shapes are described by three numbers: the 
number of corners, the number of edges, and the number 
of faces. There are three more numbers that are relevant: 
the total number of polygons (denoted R), the number of 
polygons that meet at each corner (denoted N) and the 
number of corners or sides on each of the polygons 
(denoted S). If we scatter the pieces on the ground, we 
have a total of RS edges and RS corners (R polygons, each 
of which has S edges). On the completed shape, every edge 
is shared by two different polygons. This means that the 
total number of edges must be RS

2 . Furthermore, each 
corner is shared by N different polygons, so the number 
of corners on our completed shape is equal to RS (the 
total number of corners on the polygons) divided by N 
(the number of polygons is takes to make one corner of 
the finished shape). We now have three equations, which 
tell us the number of corners or points (P), edges or lines 
(L) and faces or regions (R):

L = RS

2
, P = RS

N
 and R = 2 + L P = 2 + RS

2

RS

N
.

There is only one possibility for the number of faces, 
because the number of faces (R) is uniquely determined 
by the numbers S and N. For example, using pentagons 
at the corners we have Sâ•›=â•›5 and Nâ•›=â•›3, so we know that 
the number of faces on the completed shape satisfies the 
following conditions: 

R = 2 + 5

2
R

5

3
R  and this implies that Râ•›=â•›12.

Since we now know the value of R, our equations also tell 

us that P = 5

3
12 = 20  and L = 5

2
12 = 30 .

Given that we can construct the five Platonic solids, we 
can see that there are precisely five solids with surfaces 
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consisting of a number of identical polygons, meeting at 
identical corners.

Number of 
Faces

Number of 
Corners

Number of 
Edges

Tetrahedron â•⁄ 4 â•⁄ 4 â•⁄ 6

Cube â•⁄ 6 â•⁄ 8 12

Octahedron â•⁄ 8 â•⁄ 6 12

Dodecahedron 12 20 30

Icosahedron 20 12 30

Notice that cubes and octahedrons both have twelve edges, 
but one has six faces and eight corners, while the other 
has eight faces and six corners. This observation is closely 
related to a beautiful fact: if we draw lines connecting the 
centre points of each of the faces of a cube, we generate 
an octahedron, and if we connect the centres of an octa-
hedron, we generate a cube: 

Because of this intimate relationship, we say that these 
shapes are dual. As the cube is dual to the octahedron, so 
the dodecahedron is dual to the icosahedron, while the 
tetrahedron is dual to itself: 
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The concept of duals is well worth investigating, as can 
be appreciated by a simple thought experiment. If you 
pick up a regular cube, there are certain ways that you 
can rotate it around so that when you place it back, it 
looks just like it did before you moved it. You can also 
reflect it in a mirror, and get something that looks like the 
original. In other words, cubes possess certain forms of 
symmetry. The same can be said of the octahedron, and 
when you move the cube to produce an apparently identical 
form, the octahedron inside it experiences an equivalent 
transformation. Because of their connection as duals, it 
follows that every symmetry of the cube is also a symmetry 
of the octahedron, and vice versa. Similarly, the dodeca-
hedron has the same symmetry as the icosahedron.

This shows that the five Platonic solids fall into three cate-
gories of completely regular three-dimensional symmetry. 
We shall return to the concept of symmetry in the next 
chapter, where I examine the advent of non-Euclidean 
geometries, and the resulting shift in our conception of 
math. First, let’s have a quick look at the basics of modern 
topology, and see how Euler’s ideas were developed by 
Henri Poincaré (1854–1912), and the less well-known Simon 
Lhuilier (1750–1840). 

Poincaré and the Birth of Topology
The great French mathematician Henri Poincaré was a 
worthy successor to Euler. He was a successful writer of 
popular science books, and is sometimes referred to as ‘the 
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Last Universalist’. He made significant contributions to 
all the major fields of matheÂ�matics, hopping from topic 
to topic with unusual rapidity. As well as his work in 
matheÂ�matics, Poincaré also carried out important research 
concerning celestial mechanics, fluid mechanics, the special 
theory of relativity and the philosophy of science. 
Interestingly, he often developed his papers, books and 
lectures by laying out the simplest, most basic concepts 
he could think of, preferring to start once again from the 
beginning, rather than jumping into a complex, cutting-
edge discussion with experts from each field. 

In 1895 Poincaré published a book called Analysis Situ, 
which was an early systematic treatment of topology, 
particularly the fundamental concept of a ‘continuous func-
tion’. I won’t describe the formal definition of a continuous 
function, but, as the term suggests, it is the nature of 
continuous things to have no gaps or sudden jumps. A 
line is said to be continuous if you can draw it without 
taking your pencil off the paper. Similarly, we can imagine 
a continuous function as a rule for gradually distorting a 
shape, without any tears or jumps. We can, for example, 
continuously morph a cube into a sphere, or continuously 
morph a map of Königsberg into our simplified network. 
When we are looking at the topology of solid shapes, it 
is rather like the shapes are made from an infinitely stretchy, 
shrinkable piece of rubber. For this reason, topology is 
sometimes known as ‘rubber-sheet geometry’. 

We have already seen that for the Platonic solids, the 
Euler number is P L + R = 2. This result was known to 
both Euler and Descartes, and Euler’s proof of 1752 showed 
that this result is very general indeed: all manner of faceted 
shapes have an Euler number 2. However, not every shape 
has an Euler number 2. It was Poincaré who identified the 
two topological properties that are logically equivalent to 
having an Euler number 2: 
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Property 1: All the surfaces of the shape must be 
connected. Not every shape has property 1. For example, 
consider a cube with a smaller cube removed from its 
interior. This shape has an Euler number 4, as the surface 
of this shape is composed of two disconnected parts, 
each of which makes a contribution of 2 to the total 
Euler number.

Property 2: If we cut the shape, it should fall into two 
pieces. The above drawing illustrates a shape that does not 
have property 2. If we cut this shape along the marked 
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loop of edges, it will not fall into two pieces. This is related 
to the fact that this shape has an Euler number of 0.

All the Platonic solids and countless other shapes share 
these two topological properties. This is related to the fact 
that we can continuously morph one such shape into 
another. Continuous functions can distort a shape in many 
ways, but they cannot add or remove holes. This follows 
because making a hole requires moving neighbouring points 
apart, which contradicts the definition of continuous. As 
far as topologists are concerned, spheres and cubes are 
effectively the same shape, because each can be continu-
ously distorted into the other. For this reason, we say that 
spheres and cubes have the same topological identity. 
Similarly, a doughnut has different topological properties 
to a sphere, but a doughnut and a coffee cup have the 
same topological identity. To understand this idea a little 
better, consider what happens when we draw a network 
on a doughnut shape.

By drawing these two lines, we effectively cut our shape 
(called a torus or doughnut) into a flat surface: 

From this point on, steps (I), (II) and (III) cannot affect 
the Euler number of our network. In other words, the 
hole enables us to draw exactly two lines ‘for free’. The 
Euler number of a shape is defined to be the minimum 
Euler number of any network you can draw on that shape. 
We can see that the Euler number of a sphere is 2, while 
the Euler number of a torus is 0. 

The first general equation concerning topological iden-
tities was called ‘Euler’s Polyhedral Formula’. Despite the 
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name, this formula was first written down by the Huguenot 
Simon Lhuilier, in 1813. When he was a young man, Lhuilier 
declined a large fortune because he wanted to study math, 
and didn’t want the career in the church that was a precon-
dition for receiving his relative’s cash. Lhuilier toyed with 
Euler’s work for most of his life, and was taught matheÂ�
matics by a student of Euler’s. He was particularly 
interested in the argument concerning the bridges of 
Königsberg, and one of the highlights of Lhuilier’s career 
was spotting a relationship between the Euler number of 
any shape and the ‘genus’ of any shape. 

Intuitively speaking, the genus of a shape is just the 
number of holes it contains. So, for example, a sphere has 
genus 0, while doughnuts and coffee cups both have genus 
1. More specifically, we say that a shape has genus 0 if and 
only if any loop on the surface of the shape defines two 
separate regions: ‘inside’ the loop and ‘outside’ the loop. 
Notice that a doughnut does not have genus 0, because it 
is possible to draw a loop on the surface of a doughnut 
and still leave a single, connected region.

Also notice that we can construct a shape of genus 2 
by gluing together two shapes of genus 1, and this process 
can be extended in the obvious fashion: 

E = 0 E = 0

E = –2
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Examine the pieces we are gluing together (the circles 
made from two points and two lines that can be found on 
each of the doughnuts). The four lines, four points and 
two regions of the first drawing make a contribution of 2 
to the total Euler number. The corresponding piece of the 
second drawing consists of two lines, two points and no 
regions. This is true because the glued part is inside our 
new shape, so it does not count as a region. Two lines, 
two points and no regions makes a 0 contribution to the 
Euler number, which is two less than we had before. In 
other words, given two shapes with Euler numbers E(1) 
and E(2), we can glue them together to produce a shape 
with Euler number E(1)â•›+â•›E(2)â•›−â•›2. It follows that gluing a 
doughnut onto any shape reduces the Euler number by 
two, and in general the Euler number E is related to the 
genus g by Euler’s Polyhedral Formula, Eâ•›=â•›2â•›−â•›2g. 



Chapter 7: 
EUCLID’S FIFTH AND THE 

REINVENTION OF GEOMETRY

‘Insofar as the propositions of matheÂ�matics give an 
account of reality, they are not certain; and insofar 
as they are certain they do not describe reality. But 
it is, on the other hand, certain that matheÂ�matics in 
general and geometry in particular owe their existence 
to our need to learn something about the properties 
of real objects.’

Albert Einstein, 1879–1955

Measurement and Direction
The first age of geometry can be characterized by the 
Ancient Egyptians, and their ritual of replacing boundary 
lines on the flood plains of the Nile. The second age of 
geometry can be characterized by Euclid, proving geometric 
truths as a consequence of carefully stated axioms. The 
third age of geometry did not dawn until the nineteenth 
century, and in this chapter we will see how matheÂ�maticians 
made this radical shift.

The geometry of 1800 was remarkably similar to the 
geometry of Euclid, and up until the mid-nineteenth 
century, geometric statements were understood as being 
true descriptions of ideal objects in actual, physical space. 
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Progress had been made, but Euclid’s Elements was still 
the major textbook for students of the subject, and in 
comparison to the other branches of matheÂ�matics, geometric 
arguments were much as they had always been. Indeed, 
arguments that developed in the newer fields of analysis 
and calculus were often translated into geometric problems, 
precisely because geometric arguments were seen as trusty, 
time honoured and irreproachably sound. 

The first sign of a radical break came from long-
standing arguments about the proper role of algebraic 
symbols in geometric proof. However, our conception 
of geometry did not undergo a fundamental change until 
people began to explore the matheÂ�matics of ‘projective 
geometry’, ‘non-Euclidean geometry’ and ‘curved spaces’ 
(or manifolds). To understand the nature of these radical 
innovations, and the corresponding shift in our concep-
tion of geometry, we must first recall the following 
five  axioms, which Euclid used as the basis for all his 
geometric deductions: 

1.	There is precisely one shortest path (or straight 
line segment) connecting any two points.  

2.	Any straight line segment can be extended indefi-
nitely, forming a straight line. 

3.	Every straight line segment can be used to define 
a circle. One end of the segment is the centre of 
the circle, and its length forms the radius. 

4.	All right angles are essentially identical, in that any 
right angle can be rotated and moved to coincide 
with any other. 

5.	Given any straight line and a point that is not on 
that line, there is precisely one straight line that 
passes through the point, and does not intersect 
the line. 
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These statements (plus some other, basic logic) define the 
concepts of Euclidean geometry. They are related to one 
another, and together they form a conceptual scheme. 
Formally speaking, all five axioms share the same logical 
status. That is to say, within Euclidean geometry, all five 
axioms are definitively true. Nevertheless, historically 
speaking, the first four statements are closer to the bedrock 
of humanity’s geometric understanding. If you spend your 
time using a set square and a tape measure, the first four 
statements are obviously true. We can demonstrate that 
the first four statements describe the world of set squares 
and tape measures, but it isn’t clear how you can practicÂ�
ally show the reality of Euclid’s fifth. Clearly, we cannot 
physically examine two infinite lines, and confirm that 
they don’t intersect!

In the Introduction, I presented a proof of Pythagoras’ 
Theorem. For those who have eyes to see, this kind of 
informal proof is utterly convincing. Indeed, an under-
standing of the truth of Pythagoras’ Theorem predates 
Euclid’s system of definitions by many centuries. Given 
that this is so, it seems fair to say that the Ancient Greeks 
articulated Euclid’s fifth, and drilled it into future genera-
tions because of two, intimately related reasons: they saw 
that it is ‘true’, and it enabled them to prove Pythagoras’ 
Theorem, and other, basic results.

The fifth axiom listed earlier is more accurately referred 
to as the ‘Playfair axiom’, after the Scottish mathematician 
John Playfair (1748–1819). Euclid’s original fifth axiom 
was quite enough to make one’s eyes glaze over, as Playfair 
stated that: ‘If a line A and a line B intersect a third line 
C in such a way that the angle from A to C plus the angle 
from C to B is less than two right angles, then the lines 
A and B must intersect. Furthermore, this point of inter-
section will be on that side of the line C where the inner 
angles add up to less than two right angle[s], and not on 
the side where they add up to more than two right angles.’ 
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Euclid’s fifth axiom was sufficiently messy to repel 
generations of matheÂ�maticians. Some, like Playfair, found 
more elegant formulations. For example, the great English 
mathematician John Wallis (1616–1703) showed that 
Euclid’s fifth is logically equivalent to saying that any 
triangle can be blown up or shrunk (e.g. by halving the 
length of each side), without changing any of the angles. 
Other matheÂ�maticians tried to do away with Euclid’s fifth 
altogether by proving this statement using axioms (I) – (IV) 
As we shall see, that task is provably impossible. Now, 
when I said that Playfair found a more elegant formula-
tion, I meant that Euclid’s original fifth axiom is logically 
equivalent to the Playfair axiom, so we can happily make 
a switch. That is to say, we can use Euclid’s five axioms 
to prove the Playfair axiom, and, conversely, if we assume 
axioms (I) – (IV) together with the Playfair axiom, we 
can prove Euclid’s fifth. The following statement is another 
logically equivalent alternative to Euclid’s fifth: Straight 
lines parallel to the same straight line are parallel to one 
another. As any of these choices of axiom enables us to 
prove exactly the same theorems, our list of defining 
axioms is somewhat arbitrary, but aesthetic considerations 
have meant that Playfair’s statement is considered the 
standard form.

As well as providing an axiomatic basis for their 
geometric deductions, the Ancient Greeks tried to explain 
the meaning of words such as ‘point’ and ‘line’. For 
example, Euclid says things like: ‘A point is that which 
has no part’; ‘A path is that which is traced out by a 
moving point’; and ‘A line is a breadth-less length’. We 
might find such comments intuitively vivid, as they paint 
a picture of the things that we are talking about. 
Nevertheless, we really don’t need to worry about defining 
our most basic terms since their matheÂ�matical meaning 
can be fixed by our axioms, or by any other set of logically 
equivalent axioms. After all, it is precisely our axioms that 
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tell us what we are entitled to deduce about the things 
that our proofs are about. To put it another way, there is 
no point in defining a basic word if our proofs do not 
actually make use of the definition. A definition other than 
that given by the axioms might help students see the kind 
of thing that the teacher wants to reason about, and if we 
really wanted to we could use more words to define the 
words that we use in our definitions, but as Blaise Pascal 
advised in The Art of Persuasion, ‘Do not try to define 
anything so obvious in itself that there are no clearer terms 
in which to explain it.’

Among other things, Euclid’s five axioms define our 
commitments when we say ‘these lines are parallel’. We 
could also say that Euclid’s fifth relates to the concept of 
direction, since we commonly imagine that parallel lines 
‘point in the same direction’. After two thousand years of 
following Euclid’s scheme, people finally realized that 
Euclid’s implicit definition of direction is not the only 
matheÂ�matically valid one, and our ordinary notions of 
straight lines and so forth are not the only things that are 
consistent with axioms (I) – (IV). As we shall soon see, 
we can work equally well by accepting axioms (I) – (IV) 
together with a completely different alternative to Euclid’s 
fifth. Furthermore, the various geometric deductions that 
people had made without referring to Euclid’s fifth now 
make sense (and hold true) in a context that is far broader 
than was previously appreciated. 

Rather poetically, this broadening of the horizons of 
geometry first occurred in a prisoner-of-war camp. When 
Napoleon was forced out of Russia, the Frenchman Jean-
Victor Poncelet (1788–1867) was captured from among the 
dead, and marched for five months to a camp on the Volga. 
He spent two years in Russia, and by the time he was 
allowed back to France, in September 1814, Poncelet had 
completed his Treatise on the Projective Properties of 
Figures. I am not going to discuss projective geometry in 
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this book, but I will describe the kinds of non-Euclidean 
geometries that were independently developed by Carl 
Friedrich Gauss, Nikolai Ivanovich Lobachevsky, János 
Bolyai and Ferdinand Karl Schweikart.

Carl Friedrich Gauss (1777–1855) never published his 
early thoughts on the subject, but as early as 1824 he wrote 
a letter to a friend that included the following sentence: ‘The 
assumption that the sum of the three angles in a triangle is 
less than 180º leads to a curious geometry, quite different 
from ours but thoroughly consistent …’ The first publica-
tion of the idea that Euclid’s fifth was somehow optional 
came in 1829, when Nikolai Ivanovich Lobachevsky (1792–
1856) presented a paper that a provincial journal agreed to 
publish, after the St Petersburg Academy of Science rejected 
the paper as ‘outrageous’. Although a number of matheÂ�
maticians toyed with the idea, the notion of non-Euclidean 
geometries didn’t really become respectable until the 1850s. 

Indeed, we might date the change rather precisely, to 10 
June 1854, which is when Gauss asked the 27-year-old 
Bernhard Riemann (1826–1866) to deliver a lecture entitled 
‘On the Hypotheses that Lie at the Foundations of 
Geometry’. As we shall see later, the full significance of this 
lecture wasn’t widely appreciated until the work of Einstein, 
but Gauss certainly enjoyed it. The rock of Riemann’s 
argument was the observation that the basis of geometry is 
not an intuitive or conceptually necessary knowledge about 
‘universal space’, but simply the capacity to speak properly 
about measurements. Where we measure and formally speak 
about the lengths and angles of lines on a flat surface, 
Euclidean geometry is just the tool. Where we measure 
lengths and angles on a curved surface, we are still doing 
geometry, but it is no longer ‘Euclidean’. 

Given that the word geometry derives from the Greek 
for ‘earth-measuring’, the foundational significance of 
measuring lengths and angles may sound ludicrously 
obvious. However, since the Greeks, matheÂ�maticians have 
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had the aristocratic pleasure of knowing all the facts about 
angles in a triangle and so forth, without having to use 
anything so crude as an actual, physical ruler. To reassert 
the appropriate priority of metric theory required a deli-
cate skill: pruning back to the essentials, so that further 
branches might grow. The elderly Gauss was absolutely 
delighted by Riemann’s approach, and spoke with unchar-
acteristic enthusiasm about the depth of Riemann’s 
thoughts. Gauss coined the term ‘non-Euclidean geometry’, 
which Riemann was too modest to announce, and from 
that time non-Euclidean geometries were no longer consid-
ered as logically curious monstrosities. Instead, the truths 
of non-Euclidean geometry were accepted along with 
Euclid’s, and the third age of geometry was born. 

Non-Euclidean Geometry
By definition, a line between two points is ‘straight’ if 
and only if it is as short as any other line that might 
connect the two points. This fact is fundamental to the 
meaning of the term ‘straight’, and it is true in all geom-
etries, not just Euclidean geometry. Euler realized that 
you can find the shortest path between two points on any 
convex surface by making a model, poking holes at the 
two points in question, threading through a length of 
string and pulling it taut. Because pulling the string makes 
it as short as possible, it follows a shortest path or 
‘geodesic’. 

The shortest paths between points on a sphere are 
always ‘great circles’, which is the name given to circles 
with the same radius as the sphere in question. If you 
head straight towards a particular point (e.g. the North 
Pole), and just keep on going, your path around the earth 
will draw out a great circle. If two people both head 
north, their paths cross at the North Pole. Hence the 
direction ‘North’ is not what Euclid had in mind while 
he was writing the fifth axiom, because he specified that 
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parallel lines never cross. Nevertheless, we can produce 
a perfectly consistent non-Euclidean geometry by 
reinterpreting our basic terms like ‘point’ and ‘straight 
line’. We are free to do this because the matheÂ�matical 
meaning of these terms is specified by the axioms alone, 
and not any other intuitions we may have about the 
perceived subject matter. 

In particular, we can picture a kind of geometry known 
as ‘circular elliptic geometry’. We do this by interpreting 
the term ‘point’ to mean ‘a pair of antipodal points on a 
sphere’ (that is, points directly opposite one another), 
‘straight line’ as meaning ‘great circle’, and so on. Axiom 
(I) is perfectly compatible with this new conception of 
direction, because there can only be one great circle through 
any two pairs of antipodal points (and this really is the 
shortest path): 

Similarly, axiom (II) is satisfied because any shortest path 
connecting a pair of points on a sphere can be extended 
to form a great circle. Axioms (III) and (IV) are also satis-
fied in this model: we simply interpret the terms ‘right 
angle’ and ‘circle’ by reading them as ‘right angle on a 
sphere’ and ‘circle on a sphere’. The only somewhat tech-
nical problem is that because our sphere is finite, there is 
an upper limit on the size of line or circle we can draw. 
This limitation of our model can be overcome, but there 
is another fundamental difference between this new kind 
of geometry on a sphere and traditional, Euclidean 
geometry. 
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The fundamental difference is that if we draw a great 
circle and a point not on that circle, we cannot draw any 
great circle through that point without crossing our original 
circle. In other words, under this novel interpretation of 
the terms ‘point’, ‘line’ and ‘circle’, axiom (V) is utterly 
false, as in this geometry there are no such things as parallel 
lines. Indeed, if we want to do elliptic geometry instead of 
Euclidean geometry, we have to adopt the following axiom: 

Given any straight line and a point not on that line, 
there are no straight lines which pass through the 
point, but do not intersect the line.

The fundamental point is that we are free to interpret the 
basic terms ‘point’, ‘line’ and ‘circle’ however we like, so 
long as our interpretation satisfies our axioms. After all, 
we are supposed to be relying on nothing but the axioms 
when making our deductions. Furthermore, we can use 
the axioms of Euclidean geometry to prove that lines on 
the surface of a sphere satisfy the five axioms of elliptic 
geometry. This tells us that elliptic geometry is at least as 
consistent as Euclidean geometry, as there is a Euclidean 
object that satisfies the axioms in question. 

This argument shows that when people tried to use 
axioms (I) to (IV) to prove Euclid’s fifth, they were 
attempting the impossible. Euclid’s fifth is consistent with 
axioms (I)-(IV), but so are statements that contradict 
Euclid’s fifth. It follows that if axioms (I)-(IV) are consistent 
(which they surely are), Euclid’s fifth cannot possibly be 
a logical consequence of axioms (I)-(IV). That is to say, 
Euclid’s fifth tells us something that we simply cannot 
deduce from the other axioms.

The Curvature of Space
Familiar terms such as ‘triangle’ and ‘square’ are perfectly 
well defined in elliptic geometry: 
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If we add up the angles in the corners of these triangles, we 
find that the total is more than 180º. The sum of the internal 
angles is greater than 180º because the boundary lines bulge 
out, increasing the angles at each of the corners. Triangles 
that cover a small proportion of a sphere have a sum of 
internal angles that is very close to 180º, as small parts of a 
sphere are very close to being flat. For example, the surface 
of a tub of water is not quite flat as it follows the curvature 
of the Earth, but this curvature is undetectably small unless 
the tub is enormous. On the other hand, if we draw a triangle 
that covers a significant proportion of a sphere, the sum of 
the internal angles will be significantly larger than 180º. 
Indeed, our second example of a triangle on a sphere contains 
three right angles, which gives us a sum of 270º. Hence it is 
possible to detect curvature by measuring the angles in a 
triangle, and when we change the size of a triangle on a 
sphere, the angles in that triangle change. 

It was Gauss who first developed a rigorous definition 
of curvature. The definition of the curvature of a line is 
really very simple. It rests on the fact that for any three 
points on a plane, there is a unique circle that passes through 
all three points (unless all three points lie on a straight line). 
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The curvature of a straight line is said to be zero, while 
the curvature of a circular arc of radius r is said to be 1/r. 
Given a smooth, continuous line, we define the curvature 
of each point p by finding a ‘limit case’: an idea that relates 
to the infinitesimal calculus. Essentially, Gauss imagined 
a line through a point p, together with a point on the line 
before p and another point on the line after p. There is 
precisely one circle that passes through any three points, 
and we can find the value of 1/r, where r is the radius of 
the circle that passes through all three points. If we pick 
a closer pair of points before and after p, we get another 
value of 1/r. In the case of smooth curves with no corners, 
the value of 1/r gets closer and closer to some fixed value 
as the points before and after p move closer and closer to 
p. By definition, we say that the curvature at p is the limit 
case 1/r. 

More importantly, Gauss also developed a definition 
for the curvature of a surface, which relies on nothing 
more than measurements of angle and distance within the 
surface itself (that is to say, Gaussian curvature does not 
depend on the space in which our surface is embedded). 
The basic idea is that if we move along a surface, our line 
of motion will have a curvature. If we start at a given 
point and move in different directions, we will find lines 
of different curvature, and in particular we will find one 
direction of travel with the smallest curvature k1, and 
another direction of travel with the largest curvature k2. 
We also say that these curvatures are positive if we are 
on the top of a hill, and negative if we are at the lowest 
point of a bowl. Now, by definition, the Gaussian curva-
ture at the given point on a surface is equal to k1k2. Note 
that the top of a hill and the bottom of a bowl both have 
positive curvatures, as k1k2 is positive if k1 and k2 are both 
negative. Also note that if either k1 or k2 is zero, the 
Gaussian curvature is zero. Finally, note that some surfaces 
have a negative curvature, as in the case of a ‘saddle point’, 
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where you move downhill if you go forwards or back-
wards, but you move uphill if you go left or right. 

If a surface contains a (Euclidean) straight line, then the 
points on that line must have a Gaussian curvature of zero. 
For example, a cylinder and a cone both have Gaussian 
curvature zero, as at each point the path with the least 
curvature is a straight line, so we have k1â•›=â•›0, which means 
that k1k2â•›=â•›0. In other words, we can identify shapes with 
zero Gaussian curvature by placing them on a flat surface. 
If there is a line of contact between the shape and the flat 
surface, the surface must have zero Gaussian curvature. If 
there is a point of contact (as we find in the case of a 
sphere), the surface does not have zero Gaussian curvature. 
Another way to identify surfaces with zero Gaussian curva-
ture is to draw a triangle, taking the shortest path along 
the surface between three given points. If the surface has 
zero Gaussian curvature the internal angles of this shape 
will add up to 180º. If the surface has positive Gaussian 
curvature the internal angles will add up to more than 
180º, and if it has negative curvature the angles will add 
up to less than 180º.

Surfaces with zero Gaussian curvature can be rolled out 
flat, preserving all the geometric relationships between the 
points on that surface, while surfaces with non-zero 
Gaussian curvature cannot be rolled flat. For example, a 
cylindrical roller with an engraved geometric pattern works 
just fine, and can be used to transfer a pattern from the 
roller onto a flat piece of paper. In contrast, the curvature 
of a sphere means that it cannot be used as a roller, and 
any flat map of the globe necessarily distorts at least one 
geometric relationship. That is to say, it is provably impos-
sible to map the surface of a sphere onto a flat surface 
without distorting either the lengths or the angles between 
points on the surface of the sphere. At best you can produce 
a map that distorts the lengths but not the angles, or the 
angles but not the areas. 
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Gauss called his insight into curvature the Theorema 
Egregium (Latin for ‘remarkable theorem’), and it explains 
the effectiveness of a common pizza-eating strategy. 
Because it is basically flat, a slice of pizza can be seen as 
a surface with Gaussian curvature zero. You can bend and 
fold a slice of pizza, but it is difficult to stretch, and that 
means it is difficult to change its Gaussian curvature. 
Similarly, you can bend or fold a piece of paper, but because 
it is difficult to stretch a piece of paper, you can’t really 
wrap a spherical present with flat wrapping paper. Now, 
imagine wrapping a slice of pizza around an invisible 
cylinder. In one direction the pizza is curved like a circle, 
but because the pizza has zero curvature, in the perpen-
dicular direction it has to lie flat. The slice of pizza cannot 
bend in both directions without having a non-zero Gaussian 
curvature, and it cannot change its curvature without 
stretching. In other words, folding a pizza creates rigidity 
in the direction perpendicular to the fold, which is useful 
because it stops the pizza flopping, and keeps the toppings 
nicely in place. The same kind of reasoning also explains 
why a corrugated sheet of metal is nowhere near as floppy 
as a flat sheet of the same thickness.

While Gauss was the dominant figure in matheÂ�matics, 
the remarkable French mathematician Marie-Sophie 
Germain (1776–1831) made a number of significant contri-
butions, and in 1816 she became the first woman to win 
the Grand Prix of the Paris Academy of Sciences. One 
of her most brilliant ideas was to realize that Gaussian 
curvature isn’t the only useful definition of curvature: 
the quantity 12 (k1â•›+â•›k2) is also very informative. She called 
this quantity the mean curvature of a surface (at the given 
point), and she noted that the mean curvature of a surface 
has a fascinating connection with its surface area. More 
specifically, if a surface has zero mean curvature at every 
point, you cannot distort that surface without increasing 
its surface area. This means that materials that tend to 
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minimize their surface area will naturally form minimal, 
zero mean curvature surfaces. For example, it is a phys-
ical fact that if you dip any shaped piece of wire into 
some soapy water, the surface tension pulls the surface 
area to a minimum. A soap bubble contains a volume of 
slightly compressed air, and it minimizes its surface area 
by making a sphere (a shape that has the same curvature 
at every point on its surface). The air inside a soap bubble 
is at a slightly higher pressure than the air outside the 
bubble, but when a soap film is subject to a single pres-
sure, every point on its surface must have a mean 
curvature of zero. This means that if we dip some wire 
into soapy water, the soap film that spans the space 
between the wires must have zero curvature, however 
we bend the wire. 

Also note that a soap film can span between the same wire 
shapes in more than one way, though each point on the 
surface will always have a mean curvature of zero.

The Unity and Multiplicity of Geometry  
As well as the positive curvature of a sphere’s surface and 
the associated elliptic geometry, there is also something 
called ‘hyperbolic geometry’. In other words, geometricians 
can also work in a space with negative Gaussian curvature. 
In hyperbolic geometry the angles in a triangle add up to 
less than 180º, but the most fundamental fact is that we 
work with the following axiom: 

Given any straight line and a point not on that line, 
there are at least two straight lines which pass through 
the point, but do not intersect the line.
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Hyperbolic geometry is somewhat less intuitive than elliptic 
geometry, but surfaces with negative curvature do occur 
in nature. For example, coral reefs often have negative 
Gaussian curvature, but given that the following illustra-
tions need to appear on a flat page, it is easiest to use the 
model of hyperbolic space devised by Henri Poincaré. On 
Poincaré’s circular map, objects in the space appear to 
shrink as they move closer to the edge, but according to 
the internal measure of hyperbolic space (which is the only 
thing that matters), there is an infinite distance from the 
centre of the map to the edge. In other words the circular 
boundary is not a location within the space itself, as for 
the inhabitants of the hyperbolic world it is an infinite 
distance away. 

A full account of hyperbolic geometry is beyond the 
scope of this book, but Poincaré’s map conveys the basic 
idea. On this map, a ‘straight line’ is either a diameter 
across the circular map, or a circular arc that meets the 
map’s boundary at right angles. Two lines are said to be 
‘parallel’ if they intersect on the boundary. Finally, circles 
in hyperbolic space look like ordinary circles, but their 
centres are not where one would naively expect. Poincaré’s 
map accurately represents the angles of hyperbolic space, 
so we can see that the angles of a triangle add up to less 
than 180º, while the angles of a quadrilateral add up to 
less than 360º: 

The significance of there being more than one geometry 
is frequently misunderstood, but the development of non-
Euclidean geometry triggered major changes in the public 
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perception of math. Statements about the factual world of 
countable objects and measured spaces lie at the heart 
of matheÂ�matics. Indeed, we might say that the language of 
facts gives us the language of matheÂ�matics. It is an ancient 
knowledge to describe a square field as a matheÂ�matical square, 
and the truths of geometry are certainly facts of our world. 

However, by the end of the nineteenth century, non-
Euclidean geometry had helped to create a popular image 
of ‘pure matheÂ�matics’: a logical, deductive discipline disas-
sociated from worldly facts. The ancient technique of 
reductio ad absurdum involves the description of things 
that aren’t true, where you state a proposition and conclude 
that you must reject it as false. What was new was the 
notion of accepting and exploring axioms ‘whether or not 
they are true’. This was a radical and disruptive idea, and 
it changed the public perception of the nature of matheÂ�
matics. In particular, it gave rise to the idea that only some 
matheÂ�matics was concerned with the real world, as up 
until the late nineteenth century, absolutely no one divided 
matheÂ�matics into ‘pure’ and ‘applied’. In the final chapters 
of this book I shall reconsider the controversial relation-
ship between matheÂ�matics and the physical world. First I 
want to discuss ‘absolute geometry’, and the significance 
of having more than one form of geometry. 

The first point to make is that the existence of non-
Euclidean geometries does not mean that Euclid was wrong, 
or that matheÂ�matics is fractured into totally separate types. 
It is true that Euclid specified one kind of geometry and 
not others, but these various geometries are intimately 
related to one another as parts of a broader conceptual 
scheme. For example, given that we are motivated to iden-
tify straight lines with shortest paths, we cannot simply 
draw a squiggle and claim that it defines a ‘direction’, or 
some new kind of geometry. We have to have a measure 
by which our ‘straight lines’ are ‘shorter’ than every other 
way of moving between two points.
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Because Euclid and his followers were careful to avoid 
Euclid’s fifth whenever possible, many theorems apply to 
any reasonable definition of direction. For example, if one 
rotates a match through the internal angles of a three-sided 
figure, its head switches side as it rotates through half a 
loop. If you rotate through the internal angles of a four-
sided figure, the head of the match does not switch sides 
as it rotates through a complete loop. 

This observation is said to be part of absolute geometry, 
because it can be proved on the basis of axioms (I) – (IV) 
alone. This means that it holds true regardless of curvature, 
in Euclidean, elliptic and hyperbolic geometry. On the 
other hand, it is a distinctive characteristic of Euclidean 
geometry that if we measure the angles at the corners of 
these shapes, the total comes to 180º in the case of triangles, 
360º in the case of quadrilaterals, and more generally the 
internal angles of an N-sided polygon will total 180 (N 2)â•›. 

Each axiom operates in the context of the other axioms, 
all of which contribute to the meaning of our words or 
symbols. The way that axioms work together is absolutely 
fundamental, and logical terminology plays an essential 
role in enabling an axiom to be descriptive of a matheÂ�
matical concept. MatheÂ�matical logic is a subject we will 
return to. At this point I just want to point out that in 
order to make sense, collections of axioms must cohere as 
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a system. In particular, if we are to work from the axioms 
to their logical consequences, the axioms must contain 
words such as ‘and’, ‘or’, ‘not’, ‘every’ and ‘some’, which 
can support logical deductions. 

Euclid’s arguments are definitively geometric when they 
refer to his five axioms. His arguments also involved the 
concepts of ‘equals’, ‘plus’ and ‘minus’. For example, in a 
proof of Pythagoras’ Theorem we might say ‘the area of 
the largest square is equal to the sum of the areas of the 
two smaller squares’. These concepts can be defined axio-
matically, and as we shall see in a later chapter, modern 
matheÂ�maticians prove things about adding and subtracting 
by referring to an axiomatic system described by Giuseppe 
Peano (1858–1932). Euclid did things slightly differently, 
by stating and accepting the following ‘common notions’, 
which apply to numbers, lengths, areas and volumes: 

1.	Things that are equal to the same thing are equal 
to one another.  

2.	If equals be added to equals, the wholes are also 
equal (e.g. if Aâ•›=â•›B then Aâ•›+â•›Câ•›=â•›Bâ•›+â•›C). 

3.	If equals be subtracted from equals, the remainders 
are also equal. 

4.	Things that coincide with one another are equal to 
one another. In other words, shapes that lie on top 
of one another have the same dimensions.    

5.	The whole is greater than the part. For example, 
the area of a shape must be at least as large as the 
area of any part of that shape. 

As a final comment on the significance of multiple geom-
etries, let’s return to Riemann’s lecture ‘On the Hypotheses 
that Lie at the Foundations of Geometry’. The first part 
of his lecture was essentially concerned with geometry 
itself. The second part of this now famous lecture posed 
deep questions about geometry in the physical world, 
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asking about the dimension and geometry of actually 
measured space. This would have been inconceivable in 
an earlier age, when it was accepted that Euclid’s axioms 
captured an immutable framework for spatial comprehen-
sion. In particular, notice that axioms (I)â•›−â•›(IV) are 
physically highly plausible. We can connect any two points 
with a taut string (I). We can unroll some more string and 
extend the line (II). We can use a length of string to define 
a circle (III), and so on. Moving a physical shape really 
doesn’t change its area, and axioms (I)â•›−â•›(IV) all capture 
statements as physically obvious as this. Euclid’s fifth is 
the only axiom that we cannot clearly demonstrate using 
stretched threads or rays of light. This is because it makes 
a claim about the whole extent of a line, as a pair of 
parallel lines must never cross, no matter how far they 
are extended. 

Gauss actually bothered to make a physical check on 
Euclid’s fifth, and as far as he could tell, measurements on 
earth are in agreement with Euclidean geometry. For 
example, if we measure the angles in a triangle of light 
between three mountain tops, we cannot detect a difference 
between the sum of those angles and 180º. At the time, 
very few people appreciated the significance of the ideas 
in the second part of Riemann’s lecture, but sixty years 
later Riemann was dramatically vindicated by the general 
theory of relativity. Crucially, Einstein realized that we 
can give the word ‘straight’ a physical definition by saying 
that the path of light in a vacuum will always be straight 
(by definition), but his analysis indicated that we cannot 
find the shortest path without considering the presence of 
mass. In other words, Einstein predicted that light was 
affected by gravity, so, in a sense, light rays ‘bend’ around 
massive objects. In 1919, during an eclipse, astronomers 
confirmed that when light from a star passed nearby the 
sun, the pattern of stars was bent just as Einstein had 
predicted. 
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If we want to measure a building on earth or calculate 
where a rocket will land on the moon, Euclidean geometry 
is just the tool we need. If we want to calculate the path 
of light from a distant galaxy, we turn to Einstein’s geom-
etry instead. By analogy, we can detect the curvature of a 
sphere by measuring the angles in a triangle. We just need 
to draw a large enough triangle. Similarly, the astronomical 
observations that made Einstein famous detected a slight 
warping of angles. It isn’t easy to get your head around, 
but we can describe this situation with perfect matheÂ�matical 
accuracy by identifying gravity with a curvature of space-
time. In other words, the earth can ‘detect’ the presence 
of the sun (and moves accordingly) because space itself is 
curved. This idea is often represented by the image of a 
bowling ball on a trampoline. The surface of the trampo-
line deforms and curves under the weight of the ball, and 
if we place a marble on the trampoline, it will accelerate 
towards the ball. Likewise, the presence of mass induces 
a curvature in space-time, and the effect of that curvature 
is to produce the acceleration due to gravity that we are 
all familiar with.

Symmetry and Groups
The naïve concept of symmetry is very ancient indeed, 
and in ordinary usage, something is said to be symmetrical 
if its left half is the mirror image of its right half. For 
several centuries now matheÂ�maticians have been rather 
more precise, but also more general, in their use of the 
word ‘symmetry’. For matheÂ�maticians, a symmetry is 
understood as being a particular kind of transformation, 
or rule for moving or changing a matheÂ�matical object 
or shape. More specifically, an object is said to possess 
a particular symmetry if and only if performing the given 
transformation (or symmetry) produces an object that 
is apparently identical to the original. So, for example, 
an object that is bilaterally symmetric (i.e. an object 



	 EUCLID’S FIFTH AND THE REINVENTION OF GEOMETRY� 187

whose left half is the mirror image of its right half) is 
indeed matheÂ�matically symmetric precisely because 
reflecting the right half onto the left and the left half 
onto the right yields a shape that is indistinguishable 
from the original. 

One of the big advantages of the matheÂ�matical definition 
of symmetry is that it is extremely general. There are many 
kinds of transformation other than reflection! For example, 
it is matheÂ�matically useful to observe that every shape has 
at least one symmetry, namely the identity transformation. 
That is to say, if you perform the transformation ‘leave 
every point in the shape exactly where it is’, the end result 
is identical to the original shape. A more interesting kind 
of symmetry is rotational symmetry, which can be found 
in the following shape: 

For obvious reasons, this shape is said to possess four-fold 
rotational symmetry. 

Note that if we effect several of these transformations in a 
row, the net result is equivalent to one or other of the four 
listed symmetries. If we rotate our shape through 180º, and 
then rotate it through 90º, the net result is a rotation of 
270º. Similarly, if we rotate our shape through 270º, and 
then rotate it through 180º, the net result is a rotation of 
450º, which is equivalent to a rotation of 90º. The basic and 
fundamental fact is that because each of these transforma-
tions produces a shape that is indistinguishable from the 
original, any combination of these transformations must also 
produce a shape that is indistinguishable from the original. 
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To give another example of a symmetric shape, the 
following is said to possess three-fold rotational symmetry, 
as well as reflective symmetry: 

As with our previous example, the end result of 
performing any sequence of these transformations must 
be equivalent to performing one or other of the six listed 
symmetries. For example, if we reflect our shape in mirror 
line 1 and then rotate it through 120º, the net result is 
equivalent to a reflection in mirror line 2. Similarly, if 
we reflect our shape in mirror line 2 and then reflect in 
mirror line 1, the net result is equivalent to rotating our 
shape through 240º. 

Reflection and rotation are by no means the only trans-
formations that can be considered as symmetries. Perhaps 
the simplest example of another kind of symmetry is what 
matheÂ�maticians call ‘translation’, where we move a given 
shape in a fixed direction by some fixed amount. For 
example, if we have an infinitely long string of identical 
beads we can shift each bead one place to the left and the 
result is indistinguishable from the original configuration. 
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Likewise, we could shift each bead one place to the right, 
two places to the left, seventeen places to the left, and so 
on, and the result would be indistinguishable from the 
original configuration. 

As we have already seen, modern matheÂ�maticians use 
something known as ‘group theory’ when they are 
describing symmetries, and this branch of matheÂ�matics has 
quite justly been described as the supreme art of matheÂ�
matical abstraction. All groups are comprised of a set of 
elements together with an ‘operation’ or rule for combining 
those elements. To qualify as a group, the elements and 
operation must satisfy the four, definitive rules listed below. 
The most familiar example of a group is the integers (our 
set of elements), together with addition (our rule for 
combining elements). Another example of a group is the 
set of symmetries of any object where we combine pairs 
of symmetries by performing one symmetry transforma-
tion followed by the other. Now, the properties that define 
a group are as follows: 

Closure: If we combine any two elements from our set, 
the result must be another element from our set. For 
example, if we add any two integers, the result is always 
another integer. Similarly, recall that the symmetries of a 
four-fold rotationally symmetric object are ‘rotate by 90º’, 
‘rotate by 180º’, ‘rotate by 270º’ and the identity trans-
formation, ‘rotate by 0º’. If we combine any two elements 
by doing one and then the other, the net result will be 
equivalent to one of our four elements, which means that 
we have ‘closure’. 

Associativity: The operation must be associative. In other 
words, if you combine any three of the elements, it cannot 
matter whether you combine the first two and then 
combine the result with the third, or combine the last 
two and then combine the result with the first. For 
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example, addition is associative, as is shown by the 
following example:

(2â•›+â•›5)â•›+â•›1â•›=â•›7â•›+â•›1â•›=â•›8, and likewise 2â•›+â•›(5â•›+â•›1)â•›=â•›2â•›+â•›6â•›=â•›8. 

The operation of following one transformation by the other 
is also associative, because, for example: 

(‘rotate by 90º’ then ‘rotate by 180º’) then ‘rotate by 
90º’â•›= … ‘rotate by 270º’ then ‘rotate by 90º’â•›=â•›

‘rotate by 360º’. 

Likewise, ‘rotate by 90º’ then (‘rotate by 180º’ then 
‘rotate by 90º’)â•›= ‘rotate by 90º’ then ‘rotate by 270º’â•›=â•›

‘rotate by 360º’. 

Identity: The group must contain an identity element. In 
other words there must be one element that, when it is 
combined with any other element, leaves that element 
unchanged. In the case of the integers, the identity element 
is zero, because, for example, 5â•›+â•›0â•›=â•›0â•›+â•›5â•›=â•›5. In the case 
of groups of symmetries, the identity transformation is 
‘leave every point exactly where it is’.

Inverse: Every element in the group must have what is 
known as an inverse. If you combine an element with its 
inverse, then by definition the result is the identity element. 
For example, the inverse of 5 is -5, because 5â•›−â•›5â•›=â•›0, and 
zero is the identity element. Similarly, the inverse of ‘rotate 
by 90º’ is ‘rotate by 270º’, because:

‘rotate by 90º’ then ‘rotate by 270º’â•›=â•›‘rotate by 
360º’â•›=â•›‘rotate by 0º’. 
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Note that in some cases an element is the inverse of itself. 
By definition the identity element has to be its own inverse, 
and ‘rotate by 180º’ is another example of an element 
which is its own inverse. 

Group theorists summarize and in a sense completely 
describe the groups they study by using multiplication 
tables. These are square tables that contain a row and a 
column for every member of the group. For example, we 
look to the space in the row marked r and the column 
marked s to find the result of combining r with s. The 
point is that the multiplication table tells us everything we 
need to know about combining the elements of our given 
group. The axioms of group theory impose constraints on 
the possible forms that such tables can take. For example, 
the inverse axiom tells us that by definition, every row 
and every column of every group’s multiplication table 
must contain the identity element I. 

The crucial fact is that there are limited numbers of 
multiplication tables. For example, there is only one 
abstract group containing three elements (the one whose 
elements are r, r2 and r3â•›=â•›I), although this single kind of 
group can be illustrated in countless different ways. We 
might, for example, say that r is the transformation ‘rotate 
by 120º’. Another way to consider the same abstract group 
is to imagine that we have three playing cards in our hand, 
and then say that r represents the operation ‘move the first 
card to the back’. In this case r2 represents moving the 
first card to the back and then repeating the operation. As 
in the case where r is ‘rotate by 120º’, our group of card 
shuffling operations implies that r3 is the identity trans-
formation ‘leave the cards where they are’. The point of 
all this is that although our two groups are illustrated in 
different ways, they have exactly the same multiplication 
table, and so we say that they are two examples of exactly 
the same abstract group. 

To recap, the different kinds of abstract group can be 
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distinguished by their multiplication tables, and there is only 
one multiplication table for groups containing three elements. 
However, in some cases two completely different groups 
have exactly the same number of elements. For example, 
consider the following pair of groups, and note that only in 
the second group is every element its own inverse: 

In this illustration I denotes the identity transformation 
while r denotes a rotation of 90º. 

In this illustration I denotes the identity transformation, 
r denotes a rotation of 180º and s denotes a reflection in 
a vertical mirror line.

Both of these groups contain four elements, and so we 
say that they are both groups of order four. Furthermore, 
these two groups are the only ones that contain four 
elements: every other multiplication table with four 
elements fails to satisfy the axioms of a group. In other 
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words, there are precisely two abstract groups of order 
four, though each one of these may have countless illus-
trating instances. Since 1980, matheÂ�maticians have had a 
complete classification of all the different ‘simple finite 
groups’. We know, for example, that if a group contains 
p elements where p is a prime number, then there is only 
one possible multiplication table for that group. In fact, 
there must be some element r such that r, r2, r3, … , râ•›pâ•›=â•›I 
are the only elements of the group. In other words, every 
group with a prime order p is equivalent to the group 
generated by r, where r is the transformation ‘rotate by 
360º/p’. The situation is more complicated when a group 
does not have a prime number of elements, as in that case 
there may or may not be several possibilities for the multi-
plication table. For example, there are two different groups 
that contain six elements, five different groups that contain 
eight elements, but there is only one group that contains 
fifteen elements. 

The Oddities of Left and Right
Mirrors are intriguing objects. Perhaps the strangest thing 
is that we can measure every facet of an object, from length, 
surface area, volume, colour or texture, yet none of these 
will help us to distinguish a left hand from the right. The 
oddity is that in order to name left and right correctly we 
cannot look to the object alone. As we shall see, this is 
because left and right do not carry their differences with 
them, but standing together we can establish an arbitrary 
convention, calling this one ‘left’ and that one ‘right’. So 
why are left and right so similar but different, and why 
are there two distinct but equivalent options, and not some 
other number?

There are two fundamental facts that underpin the 
answer to these questions. The first point to note is that 
there are two ways to travel along a line: ‘forwards’ 
and ‘backwards’. The second point to note is that the 
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mathematical operation of moving a shape does not change 
the object’s shape or properties: it only changes the shape’s 
location. As we shall see, these two facts are the key 
to understanding why mirror images are the same but 
different. 

First, let’s consider two-dimensional shapes. If we cut 
the following shapes out of a sheet of paper and keep them 
flat on our desk, there is no way that we can move them 
around so that one is on top of the other. Within the two-
dimensional space there are the two distinct shapes: a 
left-hander and a right. However, if we pick one of them 
up and turn it over, its front becomes its back, which 
switches a left-hander to a right (or the other way around). 

In other words, when we compare the outlines of these 
shapes within a two-dimensional space, we can see that 
they are different. One faces left while the other faces 
right, and no amount of rotation will make the two outlines 
the same. However, if we compare the outlines within a 
three-dimensional space we can see that they are identical. 
When we flip one of them over it looks just like the other, 
and so by definition the two outlines have the same shape 
(one is just a rotated version of the other). This observa-
tion can help us to understand the rather peculiar way that 
reflecting an image in a mirror changes the image, but also 
leaves it the same.

To put it another way, people sometimes wonder why 
mirrors switch left and right. The answer to this question 
is that a mirror changes parity (so left-handed gloves look 



	 EUCLID’S FIFTH AND THE REINVENTION OF GEOMETRY� 195

like right-handed gloves), but it is not left and right that 
are switched. Imagine a person standing in front of a 
mirror, with a glove on their left hand but not on their 
right. The person’s head will be next to their reflection’s 
head, and their gloved hand will be next to their reflec-
tion’s gloved hand. In other words, the up–down axis and 
left–right axis remain unchanged. The person differs from 
their reflection because mirrors switch forwards and back-
wards, so we stand face-to-face with our mirror image, 
rather than seeing the back of our reflection’s head. 

In contrast, imagine dressing two identical twins with 
gloves on their left hands, and standing them face-to-face. 
If one twin is facing North the other faces South, and if 
one has a glove pointing West, the other has a glove pointing 
East. The only dimension in which both twins are the 
same is ‘up–down’, as both twins have their feet on the 
ground and their head in the air. In other words, a mirror 
reverses your image in just one dimension (‘front–back’), 
but in the case of face-to-face twins, two dimensions have 
been switched (‘front–back’ and ‘left–right’).

We can change the parity of two-dimensional objects 
by rotating them in three-dimensional space. Similarly, 
we can matheÂ�matically rotate three-dimensional objects 
in a four-dimensional space, and when we do that, right-
handed objects become left-handed objects. As we cannot 
directly observe such a transformation, it is tempting to 
imagine that turning a right-handed glove into a left-
handed one requires a moment when the object goes ‘pop’, 
as some essence is suddenly switched from type-left to 
type-right. However, as we will see in the following 
section, there is no sudden moment when the object is 
switched. There is nothing truly intrinsic to being left-
handed or right-handed, and we find the change by 
comparing a before-and-after version of the glove, not by 
looking for a distinctive moment when the essence of our 
shape is transformed. 
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The Möbius Strip
Sometimes the matheÂ�matical community is ripe for an idea, 
and more than one person takes the same elementary step. 
In 1858, Johann Listing and August Ferdinand Möbius 
independently described the matheÂ�matical object now 
called a ‘Möbius strip’. This fascinating shape can be used 
to elucidate the fundamental equivalence between mirror 
images, and it is worth the effort of making one yourself. 
Simply take a strip of paper, twist one end through 180º, 
and glue it to the other end. This shape has only one edge, 
as if you run your finger along the side, it twists its way 
around both top and bottom. If you take a pair of scissors 
and cut the strip along the middle, a single loop emerges. 
This new loop has two edges: what was once the middle, 
and the single edge of the Möbius strip. 

We can make a shape called the Möbius strip, but we 
can also make a space called the Möbius space. We simply 
take two strips of paper, twist the ends and stick them 
together. The gap between the strips is a perfectly 
ordinary two-dimensional portion of three-dimensional 

One edge cuts to 
form one ring.

Two edges cut to 
form two rings.
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space. Mathematicians skilfully ignore the edges of the 
strip because it is irrelevant to the questions we are 
interested in asking. We do this by imagining that the 
‘two’ sides are curled up like a cylinder, although it isn’t 
physically possible to join up the edges like this. The 
important point is to imagine what it would be like for 
a pair of two-dimensional objects that live in a Möbius 
world. 

On meeting each other, our pair of objects might agree 
that they are ‘mirror images’. Now suppose that one of 
them sets out for a walk, and comes back to its former 
acquaintance. This time each one meets their identical 
image, as a loop through the space effectively switches 
left and right. It would now appear that they are ‘the 
same shape’. 

The shape on the right goes for a clockwise walk around 
the Möbius space, and apparently comes back switched. 

The one that has not moved says, ‘You have changed – we 
used to be different but now we are the same.’ The other 
replies, ‘I think I would have noticed if a change had taken 
place. It is you that must have changed.’ Now suppose 
that our two shapes draw identical pictures of themselves, 
and agree that whoever matches the picture deserves the 
name ‘RIGHT’. Let us follow the fate of the shape on 
the left as it moves around the Möbius space. It continues 
to match its picture of ‘RIGHT’, and finds its way back to 
its companion. 
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Now they are different again, but both of them are 
‘RIGHT’. This is because we are mistaken in thinking we 
have said anything at all when we made our claims about 
same and different. There is no essence to being of one 
form or the other – it is in comparison that each claims its 
place (being the ‘same’ or ‘different’ to one another). In 
the Möbius space, left is identical to right, and there simply 
is no parity to speak of.

Over the last few centuries our understanding of geoÂ�
metry has been radically transformed, primarily because of 
the growth of algebra and the infinitesimal calculus. When 
explaining calculus people naturally refer to vanishingly small 
quantities: a family of concepts that are fraught with philo-
sophical difficulties. However, over the course of centuries 
our conception of the infinitely small has been successfully 
tamed, as matheÂ�maticians have used formal logic to formu-
late explicitly the definition of the limit case. In the next 
chapter we will see how matheÂ�maticians have tackled other 
kinds of matheÂ�matical infinity, extending our concept of 
the infinite, and proving results about infinite sets.



Chapter 8: 
WORKING WITH THE 

INFINITE

‘What has been said once can always be repeated.’
Zeno of Elea, c.â•›490–430 bc

Blaise Pascal and the Infinite in Math
Given any number, we can always say ‘add one’. What 
is more, there is nothing to stop us from repeating this 
instruction. The unbounded or infinite character of the 
integers is a profound and basic truth: there is no largest 
number. We can also encounter the infinite by asking, 
‘How many points on a line?’ Given any line we can 
matheÂ�matically chop it in half by identifying the mid-
point. This operation leaves us with two ordinary lines, 
so we can chop and chop again an infinite number of 
times. 

The matheÂ�matically infinite was a hot topic of debate 
for Greek matheÂ�maticians and philosophers, as well as 
later scholars. In particular, Aristotle famously proposed 
that there are two kinds of infinity: the potentially infinite 
and the actually infinite. An actual infinity is one that is 
completed, definite and consists of infinitely many elements. 
In contrast, a potentially infinite sequence is simply a finite 
sequence that can be extended indefinitely. So, for example, 
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Aristotle described a line of finite length as potentially 
infinite with respect to division, because a line can be 
divided into two halves, which in turn can be divided into 
four quarters, and so on ad infinitum. To this day many 
people are prepared to acknowledge only the existence of 
the potentially infinite, denying the reality of actual infin-
ities. 

In the previous chapter we touched on the topic of 
‘infinitesimals’. That is to say, at various points in history, 
matheÂ�maticians have studied curves by considering an 
interval that becomes smaller and smaller. This process 
suggests the idea of an infinitely small interval, but matheÂ�
maticians do not need a special number that is infinitely 
small: we simply use the formal notion of a limit case. To 
put it another way, matheÂ�maticians skilfully avoided refer-
ence to the infinitely small. As we have seen, the real 
number 0.999… is equal to 1, and there is no infinitely 
small gap between them. 

In this chapter we will see some other ways that matheÂ�
maticians have worked in the shadow of the infinite. In 
particular, we will examine a form of proof first described 
by Blaise Pascal, which invokes Zeno of Elea’s principle 
of saying something and repeating. We will also see how 
Georg Cantor established transfinite matheÂ�matics, taming 
the actually infinite as a part of set theory. First, I want 
to write about my favourite thinker: Blaise Pascal (1623–
1662).

Pascal thought very deeply about uncertainty, authority 
and rules, and his insights permanently changed the way 
we think about science and religion. No medieval person 
would question whether belief in Christianity was ‘rational’ 
or not, as it was assumed that evidence for the existence 
of God was all around us. Pascal was a deeply religious 
man, but he was clear that we are led to Christ by the 
heart, not by reason, and we should admit that accepting 
the teachings of the church involves a leap of faith. 
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Furthermore, Pascal was very clear that in some cases, but 
not others, existing authorities have to be respected. For 
example, you cannot understand law without looking to 
see what the law courts have already decided, as the very 
meaning of legal words depends on the history of law. 
Similarly, the religious leap of faith is to accept the word 
of prophets. However, Pascal was also capable of pene-
trating scepticism, and he was very clear that when it comes 
to scientific knowledge, a public experiment carries more 
weight than the word of Aristotle himself. Indeed, his 
public demonstrations of the behaviour of barometers were 
a real turning point in establishing experiment as the ulti-
mate scientific authority.

Pascal’s genius was evident from an early age, and when 
he was only nineteen, he realized that his father’s job of 
calculating taxes could be done by a clock-like device. For 
example, you can represent the procedure of increasing an 
integer by one by rotating a cog by one notch. Pascal was 
inspired to construct a device that physically embodied 
the basic laws of taxation, and he spent three years refining 
one of the world’s first mechanical calculators. These ingen-
ious devices were known as ‘pascalines’, and although a 
few curious individuals purchased them, the idea was liter-
ally 300 years ahead of its time, so in 1652 the production 
of pascalines was halted. 

Pascal also deserves to be celebrated as a founding father 
of statistics: a discipline that lies at the heart of all of modern 
science. Statistics is the art of reasoning from incomplete 
information, and more than anyone who lived before him, 
Pascal pondered the relationship between reason and uncer-
tainty. He helped to invent the matheÂ�matics of probability, 
and he was also one of the key figures in developing the 
modern understanding of air pressure, vacuums, and other 
related phenomena. Not only was Pascal a first-rate scien-
tist and mathematician, he was also the author of one the 
most vivid portraits of the human condition ever written, 
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the Pensées, which defends Christianity by examining the 
roles of reason, emotion, faith and uncertainty in the life 
of man. And if his many intellectual achievements were 
not enough to win our admiration, he was also a remark-
ably charitable man. Indeed, when he decided to give 
away most of his possessions, he spent some time thinking 
about how his wealth could do the most good, which led 
him to invent the idea of subsidized public transport. 
Pascal’s proposal was to charge people a small sum for 
catching a specially purchased coach, and all the profits 
from this scheme were used to relieve the worst effects 
of poverty. 

Reasoning by Recurrence
As well as grounding their work by the analysis of concrete 
cases, matheÂ�maticians have always searched for the most 
general of truths. It is this impulse that drives matheÂ�matics 
to ever increasing levels of abstraction. There are various 
ways to establish general results. For example, the intro-
duction to this book contains an informal proof of 
Pythagoras’ Theorem, where we saw that by rearranging 
four right-angled triangles we can turn an ‘a-square’ and 
a ‘b-square’ into a ‘c-square’. Because the argument refers 
only to general properties of right-angled triangles, and 
we don’t need to know the actual values of the lengths a, 
b and c, we can correctly conclude that Pythagoras’ 
Theorem is true for every right-angled triangle, and not 
just the particular one shown in our drawing. 

There is another fundamental method for proving general 
statements, which was first explicitly stated in Pascal’s The 
Arithmetic Triangle (1654). This technique is rather 
misleadingly known as ‘proof by induction’. To gain some 
understanding of this general form of proof, let’s start by 
considering the following demonstration that:
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1+ 2 + 3+ 4 + 5 = 52 + 5
2

:

It should be clear that the same area is measured whether 
we break our shape into component squares and count 
them, or component triangles. This means that our equa-
tion must be true, but what about the more general formula 

1+ 2 + 3+ ... + n = n2 + n

2 â•›
? How can we be certain that this 

statement is always true? In other words, how can we be 
sure that our equation is correct for every integer n, and 
not just for nâ•›=â•›5? Unlike our drawing for Pythagoras’ 
Theorem, we cannot simply say that our integer n is irrel-
evant, as salient features of the drawing depend on this 
particular value. Despite this fact, it is still possible to 
prove the general case. 

When nâ•›=â•›1, our general equation reduces to the specific 

case 1 = 12 +1

2
, which is certainly true. Furthermore, we 

can prove that if our equation is true in the case where 
nâ•›=â•›N, then it must also be true in the case where nâ•›=â•›Nâ•›+â•›1. 
That is to say, if we assume that 1â•›+â•›2â•›+â•›…â•›+â•›Nâ•›=â•›N2â•›+â•›N

2 , then 
it follows that: 

1â•›+â•›2â•›+â•›…â•›+â•›Nâ•›+â•›(Nâ•›+â•›1)â•›=â•›N2â•›+â•›N
2 â•›+â•›(Nâ•›+â•›1), and 

N2â•›+â•›N
2 â•›+â•›(Nâ•›+â•›1)â•›=â•›â•›N2â•›+â•›2Nâ•›+â•›2â•›+â•›N

2 â•›â•›=â•›â•›(N+â•›1)2â•›+â•›(N+â•›1)
2 â•›.

1
2

3
4

5

5 5
22

2
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We have now shown that if our equation is true in the case 
where nâ•›=â•›N, then it must also be true in the case where 
nâ•›=â•›Nâ•›+â•›1. Because our equation is true for the case nâ•›=â•›1, 
our general argument shows that it is also true for nâ•›=â•›2. 
Because our equation is true for nâ•›=â•›2, we can see that it is 
also true for nâ•›=â•›3. This means that the equation also holds 
for nâ•›=â•›4, which means that it holds for nâ•›=â•›5, and so on for 
every integer in turn. The way that this argument proceeds 
from an initial case (nâ•›=â•›1) to the general case (n is any 
integer) identifies it as a ‘proof by induction’. MatheÂ�matical 
induction is a very general form of argument, which can 
be applied to many different problems. 

One of the most curious things about matheÂ�matical 
induction is that although it was first explicitly used as 
recently as 1654, the concept has a very long prehistory. 
For example, Euclid’s proof that there are infinitely many 
primes implicitly involves something very similar to the 
modern form of proof by induction, but the fundamental 
‘inductive’ principle was not explicitly identified. Indeed, 
I suspect that the oldest form of argument closely related 
to proof by induction is genuinely prehistoric, as we can 
imagine someone in the distant past making the foolishly 
claim that ‘I have counted as high as can ever be counted’. 
We could show that they are mistaken by counting one 
higher, perhaps adding one mark to their tally. If they then 
said, ‘OK, I have counted one higher, and by doing so I 
have reached the highest number that can be counted,’ we 
should protest at their stupidity. After all, our ability to 
add an extra mark to their tally does not depend on the 
number of marks that are already present! 

In other words, our objection can always be repeated, 
and so there can be no integer that is larger than all the 
others. A similar sense of conceptual necessity is at play 
when we construct a proof by induction. We start by showing 
that something holds in the particular case where nâ•›=â•›1, then 
we use the general or inductive argument to prove that this 
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implies the result for nâ•›=â•›2, and because we accept that this 
second step of the argument can always be repeated, we are 
logically compelled to conclude that the result holds for the 
entire, infinite sequence of the natural numbers. 

Although we have long appreciated the possibility of 
endlessly repeating steps in our reasoning, Pascal deserves 
most of the credit for explicitly developing the two-stepped 
method of inductive proof that we are taught today, and 
he used it to demonstrate some enormously significant 
algebraic results. Another notable moment in the history 
of matheÂ�matical induction came in 1713, when Jacques 
Bernoulli used an inductive proof to bring some much 
needed rigour to the rapidly developing field of matheÂ�
matical analysis. It may have been slow in coming to the 
conscious forefront of matheÂ�matical thought, but by the 
latter part of the eighteenth century induction was a widely 
recognized tool in Europe’s matheÂ�matical armoury. 

The Mathematics of the Infinitely Large
Although the infinite was an important and contentious 
concept for the Greeks, it never occurred to them to 
compare the infinity of integers with the infinity of points 
on a line. The idea that there is more than one kind of 
actually infinite number was first articulated in the second 
and third centuries bc, by Jaina matheÂ�maticians working 
in India. Jains believe that contemplating very large or 
infinite numbers has a mind-expanding spiritual value, and 
Jain cosmology was clearly a crucial factor in stimulating 
discussion of the matheÂ�matically infinite. According to 
G.  G. Joseph’s The Crest of the Peacock, Jain matheÂ�
maticians recognized five distinct kinds of infinite numbers: 
‘Infinite in one direction, infinite in two directions, infinite 
in area, infinite everywhere and perpetually infinite.’ 

It is hard to be certain, but the matheÂ�matical traditions 
of Jainism probably didn’t impact on the European under-
standing of the matheÂ�matically infinite. There is a strong 
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argument for claiming that the crucial factor re-igniting 
the question of infinity was the long, complex but ulti-
mately decisive shift from the study of numbers to the 
study of number systems. Ancient peoples studied numbers 
and the properties we can demonstrably ascribe to them, 
but in the nineteenth century matheÂ�maticians began to 
compare systematically entire number systems. For 
example, it is a characteristically modern observation to 
note that the integers and the real numbers are structurally 
similar, in that adding or multiplying an integer by an 
integer yields an integer, while adding or multiplying a 
real by a real yields a real. 

As well as demanding a level of formal precision and 
rigour that was often lacking in earlier work, nineteenth-
century matheÂ�maticians distinguished themselves by 
studying an ever-expanding and exotic range of matheÂ�
matical objects. This proliferation of abstract objects put 
new pressure on the foundations of matheÂ�matics. The result 
was a remarkable growth in the field of matheÂ�matical logic 
(where fundamental work is done to this day), and the 
development of set theory.

It was in this context of radical innovation that George 
Cantor (1845–1918) began to rethink the way we approach 
the infinite, constructing arguments and establishing proofs 
that directly referred to actual, infinite sets. Previous matheÂ�
maticians had said that there are infinitely many integers, 
but they did not think of there being an actual number 
corresponding to the total number of integers, precisely 
because no finite number could be big enough. Cantor’s 
controversial claim was that there is a kind of number 
which is equal to the total number of integers, but this 
number is a transfinite number, and not a finite integer. 

Cantor’s Pairs
George Cantor spent his early childhood in St Petersburg, 
but his family moved to Germany when he was eleven. 
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As a student he worked in some of the finest matheÂ�matics 
departments in the world, but unfortunately his career as 
a professor was much less successful than it could have 
been. Stuck in a minor university, Cantor is now famous 
for a series of six articles that were published between 
1879 and 1884. These remarkable papers formed an intro-
duction to the radical new kind of set theory. 

Cantor was gripped by the philosophical implications 
of his work, and as a devout Lutheran, he believed that his 
work on transfinite numbers was directly connected to the 
mind of God. Cantor’s work was controversial, and was 
bitterly opposed by many academics, including the great 
Poincaré. The mathematician Leopold Kronecker (1823–
1891) was a particularly harsh critic, dismissing Cantor’s 
work as ‘humbug’ and ‘matheÂ�matical insanity’. Like many 
people before him, Kronecker believed that matheÂ�matics’ 
soundest and most fundamental base must be a number 
theory derived from counting, as he thought that the only 
legitimate matheÂ�matical concepts were those that can be 
‘constructed’ in a finite number of steps. Kronecker was 
even suspicious of certain Euclidean proofs, and his attitude 
can be summarized by his famous remark, ‘God made the 
integers; everything else is the work of man.’

Cantor suffered from depression, and was understand-
ably distressed by the vehement opposition that his work 
encountered. He desperately wanted to teach in Berlin, 
but Kronecker could block his appointment, and as the 
editor of one of the two major matheÂ�matics journals, 
Kronecker could also limit his opportunities to publish. 
Cantor’s radical work on set theory and transfinite matheÂ�
matics was ultimately influential, but his ideas did not gain 
widespread acceptance until the beginning of the twentieth 
century. It is worth emphasizing that Cantor did not win 
the argument on philosophical grounds (where the debate, 
though shifted, continues to this day). His principles were 
ultimately accepted because the set-theoretic framework 
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that his work inspired is incredibly useful. As David Hilbert 
and many other matheÂ�maticians realized, almost all the 
different branches of matheÂ�matics can be described in set-
theoretic terms, including the disciplines that were new at 
the time, such as topology or real function theory. 

Two of Cantor’s matheÂ�matical ideas are exceptionally 
simple and profound. The first of these truly great ideas 
was developed with one of the greatest logicians of all 
time: Gottlob Frege (1848–1925). Essentially, the two men 
constructed a matheÂ�matically fruitful definition for when 
two sets contain the same number of elements, and they 
did this by recognizing the deep significance of the 
following kind of everyday situation. Imagine getting on 
a bus where every seat has a different person in it, and 
where there are some people without seats. This observa-
tion tells us that there are more people than seats without 
counting either number. Cantor built on this by recognizing 
the fundamental role that can be played by a one-to-one 
mapping between sets. In our bus example we have a one-
to-one mapping from the set S (the seats) to the set P (the 
people), precisely because every seat has a different person 
sitting in it. To put it another way, we can make a rule 
such that when we are given a seat as input, we return the 
person sitting in it as an output. This rule is known as a 
‘one-to-one mapping’ because every different input results 
in a different output. 

Every seat can be associated with a unique person 
(namely the person sitting in that seat), but conversely it 
is impossible to give a one-to-one mapping from P to S. 
We cannot allocate every person a different seat when there 
are more people than seats! We can generalize this principle 
by saying that a set B is at least as big as a set A if and 
only if there is a one-to-one mapping from A to B. In 
other words, if every element of A can be paired up with 
a different element of B, then we say that B is at least as 
big as A. Similarly, A and B are said to be the same size 
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if and only if A is at least as big as B, and B is at least as 
big as A. It turns out that this definition is equivalent to 
saying that two sets are the same size if and only if we 
can pair up all of their respective elements.

This is a natural extension of the everyday notion of 
size – if we have seven apples and seven oranges then we 
can match them up one against another, and this observa-
tion is part of the meaning of ‘seven’. However, because 
this notion of size does not involve counting we can also 
apply it when reasoning with infinite sets. That is to say, 
infinite sets can also be paired up. For example, every 
integer n can be paired with a unique even number 2n, or 
a unique square number n2.

The possibility of pairing up the integers with the square 
numbers implies a truth that Galileo stated, long before 
the work of Cantor: ‘Neither is the number of squares 
less than the totality of numbers, nor the latter greater 
than the former.’ Also notice that we can set about gener-
ating a list of every positive integer. Similarly, we can 
generate a list of every (positive) even number. Since every 
element appears somewhere in the defining list, we say 
that these sets of numbers are countably infinite. Because 
we can pair elements according to place (the first thing in 
list one is paired with the first thing in list two, and so 
on), we can correctly conclude that every countably infi-
nite set is the same size. 

Many people are somewhat perturbed to find that a set 
can be the same size as one of its subsets. For example, 
there are as many integers as there are even numbers, even 
though half the integers are odd. The expectation that a 
subset must be smaller comes from our experience of 
counting the finite, but these expectations do not apply at 
the infinite level. After all, half an infinite set is still infi-
nite! So what about the set of all fractions? How does that 
compare in size to the set of all the integers? If you try 
to count the fractions on a number line by working from 
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the smaller fractions to the larger ones, it should be clear 
that you have to miss most of them out. Whichever frac-
tion you count first will be larger than infinitely many 
other fractions, and more generally every gap between 
successive fractions on your list will contain infinitely many 
rational numbers. Despite this fact, it is actually possible 
to specify a list that contains every single fraction. In other 
words, the rational numbers are countably infinite. 

As we zigzag through the diagonals of this grid, we even-
tually hit every positive fraction. We can list every single 
fraction by starting with 0, and then working our way 
through the grid shown above, repeating every element in 
both positive and negative form.

A similar image shows that if we have countably many 
countable lists, we can combine them into a single count-
able list. All we need to do is replace row one with our 
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first list, row two with our second list, and so on. Our 
zigzag path along the diagonals then incorporates every 
element from every list. Another fact that many people 
find surprising is that the number of (real) points on a 
line is the same as the number of points on a square. To 
see that this is so, recall that each point on the number 
line can be identified by its distance 0.a1a2a3a4 … from the 
origin. According to Dedekind’s definition of a line, a line 
is just the set of all such points, and given a particular 
point (i.e., given a particular sequence of digits a1, a2, …), 
we can pair the point in question with a point inside a 
square, namely the point with coordinates (0.a1a3a5 … , 
0.a2a4a6â•¯…). Because the points on a line can be paired 
with the points in a square, it follows that there are the 
same number of points on a line as the number of points 
in a square: an infinite number that is provably larger 
than the number of integers.

The Diagonal Argument
At this point you would be forgiven for thinking that 
every infinite set is the same size. To see that this is not 
the case, we must consider the following question: ‘Is it 
possible to list every real number in turn?’ Cantor’s way 
of answering this question was the second of his excep-
tionally deep but simple ideas. His argument constitutes 
a novel kind of proof, the basic form of which is frequently 
borrowed by matheÂ�maticians. Perhaps the easiest way to 
explain his argument is to tell a story, where we imagine 
that George Cantor has been challenged to a guessing game 
by Lister the Number Genie: 

Lister: George, I am challenging you to a guessing game. 
I have a list of real numbers, represented by their decimal 
expansions. If you can guess a real number that isn’t on 
my list, I will grant you a wish. 
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George: Very well, I accept. Can I see this remarkable list 
of yours? 

Lister: Of course, here it is: 
0.12345… 
0.18345… 
0.67391… 
0.23475… 

George: This is ridiculous. Do you seriously expect me 
to list an infinitely long real number? 

Lister: No, no. I haven’t got all day you know. Just tell 
me your general method for calculating the n’th digit, and 
I will do the rest. 

George: OK. The first digit of the first number on your 
list is 1, so to ensure that my number is different from 
the first number on your list, I am picking 3 as my first 
digit. The second digit of your second number is 8 (i.e. 
not 3 again), and so the second digit of my number is 
another 3. The third digit of the third number on your 
list is 3, so to ensure that my number is different from 
the third number on your list, I shall pick a number whose 
third digit is 2.

Lister: You’re making your number up as you go along, 
you filthy cheat! 

George: Are you sure it isn’t you that’s cheating? I mean, 
you do have a definite fixed list don’t you? 

Lister: Of course. 

George: Well then, I have a definite fixed number, namely 
the number you get by going down the diagonal of your 
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list swapping 2s for 3s, and replacing every other digit 
with a 3.

Lister: OK, OK – I give in. Your ‘diagonal number’ must 
differ in at least one decimal place to every number on 
my list. For example, it cannot equal the millionth number 
on my list, because by definition the millionth digit of 
your number is different from the millionth digit of the 
millionth number on my list. I don’t suppose you fancy 
a rematch? 

George: Will I get another wish if I win? 

Lister: Sure, but this time you have to provide the list. 

George: Fair enough. Is it all right if instead of comparing 
digits, we compare finite definitions of numbers, written 
out in ordinary matheÂ�matical language? 

Lister: That’s fine by me. Now tell me, what kind of list 
are you going to use? 

George: Alphabetical, and by order of length. 

The set of definable numbers is countable, because every 
collection of names or definitions can be listed systemati-
cally. You simply start with the shortest names or definitions 
and move on to the longer ones, listing them alphabetically. 
Although the set of definable real numbers must be count-
able, Cantor’s diagonal argument proves that every list of 
real numbers is necessarily incomplete. He showed that 
given any list whatsoever, we can define a number that 
isn’t on the given list. We simply define a number that is 
different to the first number in our list because it has a 
different first digit. Similarly, by definition our number 
must be different to the second number on the list because 



214	 MATHEMATICAL THOUGHT

it has a different second digit, and so on. On the other 
hand, the set of finite definitions can be put into an alpha-
betical list. This argument shows that the set of real numbers 
must be uncountable, and most real numbers cannot have 
a finite definition. 

Perhaps the most important point is that Cantor exhib-
ited two clear sizes of infinity. So, for example, the set of 
all integers is countably infinite, while the set of all real 
numbers is uncountably infinite. This hierarchy of size 
can also be extended in a natural fashion to contain infi-
nitely many different sizes of infinity. More specifically, 
Cantor showed that given any set, the set of all of its 
subsets must be larger than the original set. This means 
we can construct an infinite sequence of larger and larger 
infinite sets: first we have the set of all integers (say), then 
we have the set of all subsets of the integers, then we have 
the set of all subsets of the set of all subsets of the integers, 
and so on. 

The other critical point is that because the idea of a set 
is so very general, a vast range of matheÂ�matical structures 
can be described in the language of sets. Partly for this 
reason, the notion of a set has become central concept of 
matheÂ�matical logic. The task of a logician is to think about 
thinking. Thinking about thinking is very difficult, but 
some of the most important intellectual developments in 
human history have emerged from our attempts to char-
acterize the full extent of legitimate matheÂ�matical reasoning. 
As we shall see in the following chapter, the first few 
decades of the twentieth century witnessed an explosion 
in matheÂ�matical logic, as many of the greatest matheÂ�
maticians strove to describe ‘the foundations of matheÂ�matics’. 
In particular, the great logician Gottlob Frege helped to 
bring set-theoretic concepts to the forefront of the matheÂ�
matical discourse, using the formalism of set-theory to 
elucidate essential features of matheÂ�matical reasoning itself.



Chapter 9: 
THE STRUCTURES OF 

LOGICAL FORM

‘Really good systems of logic, says Alembert, are of 
use only to those who can do without them. Through 
a telescope the blind see nothing.’

Georg Christoph Lichtenberg, 1742−1799

The Formal Logic of AND, OR and NOT
The study of logic is an ancient pursuit, but it is fraught 
with the most serious of difficulties. The principle barrier 
(or, rather, the unnerving lack of barriers) is the nature of 
the subject matter itself. For example, a good legal argu-
ment must be ‘logical’, avoiding self-contradiction and 
contradiction with established law, but the skill of devel-
oping such a case is part of the art of law itself. Similarly, 
a good scientific argument needs to be logical, but the skill 
involved is science itself. The difficulty for the logician is 
that they aim to study the basis or framework for our valid 
deductions, but they are interested in doing this for the 
most general or abstract of contexts imaginable, where we 
literally do not know what subject is under discussion. 

It is difficult to consider logical deduction regardless of 
the subject at hand, but that is precisely what logicians 
have tried to do. As Aristotle observed in the Organon, 
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there are certain kinds of deductive pattern that crop up 
time and time again. The basic metaphor underpinning 
this form of deduction is that the things of this world can 
be put into categories, and it seems that we think about 
categories as though they were spatial containers. Cognitive 
scientists believe we have an innate capacity to appreciate 
‘container schemas’, such as the example of a jar inside a 
fridge that we considered in Chapter 1. That is because 
people who have never even heard of matheÂ�matics can 
deduce that if a jar is inside a fridge, and an olive is inside 
the jar, then the olive must be inside the fridge. 

Since at least the time of Aristotle, we have understood 
that the properties of a thing can place that thing in a 
certain category (namely, the category of things with the 
given property), and some categories are understood as 
being contained within another, larger category. For 
example, we might accept that the category of ‘men’ is 
contained within the larger category of ‘mortal things’. It 
follows that if Socrates is in the category of men, Socrates 
must also be in the category of mortal things, just like an 
olive that is inside the jar must also be inside the fridge.

Crucially, this example of deduction fits a general pattern, 
and for millennia Aristotle’s account of proper deduction 
was considered to be synonymous with valid, logical 
thinking. Logical deductions lead us from one statement 
to another, so every deduction begins with an initial 
premise. For example, we might begin by accepting that 
the jar really is contained within the fridge, or that the 
category of men really is contained within the category of 
mortal beings. Of course, in daily life we don’t always 
explicitly refer to an image of one category contained within 
another, or worry too much about what kinds of things 
our categories contain. For example, consider the following 
statement: ‘If it is snowing, then it must be cold outside.’ 
We might accept that this statement is true, and prefer this 
phrasing to saying that the category of ‘occasions when it 
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is snowing’ is contained within the larger category of ‘occa-
sions when it is cold’. After all, we aren’t really sure where 
the category of ‘occasions when it is cold’ is meant to 
begin or end, but in a sense that doesn’t matter. The essen-
tial point is that if I accept the statement ‘If it is snowing 
then it must be cold outside,’ and I also agree that it is 
snowing, I would be crazy to think that it is warm outside. 

We understand that if I say that ‘It is snowing but it is 
not cold outside’, I am contradicting my previously stated 
belief that ‘If it is snowing, then it must be cold outside.’ 
Furthermore, it is the general form of the ‘if … then …’ 
assertion that enables us to make this deduction. Indeed, 
that is the crucial point: to make the deduction, we do not 
need to interrogate the meaning of the words ‘snows’ and 
‘cold’, we simply need to understand the logical significance 
of ‘if … then …’. 

We can demonstrate this point with a second example. 
If I were to say, ‘If Gobbledygook, then Flibbertigibbet,’ 
we can sensibly agree that the logical significance of my 
‘if … then’ assertion is that whenever I accept the state-
ment ‘Gobbledygook’, I must also accept the conclusion 
‘Flibbertigibbet’, precisely because I have already agreed 
that ‘if Gobbledygook, then Flibbertigibbet’. In other 
words, the following is a legitimate deduction, where the 
conclusion (written below the line) is logically entailed by 
the premises (written above the line): 

‘If Gobbledygook, then Flibbertigibbet.’
‘Gobbledygook.’ 
----------------------------------------------------
Therefore ‘Flibbertigibbet’.

A few decades after Aristotle’s death, Euclid brilliantly 
demonstrated the power of orderly, deductive reasoning. 
His axiomatic approach showed that the large and complex 
catalogue of geometric truths known in Ancient Greece 
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could all be deduced from a remarkably simple collection 
of fundamental axioms. Many of Euclid’s deductions subtly 
relied on geometric intuition, but deductions of the kind 
demonstrated above can be carried out in an automatic, 
‘mindless’ fashion, without the need to picture the subject 
matter at hand. 

Indeed, we can make valid deductions simply by spec-
ifying the proper way to use logical words such as ‘AND’, 
‘OR’ and ‘NOT’. So, for example, we can make the working 
assumption that our ‘atomic statements’ A and B are either 
‘true’ or ‘false’. Now, by definition, we say that the state-
ment ‘A AND B’ is true if and only if the statements ‘A’ 
and ‘B’ are both true. That might sound like a circular 
definition (‘AND’ means ‘and’), but the crucial point is 
that we can use logical words to generate sentences from 
other, smaller sentences. For example, given the statements 
‘A’, ‘B’ and ‘C’, we can construct the statements ‘A AND 
B’, ‘(A AND B) OR C’, ‘NOT ((A AND B) OR C)’, and 
so on. Furthermore, the ‘truth’ of each of these compound 
statements is entirely determined by the ‘truth’ of their 
component pieces. In other words, we can draw up defin-
itive tables that tell us when we should assent to a 
compound statement given nothing more than the truth 
or falsity of the atomic statements ‘A’, ‘B’ and ‘C’.

Many of the statements that we can construct in this 
fashion are said to be logically equivalent. We say that two 
sentences are logically equivalent if they are true or false 
in exactly the same cases. For example, ‘A AND A’ is true 
if and only if ‘A’ is true, so we say that these sentences 
are logically equivalent. Similarly, in classical logic the 
statement ‘A’ is logically equivalent to ‘NOT (NOT A)’. 

The assertion ‘if A is true, then B is true’ is particularly 
important, and in formal logic this is typically written  
‘A B’. This statement asserts that whenever ‘A’ is true, 
‘B’ is also true. It follows that ‘A B’ is false if and only 
if ‘A’ is true but ‘B’ is false. That is to say, there is only 
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one state of affairs that contradicts the claim that ‘A B’, 
namely the case where ‘A’ is true but ‘B’ is false. In other 
words, in classical logic the statement ‘A B’ can be 
rewritten in the logically equivalent form ‘NOT (A AND 
(NOT B))’.

Classical Logic and the Excluded Middle
The statement ‘A OR (NOT A)’ can be represented by 
the following diagram: 

Our scheme presents two acceptable possibilities: the case 
where ‘A’ is true, and the case where ‘NOT A’ is true. In 
either case, ‘A OR (NOT A)’ must be true, by definition 
of the word OR. Statements that are true in every case are 
called ‘logical truths’ or ‘tautologies’. Because it does not 
matter what the statement ‘A’ is, we can plug any formal 
sentence into the form ‘A OR (NOT A)’, and get another 
logical truth. For example, 

‘((A AND B) OR C)’ OR ‘(NOT ((A AND B) OR C))’ 

is also a logical truth. 

The crucial point to understand is that logical truth is a 
testable property. That is to say, given any logical struc-
ture (constructed by using the words AND, OR and 
NOT), we can plug in a ‘valuation’ of the form ‘A is 
true, B is false, C is true, etc.’, and systematically work 
our way along the sentence in question. We eventually 
either get ‘true’ or ‘false’ as an output. Since there are 
finitely many possible valuations, we can test and see if 
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any given statement is a logical truth. That is to say, 
given any such sentence, we systematically check to see 
whether or not every possible valuation gives the output 
‘true’. 

When we are using a formal language, it really doesn’t 
matter what our atoms ‘A’ and ‘B’ assert, though it is 
very significant that in every case we assume that our 
atoms must be unequivocally ‘true’, or unequivocally 
‘false’. This deep-rooted feature of classical logic is known 
as the law of the excluded middle. There are modern 
variations of matheÂ�matical logic that do not assume this 
principle, and it is worth noting that in ordinary speech 
we are not always motivated to grant such an assumption. 
The example that is famous among philosophers is the 
statement ‘Hamlet’s grandmother has blue eyes’. Since 
we have no reason to assert that there are any facts what-
soever concerning Hamlet’s grandmother, it may seem 
inappropriate to think that this statement must be either 
‘true’ or ‘false’. However, even though Hamlet’s grand-
mother is an utter phantom (being an as-yet-unwritten 
fictional character), we must admit that it is quite impos-
sible to cast a film tracing Hamlet’s ancestors without 
coming to a decision as to whether or not she has blue 
eyes. 

Ordinarily we distinguish between factual accounts and 
works of fiction by engaging with the wider world, looking 
for the occasion to which our words might fit. In the 
peculiar case of matheÂ�matics there is clearly a distinction 
between the factual and the false, but the discipline is 
unique in that matheÂ�maticians have no grounds for 
sustaining a distinction between the factual and the fictional. 
We cannot make such a distinction because the thing in 
the world that testifies to matheÂ�matical truth is the matheÂ�
matical utterances themselves. In other words, matheÂ�matical 
language brings into being the very truth that it proclaims. 
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Mechanical Deductions
If we are given a sentence constructed out of the words 
AND, OR and NOT, we can systematically check to see 
whether or not our statement is true in each and every 
case. So, for example, we can see that ‘A OR NOT A’ is 
true in every case; ‘A OR B’ is sometimes true; while ‘A 
AND NOT A’ is always false.

Furthermore, we can be very efficient in the way that 
we identify logical truths. It is possible to make a machine 
(e.g. a computer) that uses only a few different rules to 
generate every logical truth in turn. The basic idea is that 
every finite collection of statements can be used to generate 
a finite number of ‘logical offspring’. For example, the 
statements ‘A’ and ‘B’ can be used to produce the logical 
offspring ‘A AND B’. Similarly, the statements ‘A OR B’ 
and ‘NOT A’ can be used to produce the logical offspring 
‘B’. Notice that in the first example we have two shorter 
sentences producing a longer one, while in the second we 
have two longer sentences producing a shorter one. 

The essential point is that given any collection of state-
ments we can systematically set about generating their 
logical offspring. For example, we can feed a finite list of 
statements into a computer, and mechanically generate a 
further list of statements, which I have described as the 
logical offspring of the original statements. If we start with 
logical truths then we generate offspring that are also logical 
truths. If we start with a statement such as ‘A’ (which is 
not a logical truth), we will generate more than just the 
logical truths. In fact, the statements that we generate are 
precisely those statements that are true whenever statement 
‘A’ is true (i.e. for every valuation that says ‘A is true’.) 
For example, given the statement ‘A’, our machine will 
eventually generate the statements 

‘A OR B’ and ‘A AND (B OR (NOT B))’, 
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because both these statements must be true whenever ‘A’ 
is true. The inputs for our logic machine are called axioms, 
while the statements our machine generates (given an 
input A) are called ‘the logical consequences of A’. 
Arguments in the language of AND, OR and NOT (or 
AON for short) are usually called ‘derivations’. These 
are just chains of statements, starting with the axioms, 
such that every statement is the offspring of the state-
ments that precede it. 

Arguments of this form show that if we believe the 
axioms, then we should also believe every sentence in the 
argument, precisely because we have accepted practice for 
using the words ‘AND’, ‘OR’ and ‘NOT’. Indeed, this is 
the heart of logical analysis, as we are able to make logical 
deductions precisely because we use logical words when 
we state our axioms. That is to say, it is the logical struc-
ture of our axioms that enables us to draw conclusions. 
To put it another way, deduction is very important, but 
when we make a valid deduction, we cannot learn anything 
that wasn’t already implicit in the axioms themselves.

Quantifiers and Properties
For over two millennia, logic barely progressed beyond 
the ideas of Aristotle. Two people who did make some 
progress were Gottfried Leibniz (1646–1716) and George 
Boole (1815–1864), who had the brilliant idea of replacing 
the logical terms of ordinary language with symbols and 
symbolic operations. In other words, Leibniz was pres-
cient enough to dream of turning logical deduction into 
a form of calculation, while Boole successfully developed 
a formal language equivalent to AON. This was a remark-
able innovation, but there is very little matheÂ�matics that 
can be done if your only logical words are AND, OR 
and NOT. 

The idea that matheÂ�matics is or should be an exercise 
in logic first became truly plausible with the work of 



	 THE STRUCTURES OF LOGICAL FORM� 223

Gottlob Frege (1848–1925). The pivotal moment occurred 
in 1879, when Frege published the enormously influential 
Begriffsschrift (or ‘Concept Script’). This famous work 
contained an incredibly powerful system of formal logic, 
which Frege and others developed over the following 
decades. In essence, he recognized that we can produce a 
perfectly effective automatic logic machine for formal 
languages that are much more complex than AON. This 
is crucial, because to rigorously state their arguments, 
matheÂ�maticians need a formal language that includes the 
phrases ‘EVERY thing’ and ‘SOME thing’. Without these 
words we cannot ask difficult questions about the integers. 
For example, we could not ask whether it is true that ‘for 
EVERY integer n, there is SOME sequence of prime 
number p1, p2, ... , pm such that n = p1 p2 ... pm’.

One of the first things to note about these logical words 
is that when we use the words ‘EVERY thing’ or ‘SOME 
thing’, it doesn’t really matter what kind of ‘thing’ we are 
talking about. This comment may sound rather peculiar, 
but remember, in formal languages such as AON, it really 
doesn’t matter what our atoms A, B and C refer to. That 
is to say, we can understand statements in this language 
as a finite collection of ‘meaningless’ symbols, because it 
is the words AND, OR and NOT that do all the work 
when we make our deductions. Similarly, in Frege’s more 
advanced logical language, it is the words AND, OR, 
NOT, EVERY and SOME that do all the work, so in a 
sense we don’t need to worry about the meaning of any 
other term.

As well as having symbols for EVERY and SOME, 
matheÂ�maticians also require symbols that indicate proper-
ties, as an integer may or may not be even, square or 
triangular (say). It is not that each new matheÂ�matical 
concept requires a fundamentally new form of logic, it is 
just that when we write our matheÂ�matical sentences in 
formal language, we need some kind of symbol to express 
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the idea that a given thing has a given property. As far as 
the logic is concerned it doesn’t really matter what these 
properties are, but it is a fundamental truth that in this 
language, EVERY thing either has property P or does 
NOT have property P. If the property in question is a 
bit fuzzy, so it does not make sense to assume that things 
either have the property of not, Frege’s logic system is 
not appropriate, and we need to use a different kind of 
logical language.

The basic idea is that Frege’s logical language contains 
the words AND, OR, NOT, EVERY and SOME, together 
with an arbitrary number of ‘variables’ and ‘properties’ 
(or predicates). Not only did Frege provide axiomatic defi-
nitions for these basic logical terms, he also constructed a 
strictly rule-governed, symbolic system for representing 
logical deductions, rather like a modern computer language. 
This formal system is called ‘predicate calculus’, and I shall 
refer to it as PC for short. Strictly speaking this language 
doesn’t contain the ordinary English words that I have 
used to make sentences in PC more easily readable. For 
example, we do not need to bother writing the words 
‘thing’, ‘has’ or ‘property’, although some kind of basic 
grammar is required. Another somewhat technical point 
is that in the language PC, there is a correct way to use 
brackets, and every grammatical sentence contains equal 
numbers of left and right brackets. I am not going to run 
through the details, but some of the key points of PC are 
the following: 

1.	In PC, the statement ‘NOT (EVERY thing has 
property P)’ is logically equivalent to the statement 
‘SOME thing does NOT have property P’. Note 
that when we are using the language PC, we are 
not obliged to make any kind of claim about our 
ability to actually find this thing (whatever it 
may be). 



	 THE STRUCTURES OF LOGICAL FORM� 225

2.	Throughout this book, whenever I am phrasing a 
sentence in the formal language of PC, I will capi-
talize the words AND, OR, NOT, EVERY and 
SOME. This is to remind the reader that the 
sentence in question can be precisely phrased in 
terms of a formal language, and it is the capitalized 
words that are critical when we are making logical 
deductions. 

3.	Given a list of grammatically correct sentences ‘I’, 
we can imagine a PC machine that sets about gener-
ating an infinite list of their logical offspring, called 
‘the logical consequences of I’. Inputs of the form 
‘A OR (NOT A)’, or ‘EVERY thing (either has 
property P OR does NOT have property P)’ are 
called ‘logical inputs’, because these statements are 
true for every possible valuation. 

4.	In his doctoral thesis of 1930, Kurt Gödel proved 
that when we use logical inputs, PC generates every 
logical truth in the given language. This important 
fact is known as ‘the completeness of predicate 
calculus’. In effect, Gödel proved that we can 
systematically generate every statement which is 
true for every collection of things, and every prop-
erty P. An example of one of these tautological 
statements would be: ‘It is NOT the case that 
EVERY thing has property P AND SOME thing 
does NOT have property P.’

Inputs for Predicate Calculus
Logical inputs are not the only kind – we can also use 
matheÂ�matical axioms as inputs for PC machines. For 
example, we might use the language of PC to state the 
following eminently sensible axiom: ‘For EVERY integer 
x there is SOME integer y such that y is bigger than x.’ 
This logical statement is what we mean when we say that 
there are infinitely many integers. Similarly, we can use 
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the language of PC to define more sophisticated matheÂ�
matical concepts.

For example, in the early nineteenth century (some fifty 
years before Frege published his works on logic), matheÂ�
maticians were eager to develop new branches of calculus. 
In order to extend the fundamental ideas to the most general 
case, they needed to specify or define what is meant by a 
‘limit case’. Bernhard Bolzano (1781−1848) and Augustin-
Louis Cauchy (1789−1857) independently hit upon the 
same definition: a sequence x1,x2, ... ‘converges to a limit 
L’ if and only if ‘for EVERY positive number , there is 
SOME number n such that EVERY term xn,xn +1, ... is bigger 
than Lâ•›−â•›  AND smaller than Lâ•›+â•› ’.

One cannot overstate the importance of defining matheÂ�
matical concepts in terms of a logical language, as such an 
approach leaves us in no doubt about the kinds of deduc-
tion that we are entitled to make. As Jaakko Hintikka 
wrote in The Principles of Mathematics Revisited, ‘We can 
make the axioms of a typical matheÂ�matical theory say what 
they say only by using [words such as “AND”, “OR”, 
“NOT”, “EVERY” and “SOME”.] If matheÂ�matical prop-
ositions were not expressed in terms of logical concepts, 
it would not be possible to handle their inferential rela-
tionships by means of logic.’ Of course, matheÂ�matics is 
several millennia older than modern, formal logic. 
Hintikka’s point is not that it is impossible to reason 
without an explicit formal system, it is just that explicit 
formal systems are of great benefit because they help to 
elucidate the logical underpinnings that matheÂ�matical state-
ments necessarily possess. 

If we adopt a system like PC, we can made valid deduc-
tions by shuffling symbols in an entirely mechanical fashion 
without relying on any kind of understanding of what the 
symbols refer to. In a sense, routine matheÂ�matics does not 
require knowledge of whatever we are talking about: we 
can articulate the relevant understanding of our subject 
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matter by formulating axioms, and then apply a system 
like PC in a mindless, mechanical fashion. 

As well as elucidating our basic deductive practices, 
formal languages like PC are enormously useful, because 
they enable us to construct testable proofs. That is to say, 
by translating an argument into PC we can be certain that 
there are no hidden assumptions, and that our conclusion 
really is a logical consequence of the axioms. In other 
words, we can show that one should accept a chain of 
reasoning from the axioms to the conclusion precisely 
because of the formal practice associated with the words 
AND, OR, NOT, EVERY and SOME. Furthermore, the 
axioms that we use often seem to force themselves upon 
us as inescapable, or ‘self-evidently true’. In such cases 
our common sense compels us to accept their implications 
quite literally once and for all. 

It can be very difficult to construct a formal proof 
even if the idea behind it seems relatively clear, but once 
this has been done we can be absolutely certain that 
there are no hidden assumptions, and that our conclusion 
really is a logical consequence of the axioms. It is also 
worth noting that the process of translating an intuitive 
insight into a strictly formal proof can be very revealing, 
but this is not always so. It is certainly possible to check 
a formal proof but still be confused about the nature of 
the argument. In many ways the most significant thing 
for the matheÂ�matical community is that formal proof 
provides a clear and comprehensible criteria for when a 
piece of work is complete and valid, which means that 
matheÂ�maticians can reach a truly exceptional level of 
consensus. 

Axiomatic Set Theory
Frege’s arguments were enormously influential, not least 
because of their effect on the Vienna Circle, and the 
philosoÂ�phy of Wittgenstein. In the world of matheÂ�matics, 
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Frege’s work inspired the growth of two distinctively 
modern branches. The first of these is matheÂ�matical logic. 
Bertrand Russell and Albert North Whitehead wrote a 
classic example of this kind of work: the three-volume 
Principia Mathematica (1910, 1912 and 1913). In this 
massive tome, the authors derive familiar matheÂ�matical 
results using a highly formal and rigorous system of logic. 
For example, they use set theory to confirm that ‘1â•›+â•›1â•›=â•›2’, 
and they also prove things like Pythagoras’ Theorem, and 
other more sophisticated results.

Over the next couple of chapters we will return to the 
subject of matheÂ�matical logic, particularly the extraordinary 
work of Alan Turing and Kurt Gödel. First I want to 
mention the second branch of matheÂ�matics that Frege 
inspired: axiomatic set theory. This branch of matheÂ�matics 
grew from his work less directly, being shaped by devel-
opments elsewhere in the matheÂ�matical arena. In particular, 
the study of sets gained new impetus as a result of George 
Cantor, and his ideas about the infinite. Initially, matheÂ�
maticians presumed that the concept of a set was utterly 
basic, as Cantor once described a set as ‘any collection 
into a whole M of definite, distinct objects (that is, the 
members of M)’.

As we shall see, this ultimately proved to be an inad-
equate way of articulating the concept of set. The problem 
was that matheÂ�matical logicians, starting with Frege, were 
interested in the incredibly general notion of a property, 
where the basic idea is that we can either ascribe a prop-
erty to an object, or not ascribe that property to an 
object. Frege was also concerned with the ‘extension’ of 
properties, following the idea that every property deter-
mines the set of things that have that property. For 
example, the property of being a dog can be thought to 
determine the set of all dogs, while in the realm of matheÂ�
matical concepts, the property of being a prime number 
is related to the set of prime numbers. At worst, it was 
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believed that a well-defined property might have an 
‘empty extension’, as, for example, there is not a single 
number with the property of being an even prime number 
larger than two.

In 1902 Russell posted a famous letter to Frege, saying: 
‘I find myself in agreement with you in all essentials. … 
There is just one point where I have encountered a diffi-
culty.’ He then went on to mention a property that a set 
might have, namely the property of being a member of 
itself. For example, there are infinitely many sets that have 
the property of being infinite, and so we might imagine 
that the set of infinite sets is a member of itself. Conversely, 
the set of all dogs is not itself a dog, and so this set is not 
a member of itself. Russell posed a question that devastated 
Frege’s grandest scheme: given that we can conceive of the 
property ‘x is not a member of itself’, what are we to make 
of the corresponding set R, which consists of all sets x 
such that x is not a member of itself?

The problem is that this so-called set is paradoxical. If 
R is a member of itself, then by definition it must not be 
a member of itself. Conversely, if R is not a member of 
itself, then by definition it is a member of itself! Russell’s 
paradox and other related conundrums provoked conster-
nation among many logicians, and the event is sometimes 
described as a crisis in matheÂ�matics. However, the problem 
was not with building up collections of familiar matheÂ�
matical objects, as that process has never led to any kind 
of paradox. Rather, the problematic assumption that under-
pins Russell’s paradox is the naïve belief in a curious and 
un-matheÂ�matical object known as the ‘set of all sets’. That 
is to say, his paradox arises when we try to divide an 
un-described totality into two distinct categories: every 
set with property A, and every set without property A. 
As Gödel sensibly remarked, ‘These contradictions did 
not appear within matheÂ�matics but near its outermost 
boundary toward philosophy.’
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As a result of these debates, the naïve conception of a 
set was formally refined. In particular, Ernst Zermelo 
(1871–1953) and Adolf Abraham Fraenkel (1891–1965) 
developed the modern, ‘iterative’ conception of sets, which 
is described by a branch of matheÂ�matics known as ‘ZF set 
theory’. The basic idea of ZF set theory is to build up new 
sets from old. The first axiom simply states that there is 
a set with no members, and we call this set the empty set. 
The other axioms of ZF set theory tell us how to produce 
new sets from old. For example, if A is a set then so is 
{A}, (i.e. the set whose only member is A). Similarly, the 
axioms of ZF set theory state that if A and B are both 
sets, then so is A B (where a set is a member of A B 
if and only if it is a member of A or a member of B). If 
we adopt the eminently sensible axioms of ZF set theory, 
the inherently contradictory ‘set of all sets’ is recognized 
as not being a set at all, because it is decisively ruled out 
by the iterative conception. 

Because of this axiomatic approach, set theoretic logic 
is not the same thing as predicate calculus. However, the 
incredibly general concept of a property is closely linked 
to that of a set. Indeed, the most important thing about 
axiomatic set theory is that it unifies mathematics, as a 
vast range of mathematical ideas can be rephrased in the 
language of sets. For example, a line can be defined as 
being a set of points, and the points where two lines inter-
sect is simply the set of all points which belong to both 
the set that defines the first line and the set that defines 
the second line. Similarly, the statement ‘the integer x is 
smaller than y’ is equivalent to the statement ‘the pair of 
integers (x, y) have the property xâ•›<â•›y’, which in turn is 
equivalent to saying that ‘the pair of integers (x, y) belong 
to a particular set, namely the set of pairs of integers where 
the first integer is smaller than the second’. Of course, to 
make these statements using nothing but the language of 
set theory, we need to define the integers within the 
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language of sets, but that is not difficult to do. We simply 
identify ‘0’ with the empty set, while ‘1’ is identified with 
the set that contains the empty set and nothing else, so by 
this definition ‘1’ has one member. The number ‘2’ is iden-
tified with the set that contains two members (the empty 
set ‘0’ and the set ‘1’), and so on.



Chapter 10: 
ALAN TURING AND THE 

CONCEPT OF COMPUTATION 

‘If you have clear concepts, you know how to give 
instructions.’

Johann Wolfgang von Goethe, 1749–1832

From Mechanical Deductions to Programmable Machines
In the previous chapter we saw how matheÂ�matics at the 
beginning of the twentieth century was characterized by 
an extreme concern for formal rigour, enabled by signifi-
cant advances in formal, symbolic logic. Although great 
progress was made, this era of matheÂ�matics was marked 
by a belief in a pair of philosophical propositions that 
have ultimately proved to be untenable. First, it was 
believed that the essence of a subject matter can always 
be given by a small set of axioms, and that those axioms 
ought to provide a secure foundation on which the entire 
subject can rest. As we shall, the truths of arithmetic cannot 
be reduced to a finite set of axioms, so this idea is defi-
nitely mistaken. Second, it was believed that matheÂ�matical 
reasoning is a form of calculation, and that all truths can 
be calculated using matheÂ�matical logic. As I discuss in the 
final chapter, this belief is not justified by the practices 
of real Â�matheÂ�maticians. Nevertheless, we might consider 
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completely explicit, mechanically reproducible forms of 
reasoning the ideal to which we ought to aspire. 

The relationship between matheÂ�matics and logic has been 
grist in the philosophical mill for many centuries, but the 
genius of Gottlob Frege, and the possibilities presented 
by his predicate calculus, led many of the brightest minds 
into the challenge of ‘rebuilding’ the foundations of math. 
In the beginning of the twentieth century, geometry, 
number theory and other branches of math were rephrased 
into the language of sets, so that the vagueness and ambi-
guity of natural language could be scrupulously avoided. 
For example, the massive Principia Mathematica uses a 
few axioms of set theory, together with a few rules of 
inference, and on this basis the authors derive a substantial 
proportion of ordinary matheÂ�matics. 

In many ways, this work was the culmination of an 
ancient scheme. At the very least, Leibniz had dreamed 
of ‘a general method in which all truths of reason could 
be reduced to a kind of calculation’. In Leibniz’s day 
there was little progress in formal, matheÂ�matical logic, 
but by 1910 the situation had changed. The many ‘truths 
of reason’ contained in the Principia can all be reduced 
to a kind of calculation. More specifically, we can adopt 
the language of the Principia, and generate many true 
statements, simply by following a few, clearly stated prin-
ciples. The extreme, systematic rigour of such works was 
philosophically influential, and by trying to fit different 
areas of study into a common framework, matheÂ�maticians 
revealed many fundamental connections that had previ-
ously been obscured.

In 1928, David Hilbert cut to the heart of the matter 
by posing a challenge known as Hilbert’s decision problem. 
The underlying idea is that given a formal language, there 
are certain statements we can make using the symbols of 
that language. Hilbert’s challenge was to find a general, 
mechanical procedure that takes as input any statement in 
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the given language. That is to say, our procedure ought to 
begin with a simple string of symbols. To positively solve 
Hilbert’s decision problem, our procedure must result in 
the output ‘true’ whenever the statement (string of symbols) 
is true, and it should result in an output ‘false’ whenever 
the statement is false.

This was a provocative challenge, which inspired some 
brilliant work. Intuitionist matheÂ�maticians, such as L. E. J. 
Brouwer, took issue with certain rules of classical logic, 
particularly the law of excluded middle. They also 
cautioned against the prospect of matheÂ�matics being domi-
nated by mechanical deductions. After all, people become 
matheÂ�maticians by engaging their imaginations. If we view 
the mental life of matheÂ�maticians as the heart of matheÂ�
matics, we might follow the intuitionist line, and say that 
formal notation, and the mechanical application of rules, 
are ‘merely’ imperfect ways of communicating the true 
heart of matheÂ�matics. 

In contrast, Hilbert and his fellow formalists emphasized 
the proper use of symbols. They argued that the system-
atic, rule-governed use of symbols is central to the meaning 
of matheÂ�matical practice. There are many subtleties and 
confusions that fuelled this debate, and I shall return to 
the delicate question of the meaningfulness of matheÂ�matics 
in the final chapter. At this point, I just want to stress that 
whatever ideas or images we might personally entertain, 
the meaning of matheÂ�matical symbols ultimately depends 
on the way that those symbols are actually used. The 
philosopher Michael Dummett put this point well in The 
Philosophical Basis of Intuitionistic Logic:

An individual cannot communicate what he cannot be 
observed to communicate: if an individual associated 
with a matheÂ�matical symbol or formula some mental 
content, where the association did not lie in the use 
he made of the symbol or formula, then he could 
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not convey that content by means of the symbol or 
formula, for his audience would be unaware of the 
association and would have no means of becoming 
aware of it. To suppose that there is an ingredient 
of meaning which transcends the use that is made 
of that which carries the meaning is to suppose 
that someone might have learned all that is directly 
taught when the language of a matheÂ�matical theory 
is taught to him, and might then behave in every 
way like someone who understood the language, 
and yet not actually understand it, or understands 
it only incorrectly.

Remarkably, these somewhat esoteric arguments in the 
philosophy of math have had a very real and substantial 
impact on the way we live today. As we shall see in the 
following chapter, Hilbert’s decision problem inspired 
Alonzo Church (1903–1995) and Alan Turing (1912–1954), 
which directly led to the invention of computer programs. 
A few years later, this fundamental concept inspired the 
invention of real, programmable machines, which were 
first used to crack the Nazis’ secret codes. The importance 
of the code-breakers of Bletchley Park cannot be overstated, 
as their work may well have changed the entire course of 
the war. Of course, Turing did not crack the codes single-
handed! Over 10,000 people worked at Bletchley Park, 
and no matter how intelligent our experts may have been, 
reading the Nazi codes would have been a practical impos-
sibility without some fairly detailed knowledge of the 
encryption process.

Fortunately, five weeks before the outbreak of war, 
the Polish military intelligence service presented a gift to 
their French and English counterparts. At a top secret 
meeting in Warsaw, intelligence officers were shown a 
replica of the German ‘Enigma’ machine. Polish matheÂ�
maticians had been working on methods of decryption 
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for several years, and a young Alan Turing quickly 
mastered their techniques. He played a crucial role in 
developing the British code-breaking routines, and, in 
particular, he invented a machine called a ‘Bombe’. By 
the end of 1940 these devices enabled the code-breakers 
to read all messages sent by the Luftwaffe. Naval codes 
were harder to break, but thanks to some captured infor-
mation, naval signals could be decoded for most of the 
months of war. 

Turing made a number of vital contributions to the war 
effort, and we now know that he helped his old logic 
teacher Max Newman to develop the world’s first program-
mable, electronic computer (the top-secret ‘Colossus’ of 
Bletchley Park). Like most matheÂ�maticians, Turing pursued 
a number of academic interests. In addition to his ground-
breaking work on computation, Turing developed some 
remarkable, matheÂ�matical ideas relating to the growth of 
biological forms, which we will return to in Chapter 12. 
He was also a superb long-distance runner, and was almost 
good enough to compete at the Olympic level. Tragically, 
in 1952, he answered some policemen’s questions by telling 
them he was gay. Turing didn’t think there was anything 
wrong with being gay, but despite having the best character 
witnesses imaginable, he only escaped prison by agreeing 
to be injected with female hormones. As a result of this 
‘treatment’ Turing developed breasts, and in 1954 he died 
after biting a cyanide-coated apple. 

Depicting Calculation
The modern, matheÂ�matical concept of computability dates 
back to 1936. That was the year that Alonzo Church 
developed his ‘lambda-calculus’, while Alan Turing was 
devising his own approach to the challenge of finding a 
mechanical procedure that identifies true statements 
(Hilbert’s decision problem). Intuitively speaking, the 
notion of a mechanical or automated procedure seems to 
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be fairly clear. In this day and age we are used to the idea 
of computing machines, and we know that these machines 
need a ‘program’. Indeed, everyone knows that computer 
programs have significant financial value. The important 
historical point is that the matheÂ�matical concept of a 
‘program’ predates real, programmable machines. To make 
dramatic progress with Hilbert’s decision problem, matheÂ�
maticians did not need actual computing machines. What 
was needed was a form of symbolism that could be used 
to represent programs. 

Turing made his great advance by imagining a person 
‘mindlessly’ carrying out a computational task. For 
example, we might imagine a person adding together the 
numbers on a list, systematically adding the digits in the 
unit column, then the digits in the tens column, and so 
on. Such a person starts their procedure with a finite 
number of symbols printed on a piece of graph paper, 
and they can carry out their task even if they only view 
one digit at a time. We can imagine someone placing a 
marker on the paper at a predetermined point (the top of 
the units column). They then proceed in a step-by-step 
fashion, with the marker moving one square at a time. 
There are definite rules which the ‘player’ must follow, 
and given a particular input, there is always one correct 
thing to do. This may involve getting more paper (our 
player is assumed to have an unlimited supply), and it 
may involve writing some ‘working out’. This ‘working 
out’ is an activity that takes place on the sheet of graph 
paper, where it is recorded. 

Adding a list of numbers is a specific example of a very 
general occurrence. The nature of a routine calculation is 
that we begin with a finite arrangement of symbols (the 
problem), which are then changed one symbol at a time, 
until we have another finite arrangement of symbols (the 
answer). The crucial point is that in such a routine calcu-
lation, we must specify the one and only ‘correct’ thing 
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to do at every step. If we have done that, we say that the 
person performing the calculation is playing a deterministic 
language game. 

Unfortunately, matheÂ�matics itself is often misun-
derstood as a deterministic language game (which it 
conclusively cannot be, as we shall see later). In practice, 
matheÂ�matical proofs of any real sophistication cannot 
simply be checked by computers, so the activity of most 
matheÂ�maticians cannot be summarized in terms of simply 
describable routines. However, individual matheÂ�matical 
procedures or calculations are language games, as matheÂ�
matical understanding tends to the point where we can 
instruct others, and then check in an uncontroversial 
manner whether or not a well-described technique has 
been implemented properly. 

Deterministic Language Games
Turing invented a standardized formal system for describing 
deterministic language games. As we shall see, any deter-
ministic language game can be described in this manner, 
no matter how strange its rules might be. A language game 
that has been described using Turing’s system is usually 
called a Turing machine. However, I want to emphasize 
the fact that ‘programs’ are conceptually quite separate 
from actual computing machines. Indeed, the designers of 
modern, digital computers were inspired by their study 
of matheÂ�matical logic: the math came first, and then the 
physical machines. For that reason, I will describe the 
matheÂ�matical objects in question as Turing cards, not Turing 
machines. 

Once again, the key idea is that we can use a pack of 
Turing cards to summarize any fixed procedure that 
converts an input of symbols into an output of symbols. 
Perhaps the most important examples of such procedures 
can be found in science, as in many cases we can describe 
our scientific theories as a mapping between states of affairs. 
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Scientists and engineers often use descriptive data and a 
well-stated theory (e.g. Newton’s laws) to produce a further 
statement: the prediction of the stated theory. For example, 
we might input a description of the location, speed and 
mass of a star and planet, and output a prediction for the 
planet’s orbit. We can describe this process as a rule-based 
mapping from one set of symbols to another, so Turing 
cards are just the kind of thing we need to summarize our 
rule-based process. 

The assertion that every deterministic procedure can 
be put on a pack of Turing cards is called ‘Church’s 
thesis’, and we will examine that important claim in the 
following section. First let’s see just how easy it is to use 
a pack of Turing cards. As we have seen, a deterministic 
language begins with a piece of graph paper covered in 
symbols. We can use any finite alphabet of symbols, and 
as we only ever look at one symbol at a time, it is helpful 
to imagine a movable marker that tells us where to look. 
So what about the pack of Turing cards? What does that 
look like?

Each card in the pack is labelled with a number, and 
each card contains a list of instructions: one instruction 
for each of the different symbols that might be written 
on the piece of paper. When the game begins, we look 
at the first symbol on the page (that is, the one with the 
marker on it), and we turn to the card that is sitting at 
the top of our pack. We then follow whichever instruc-
tion we are supposed to follow, given the symbol that is 
written on the marked square of our graph paper. Turing 
cards only ever contain two kinds of instruction. The 
first kind says: ‘Erase the symbol on the graph paper, 
replace it with the symbol x, and put card number n at 
the top of your pack.’ The second kind of instruction 
says: ‘Move your marker one square to the right (or one 
square to the left, etc.), and put card number n at the top 
of your pack.’
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The game can come to an end because one of the cards 
simply says, ‘Well done, you have finished.’ If the player 
is instructed to turn to that card, the game does indeed 
finish. Otherwise the player simply carries on following 
one instruction after another in a deterministic manner. 
The crucial point is that at every step in every deterministic 
language game, the correct instruction to follow depends 
on the answer to two questions: which card is at the top 
of the pack, and what symbol is written on the marked 
square?

A simple example of a deterministic language game takes 
an input of the following form: 

We start with n dots, a space, and then m dots. We begin 
this particular game in ‘drawing mode’ (card number one), 
which tells the player to move the marker to the right 
until it hits the space. Once the marker hits the space, the 
player fills in the space with a dot, and then switches to 
‘scanning mode’ (card number two). This card tells the 
player to move the marker to the right until it reaches 
another blank, at which point they are instructed to switch 
to ‘erasing mode’ (card number three). This tells the player 
to move the marker back one square to the left, so it is 
resting over the right-most dot of all. The player is then 
instructed to erase this right-most dot, before finally being 
told that the game has come to an end. What is left on the 
piece of paper is something of the following form: 
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In other words, I have described a simple program for 
addition, as when we are given n dots and m dots, the 
game terminates once we have drawn nâ•›+â•›m dots.

In a sense, the heart of Turing’s argument is that any formal 
procedure can be described. Such a description is a finite 
collection of symbols, and any finite collections of symbols 
can be considered as a matheÂ�matical object. We call these 
abstract objects ‘programs’. The crucial point is that by 
transforming a verb (the procedure) into a noun (the 
program), we can make the intuitive notion of computa-
bility matheÂ�matically comprehensible. 

Turing’s second great insight was to realize that a single 
pack of cards can enable a person to carry out any compu-
tational procedure whatsoever! In other words, there 
necessarily exists a ‘universal computing machine’, and 
such a ‘machine’ only needs to be about as large and compli-
cated as an ordinary pack of cards. This follows because 
it is perfectly possible to describe the proper process for 
using an arbitrary pack of Turing cards. The rules that 
govern the proper use of Turing cards can themselves be 
summarized into a single, slender pack, which I shall call 
pack U, for universal. 

Now, imagine holding this pack U, which provides a 
player with all the instructions needed to use any other 
pack of Turing cards. If you want to carry out any compu-
tational procedure whatsoever, all you now require is the 
appropriate input. For example, suppose that you want 
to know what happens when a pack T is used, starting 
with input I. You simply need to copy out some symbols 
that describe the pack T, together with the input I. The 
resulting combination of symbols {T, I} now becomes an 
input for our universal pack U. Crucially, we can be certain 
that using pack U on the input {T, I} produces exactly 
the same output as using pack T on input I. Since pack T 
and input I could summarize any deterministic language 
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game Â�whatsoever, our universal pack U really can carry out 
any computation we choose. Of course, using a universal 
pack U might be an absurdly inefficient way to carry out 
the calculation, but if we were given an endless supply of 
time and paper, we would eventually write out the correct, 
final answer.

Church’s Thesis
The claim that every well-defined, deterministic procedure 
can be summarized on a pack of Turing cards is not a 
strictly provable claim. The intuitive concept ‘matheÂ�matical 
procedure’ is not itself matheÂ�matically defined, in contrast 
to the set of all Turing packs. Despite this observation, we 
have a very good reason for accepting Alonzo Church’s 
thesis. Suppose that we have some kind of technique T, 
which generates statements from other statements. For 
example, imagine using Pythagoras’ Theorem to calculate 
the size of the hypotenuse, given the lengths of the other 
two sides as an input. There are two ways that we might 
check that our procedure has been carried out correctly: 

1.	There is an algorithm for calculating the output, 
which our technique T correctly follows. 

2.	There is a theorem that proves that input I corre-
sponds to output O. In this case we can prove 
that the given relationship between input I and 
output O follows as a logical consequence of our 
theorem T. 

Both of these things are step-by-step procedures, in which 
we look at the input, write out working and look over 
what we have already written (accessing information). But 
these are precisely the activities that Turing cards are 
designed to summarize!

In conclusion, if we follow the instructions on a pack 
of Turing cards, and if we have an unlimited supply of 
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time and paper, we can (in principle) calculate the output 
of any deterministic algorithmic whatsoever. Turing cards 
can even carry out information processing procedures 
where the program itself changes over time. On the other 
hand, it is worth noting that modern computers often 
perform tasks by responding to inputs while they are 
already engaged in a computational procedure, and that 
kind of interactive process isn’t well captured by the 
formalism I have described.

Theoretical computers have many uses, and in particular, 
we can use Turing cards to make decisions of a certain 
kind. For example, a computer can effectively decide 
whether or not a given integer is prime, and we can use 
Turing cards to do the same thing. This idea is very impor-
tant, as we can use it to elucidate the subtle relationship 
between matheÂ�matical truth and mechanical procedures. 
That fundamental relationship is the focus of the next 
chapter, but before we investigate these fascinating ques-
tions, we must first examine the concept of a ‘decision 
problem’.

Decision Problems
In matheÂ�matics, we often say that one set of objects or 
symbols have a given property, while another set of objects 
or symbols do not. For example, we can divide the integers 
into two sets: the numbers that are even, and the numbers 
that are not. As we can represent the integers using ordi-
nary digits, we can also divide strings of digits into a pair 
of sets: the strings of digits that represent even numbers, 
and the strings of digits that do not. 

If some things have a property P while other things do 
not, it is natural to wonder how we might set about 
answering the question, ‘Does this particular thing have 
property P?’ Questions of this form are known as decision 
problems. If there is a general, mechanical method that 
provides an answer in every case, it must be possible to 
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summarize that method using a pack of Turing cards. When 
using Turing cards to tackle a decision problem, we make 
the safe assumption that our pack contains two special, 
‘halting’ cards. One of these cards says: ‘Halt – the input 
has property P.’ The other halting card says: ‘Halt – the 
input does NOT have property P.’ None of the other cards 
in the pack will tell us to stop the computation, though 
they may instruct us to turn to one of the halting cards. 

If a pack of Turing cards can correctly decide whether 
or not a string of symbols has a certain property P, we say 
that the problem is ‘decidable’. For example, the question 
‘Is this integer prime?’ is a decidable problem, because we 
only need finitely many axioms and finitely many rules of 
deduction to determine whether or not a string of digits 
represents a prime number. Because we can settle this 
problem using a well-characterized finite system, there must 
be a pack of Turing cards that can correctly decide whether 
or not any given integer is prime. On the other hand, if a 
problem cannot possibly be solved using a pack of Turing 
cards, we say that the problem is ‘undecidable’. The first 
and one of the most famous undecidable problems is the 
halting problem. This problem was posed and analyzed by 
Alan Turing in his classic paper ‘On Computable Numbers, 
with an Application to the Entscheidungs problem’. He 
asked, ‘If I use this pack of Turing cards on that input, will 
my computation ever come to halt?’ 

If the combination does result in a finite computation, 
we can definitely find this fact out. That is to say, there 
is a well-defined test for every thing of this type, and every 
thing of this type passes the appropriate test. In fact, the 
test is very simple: we simply use the Turing cards on the 
given input, and then check that we are eventually 
instructed to halt. On the other hand, some programs 
cannot be efficiently predicted. That is to say, in some 
cases we can never know that a given computational proce-
dure will never come to a halt. 
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Turing proved that there is no general method for recog-
nizing non-halting combinations by considering ‘self 
reflective’ language games. To understand the proof, the 
first observation that we need to make is that given a pack 
of Turing cards T, we can consider what happens when we 
take, as an input, a standardized description of the pack T. 
A language game like this proceeds much like any other 
language game, as we use the instructions in pack T to 
change the symbols of our description of T. This process 
results in our description changing step-by-step into another 
collection of symbols. Some packs produce self-reflective 
language games that come to a halt, while other packs 
produce a self-reflective language game that never halts. 

Now suppose that we have a pack of Turing cards that 
correctly determine whether or not a given input has some 
property P. Recall that such a pack contains two halting 
cards: one that says ‘Halt – the input has property P’ and 
another that says ‘Halt – the input does NOT have prop-
erty P’. Given such a pack, we can construct a modified 
version by removing the second halting card, and replacing 
it with a ‘dead-end card’, which simply tells us to repeat 
the same, pointless operation over and over again, without 
ever moving a different card to the top of the pack. If we 
use this modified pack there is only one way that the 
computation can ever halt. If the input has property P, we 
will eventually reach the card that says ‘Halt – the input 
has property P’. As we removed the other halting card, 
this is the only way that our computation can ever halt.

We are now ready to hear the final part of Turing’s 
analysis. For the sake of argument, he supposed that 
there is a pack of Turing cards that can recognize when 
any given Turing pack T produces a non-halting, self-
reflecting game. Now, if there was a pack of Turing cards 
R that can recognize non-halting, self-reflecting games, 
we would find ourselves in the following situation for 
every Turing pack T: 
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But in that case, what would happen if we used a descrip-
tion of the pack R as our chosen input T? 

We have two copies of the same game, and if the first 
version of the game reaches a halting card, the second copy 
cannot ever reach a halting card. Similarly, if the first copy 
does NOT halt, that very same game must halt! 

Our argument has hit a paradox. The question is, where 
have we gone wrong? The answer is, we were wrong to 
assume that a pack like R exists. In other words, the 
preceding argument compels us to conclude that there 
cannot be a reliable, automatic method for recognizing 
when a given Turing pack T produces a non-halting, self-
reflecting game. Given that we cannot find a general method 
for recognizing when a self-reflecting game will halt, we 
certainly cannot find a general method for identifying when 
a given input and a given pack of Turing cards results in 
an unending computation, as any method for identifying 
non-halting computations could be used to identify non-
halting self-reflecting games. In other words, Turing’s 
argument proves that we cannot always recognize when 
a given computational procedure will never come to a halt. 

	 Halts	 if and only if	 Does NOT halt. 

	 Halts	 if and only if	 Does NOT halt. 



	 ALAN TURING AND THE CONCEPT OF COMPUTATION � 247

This is a very important observation, as among other things, 
it shows that there are problems which cannot be solved 
using a finite, pre-stated system.

Figure and Ground
We have seen that a decision problem is a kind of chal-
lenge, where we consider a collection of things, and we 
are asked to decide whether or not some arbitrary individual 
has a particular property. For example, we might consider 
the set of integers, and ask the decision problem ‘Is this 
integer prime?’ If we can correctly answer a decision 
problem ‘yes’ or ‘no’ by using a pack of Turing cards, we 
say that the problem is decidable. Similarly, we say that a 
problem is semi-decidable if we can recognize when a 
thing has property P, but there is no general method for 
recognizing when a thing does NOT have property P. 

The existence of semi-decidable problems surprised 
many matheÂ�maticians, who had implicitly assumed that 
any definition for a figure necessarily contains the same 
information as a definition for the ground (i.e. the points 
which are inside the frame of reference, but not inside the 
figure). 

Some patterns have a constructive definition, and can be 
generated by a finite system of rules. The process of gener-
ating a given pattern may resemble counting, in the sense 
that it extends to infinity, but every part of the pattern is 
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completed after a finite amount of time. The somewhat 
surprising fact is that the existence of a constructive defini-
tion for a pattern A does not imply the existence of a 
corresponding, constructive definition for NOT A. Also 
notice that the word NOT is being used in context with 
a predetermined sense of thing, as is represented by the 
box surrounding the previous drawing. For example, A 
might be the set of square integers, which would make 
NOT A the set of integers that are not square, rather than 
the set of anything whatsoever that isn’t a square number. 

Of course, there is an easy and finite test for finding 
out whether or not an integer is square. However, things 
get much more interesting when we consider the general 
case of adding and multiplying an arbitrary string of integer 
variables. For example, we can consider the following 
examples of ‘Diophantine’ equations, which take an integer 
or integers as input, and produce an integer output: 

p(x) = x 3, p(x) = x 2 4  or p(x, y) = 7xy 5 3x 2y 3 .

Diophantine equations are named after the mathematician 
Diophantus (c.â•›210–294), and they are basically just poly-
nomials, except that in a Diophantine equation, all of the 
terms must be integers. In the next chapter we will examine 
one of the deepest questions in matheÂ�matics: ‘Which 
Diophantine equations have integer solutions?’ To get 
some sense of why this question has such depth, imagine 
trying to devise a method for sorting Diophantine equa-
tions into those that have an integer solution, and those 
that do not. If a Diophantine equation has an integer 
solution, we can certainly recognize that fact. For example, 
p(x) = x 2 4  is equal to zero when xâ•›=â•›2, and we can be 

sure that xâ•›=â•›2 is indeed a solution. Furthermore, the 
process of finding such an integer, and proving that it is 
indeed a solution, is an entirely computable procedure. 
Theoretically speaking we can find the solution of any 
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solvable Diophantine equation just by trial and error: we 
can simply try every integer in turn, as proving that a 
putative solution is indeed a solution only requires the 
ability to add and multiply integers correctly.

Since prehistoric times, matheÂ�maticians have explored 
the solutions to polynomial equations. For example, the 
Ancient Babylonians knew how to solve quadratic equa-
tions, and across the globe, over three or four millennia, 
many other sophisticated techniques have been developed. 
At this point, the important thing to note is that if a solv-
able equation has a solution, the solution itself stands as 
proof that the equation has a solution. In contrast, consider 
an equation that does not have a solution. What kind of 
proof might we provide to show that the given equation 
has no solution? What kind of statement can stand witness 
to this kind of truth? 

Semi-Decidable Problems
Recall that a property P is said to be ‘decidable over a set 
S’ if it is theoretically possible to calculate whether or not 
any given member of S has the property P. For example, 
we say that the property of being even is decidable over 
the integers because a single finite program can be used 
to determine whether or not an arbitrary integer is even. 
More interestingly, a property P is said to be semi-decidable 
over a set S if given any member of S that has the property 
P, there is a finite calculation that confirms the fact that 
the given member of S does indeed have the property P. 
For example, the property of ‘having an integer solution’ 
is semi-decidable over the set of all Diophantine equations, 
because it is always possible to prove that a solvable equa-
tion does indeed have a solution. 

Some problems are semi-decidable but not decidable. For 
example, if we know how to use a pack of Turing cards, 
we can certainly recognize that a given input and a given 
pack ultimately produce a halting computation. However, 
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as Turing proved, there is no finite program for recognizing 
when a given calculation will never halt. Remarkably, every 
problem that is semi-decidable but not decidable has to 
have certain characteristic features. To appreciate one of the 
characteristic features of semi-decidable problems, imagine 
that we have a property P and a machine that says ‘yes’ if 
and only if we input a thing with property P. Furthermore, 
suppose that we can look at any input I and come up with 
a number t(I), such that if the machine is going to answer 
‘yes’, we can be certain that it will do so in less than t(I) 
units of time. In that case we could take any input I, calcu-
late the corresponding number t(I), plug our input into the 
machine and wait for one of two things to happen: 

1.	The machine recognizes that the input I has the 
property P. 

2.	A period of time t(I) passes, and our machine still 
hasn’t said anything. 

In the second case we know that our input does NOT 
have property P, simply because the calculation has taken 
too long. This observation tells us that the property in 
question must be decidable, because we can recognize the 
absence of P by the silence of our machine. This means 
that if a property P is semi-decidable but not decidable, 
there cannot be a way of finding a safe overestimate for 
the time required to confirm that a given input has the 
property P. By definition of semi-decidability we will even-
tually be able to confirm that a given input has property 
P, but in general we cannot know how many computational 
steps will be required to establish this fact. 

Another necessary property of semi-decidable sets is 
the following. Suppose that our set of things can be written 
out as a particular list. For example, imagine listing the 
integers in ascending order. If we can move along this list 
ticking off EVERY thing with property P, then EVERY 
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thing we pass over without ticking must, by definition, 
NOT have property P.  

If property P is decidable, we can systematically move 
along our list ticking the things that have the property P. 
Conversely, if we can systematically tick off elements in 
the order they appear in some list, then property P must 
be decidable. This follows because if we could tick off the 
things with property P in order, we would have a method 
for recognizing things that do NOT have property P, 
namely looking for things that have not been ticked, but 
which are earlier in the list than something that has been 
ticked. In other words, if a property P is semi-decidable 
but not decidable, then for every list and every method 
for ticking things with property P, our ticking pencil must 
hop around an infinite amount, moving backwards as well 
as forward. 

Returning to a particular example of a semi-decidable 
problem, let’s consider Turing’s halting problem. In that 
example of a decision problem, we ask: ‘If I use these 
Turing cards on that input, will my computation ever halt?’ 
In terms of logical truth, we are inclined to say that an 
input/Turing card combination either halts or does NOT 
halt. Furthermore, if an input/Turing card combination 
halts we can prove that it halts, simply by carrying out 
the calculation. On the other hand, just because we cannot 
prove that a given calculation halts, that doesn’t necessarily 
imply the existence of a proof that the given calculation 
never halts. In short, there are cases where we cannot prove 
a statement that we believe to be true. 

Perceiving this gulf between the formally demonstrable 
and the statements we accept as truths leads us to consider 
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the following question. What is the minimum difference 
between a justification for: 

1.	Our belief in the truth of a statement that our 
system of logic can prove, and

2.	Our belief in the truth of a statement that our 
system of logic cannot prove.

If we could show that there is always a difference between 
such justifications, we might come to the conclusion that 
we should drop the concept of unprovable truth altogether. 
In other words, could it be the case that only provable 
truths are really true? 



Chapter 11: 
KURT GÖDEL AND THE 

POWER OF POLYNOMIALS

‘The utility of systems lies not merely with their 
making us think about something in an ordered way 
according to a particular scheme, but in making us 
think about it at all; the latter utility is incontestably 
greater than the former.’

Georg Christoph Lichtenberg, 1742–1799

Matiyasevich’s Theorem
Before we return to the concept of unprovable truth, 
we  need to sketch out a beautiful proof of Gödel’s 
Incompleteness Theorems. More specifically, we shall prove 
Gödel’s famous theorems by means of another result of 
staggering significance, called Matiyasevich’s Theorem 
(also known as the MPDR Theorem). This less well-
known theorem has its roots in the 1960s, and the work 
of the American matheÂ�maticians Julia Robinson, Martin 
Davis and Hilary Putnam. In effect, they made progress 
by applying modern matheÂ�matical logic to the study of 
Diophantine equations. More specifically, they were inter-
ested in the logical properties of Diophantine definitions. 
A Diophantine definition is simply a standard way to 
define a set of integers, by using a polynomial equation.  
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For example, the even numbers can be defined as the set 
of integers n for which the following statement is true: 

‘For SOME integer m, nâ•›−â•›2mâ•›=â•›0.’ 

Similarly, the square numbers can be defined as the set of 
integers n where:

‘For SOME integer m, nâ•›−â•›m2â•›=â•›0.’ 

As I have already mentioned, if someone claims to have 
found some integers that solve an equation P, it is very 
easy to put that claim to the test. All you need is a defini-
tion of the equation P, plus a few simple rules that tell 
you how to add, subtract and multiply. In fact, all we 
really need are the following five axioms (due to Giuseppe 
Peano, 1858–1932): 

nâ•›+â•›(-n)â•›=â•›0, nâ•›+â•›0â•›=â•›n, nâ•›+â•›(mâ•›+â•›1)â•›=â•›(nâ•›+â•›m)â•›+â•›1,  

Now, suppose that we are considering some particular 
Diophantine equation P. If there is a list of integers 
n, m1, m2, ... , mk that solve the equation P, we can definitely 
find that list in a finite amount of time. Even if we don’t 
have a clever method for finding a solution, we could 
simply try every possible combination of integers in turn. 
The number of steps in this trial-and-error process might 
be vastly greater than the number of electrons in the 
universe, but so long as it is finite, we say that the proce-
dure is computable.  

The logical structure of Diophantine definitions is admi-
rably clear, because in a more or less efficient way we can 
set about looking for solutions of the form n, m1,m2, ... , mkâ•›, 
and in the case where such a solution exists, we know by 

n 0 = 0 and n (m +1) = (n m) + n.
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definition that the integer n has the property P. The inte-
gers m1,m2, ... , mk are somewhat analogous to the working 
out that a Turing pack might instruct us to write: they are 
an essential part the calculation, but they aren’t part of 
the final answer. 

Up until 1970, only a few matheÂ�maticians suspected that 
Diophantine definitions might be every bit as powerful as 
Turing cards. In other words, only a few people guessed that 
the addition and multiplication of integers might literally 
generate the entire computable universe. The proof that 
Diophantine equations are a kind of universal programming 
language proceeded in a number of steps. By 1970, recursion 
theorists could prove that Diophantine sets had almost all of 
the necessary properties. In particular, Julia Robinson, Martin 
Davis and Hilary Putnam had established the following facts: 

1.	Every finite list a, b, … , z has a Diophantine 
definition. It is of the form (aâ•›−â•›n)(bâ•›−â•›n) … 
(zâ•›−â•›n)â•›=â•›0, so the number n belongs on the list if 
and only if it is one of the numbers a, b, … , z. 

2.	 If the sets A and B have Diophantine definitions, so 
does A OR B. If P(n, x)â•›=â•›0 and Q(n, y)â•›=â•›0 are the 
respective Diophantine definitions for the sets A and 
B, then P(n, x) Q(n, y) = 0 is a Diophantine defini-
tion for A OR B. For example, (n 2x)(n y 2) = 0 
picks out the integers n, which are either even or 
square. 

3.	Similarly, P(n, x)2 + Q(n, y)2 = 0 is a Diophantine 
definition for A AND B. 

Only one remaining property (called bounded universal 
quantification) remained elusive. Recursion theorists real-
ized that if they could only establish the existence of a 
single Diophantine set whose members grew exponentially 
(like 1, 10, 100, 1â•›000, …), then every definable set would 
necessarily have a Diophantine definition. 
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Most people thought that no such set could exist, but 
on 4 January 1970, a twenty-two-year-old Russian matheÂ�
matician by the name of Yuri Matiyasevich proved the 
doubters wrong. The complete proof of Matiyasevich’s 
Theorem is much too involved for a book of this size or 
nature, but roughly speaking his argument can be divided 
into two parts. First, a parametric version of the Fibonacci 
sequence is shown to have a wide range of properties, 
each of which has a Diophantine definition. Second, he 
showed that the combination of these Diophantine proper-
ties suffice to specify completely the exponential sequence 
in question. 

The fact that the prime numbers have a Diophantine 
definition was a considerable surprise to many matheÂ�
maticians, but it really is a provable fact that multi-variable 
polynomials have such a wide range of different solution 
sets, that every definable set of integers has a corresponding 
polynomial. Furthermore, as there are no major difficulties 
in transliterating from one alphabet to another, we can 
translate any collection of symbols into a sequence of digits. 
This implies that every definable set of symbols has a 
Diophantine definition. It is literally true to say that if 
there is a finite, deterministic rule for generating a sequence 
of symbols (even an infinite sequence of symbols), then 
there must be a rule that generates those same symbols 
simply by adding and multiplying.

A remarkable implication of this result can be found 
by considering a ‘universal decision pack’. A player using 
such a pack receives descriptions of decision packs as inputs, 
together with a particular case that might or might not 
have the property in question. The universal decision pack 
reads the input pack P together with the particular input 
N, and works to recognize whether or not the input N 
has the property that is recognized by the decision pack 
P. Since it does this in an entirely deterministic manner, 
we have a well-defined subset of the set of all pack-input 
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pairs, namely those where the input does indeed have the 
property encoded by the pack. 

Given any particular alphabet that we might be using, 
every possible input of symbols can be assigned a unique, 
identifying number, because we can list all the possible 
inputs alphabetically. I shall use the symbol n to denote 
the integer that identifies a given input. Similarly, every 
property can be assigned a unique number, because we 
can list our descriptions of decision packs in alphabetical 
order. I shall use the symbol p to denote the integer that 
identifies a given decision pack. Matiyasevich’s Theorem 
implies that for every universal decision pack, there must 
be an equivalent, Diophantine equation U(n, p, x). In other 
words, the polynomial ‘U(n, p, x)â•›=â•›0’ has a solution if and 
only if the input n has the property p. 

The polynomial U is just an ordinary polynomial, 
involving nothing more complicated than the addition and 
multiplication of some integer-valued constants with two 
integer-valued parameters (n and p) and some fixed number 
of integer-valued variables, which I have denoted x. They 
tend to look rather messy when written out in full, but 
the crucial point is that equations like U actually exist, 
and they are called universal equations because by altering 
a single, integer-valued parameter p we can use the equa-
tion U to generate every definable set of integers. In other 
words, the solution sets of a universal equation literally 
contain the entire computable universe!

If we are oblivious to calculation time, it does not take 
much to attain the greatest level of computational power. 
Even the basic rules of addition and multiplication can 
ultimately generate any pattern whatsoever, provided that 
the pattern can be computed in a deterministic or mechan-
ical manner. Also notice that the patterns generated by a 
universal pack of Turing cards, or a universal equation, 
are arbitrarily complex. That is to say, because the system 
is universal, it can replicate the simplest patterns, the most 
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complicated patterns, and everything in between. A similar 
observation holds for every other quality that a definable 
list of numbers can be said to possess. 

Kurt Gödel
Kurt Gödel (1906–1978) was born in Vienna, and when 
he was six years old he contracted rheumatic fever. He 
recovered to full health, but when he was eight he began 
reading medical texts on the illness he had suffered, and 
became convinced that he had a weak heart. This unfounded 
suspicion was the beginning of a lifelong obsession with 
his health; an obsession that became particularly problem-
atic when Gödel concluded that food was fraught with 
danger, so people should eat as little as possible. As a 
student at the University of Vienna, he was persuaded to 
move from physics to matheÂ�matical logic by the gifted 
Philip Furtwängler.

Furtwängler had to dictate everything he wrote, because 
he was paralyzed from the neck down. The young Gödel 
was greatly impressed by the image of a mind exploring 
the world of numbers, unhindered by the lack of a working 
body. A lifelong believer in a supernatural creator, Gödel 
was also a fervent Platonist. In other words, he believed 
that abstract, matheÂ�matical objects have a very real exist-
ence, independent from matheÂ�maticians, or the languages 
that matheÂ�maticians can use. He was by all accounts a 
brilliant and fastidious man, and he seems to have been 
one of those people who are drawn to math not only 
because of the intellectual challenge, but also because of 
the unworldly, timeless and uncontaminated character of 
its objects of study. 

Gödel was disgusted by the Nazis, but even as war was 
looming, he did not want to flee his native Vienna. When 
the Second World War finally broke out, Gödel was judged 
fit for military service, and he greatly feared being 
conscripted into the German army. He finally decided to 
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flee Austria, and in 1940 he arrived in America. As a world 
famous mathematician he was offered a prestigious post 
at the Institute for Advanced Study in Princeton. Here he 
became close friends with a man he had first met in 1933: 
Albert Einstein. In a letter to his mother, Gödel wrote 
that the two men would meet daily at Einstein’s house, 
leaving at ten or eleven in the morning, and walking for 
half an hour until they reached the institute. They would 
then meet up again at one or two, before walking home 
together, chatting in their native German. It is clear that 
both men enjoyed their discussions on politics, philosophy 
and physics, and towards the end of his life Einstein even 
remarked that he only bothered going to his office ‘to 
have the privilege of walking home with Kurt Gödel’.

Gödel was always drawn to problems of philosophical 
interest, and in 1949 he made a remarkable foray into the 
theory of relativity. More specifically, he showed that there 
are solutions to Einstein’s equations that contain closed 
loops. In other words, he showed that if you have enough 
energy, time travel becomes a theoretical possibility! Gödel 
was greatly saddened when his friend Einstein died in 
1955, and as he grew older, Gödel became increasingly 
concerned about his own physical condition. When his 
beloved wife Adele suffered some serious health problems, 
his difficulties with food and paranoia over poisoning 
became even more acute. By the end of his life he was so 
frightened of being poisoned that he refused to eat at all, 
and in 1978 he effectively starved himself to death. 

Although he made many important contributions to 
matheÂ�matics and logic, Gödel is most famous for proving an 
intellectual bombshell: the Incompleteness of Arithmetic. A 
formal system is said to be complete if every grammaticÂ�
ally correct statement in the given language can either be 
proved or disproved from the axioms of the system. For 
example, if we restrict the language of arithmetic by refusing 
to use the words ‘EVERY’ and ‘SOME’, the Â�fragment that 
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remains is in fact complete. In other words, the few matheÂ�
matical statements that we are left with can all be proved 
or disproved in a simple, mechanical manner, using a small 
number of fundamental axioms, together with some basic 
rules of deduction. As we shall see, the situation is much 
richer and more interesting when we include the words 
‘EVERY’ and ‘SOME’ into the vocabulary of math. 

Searching for Solutions
Imagine a nation of people who prize the study of Diophantine 
equations above all else. In the middle of their kingdom 
stands an imposing stone monolith, covered in matheÂ�matics. 
If the people knew that a statement was true of the integers, 
they might carve it onto this monolith. Over the generations 
many statements had been added, but the most revered carv-
ings were the laws for the addition and multiplication of 
integers (e.g. Peano’s axioms), together with the laws of logic. 
Other truths might also be added, but these people wouldn’t 
carve any old statement onto their sacred stone. 

When two men wanted to marry the same woman, she 
would pick a Diophantine equation, and assign one of the 
men ‘solvable’, and the other ‘NOT solvable’. The suitor 
who was assigned ‘solvable’ would immediately set about 
trying to find a solution, using the sacred instructions for 
adding and multiplying integers. The suitor who was 
assigned ‘NOT solvable’ had a somewhat more interesting 
task. 

It is easy to prove that some equations have no integer 
solution. For example, x 2 +1= 0  has no integer solution, 
because for every integer x, x2 is at least as big as zero. 
The monolith would not need many axioms to be powerful 
enough to prove that there is no integer n such that 
x 2 +1 = 0â•›. Other Diophantine equations require more 
sophisticated methods to prove that they have no solution. 

When a suitor thinks that the given equation has no 
solution, he has to find something on the monolith that 
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tells him that his argument is valid (e.g. the monolith ought 
to confirm the validity of the preceding argument). If 
nothing on the monolith confirms the validity of a suitor’s 
argument, the only remaining option is to persuade the 
King to carve another statement onto the monolith. This 
was considered a very serious business, because if the King 
allowed inconsistent statements onto the monolith, the 
logic sanctioned by the sacred stone would be utterly 
useless. Among other problems, the people would face the 
embarrassing situation in which both suitors would invar-
iably win the right to marry. 

One day, the King’s daughter (an exceptional beauty 
named Helen) was compelled to pick a Diophantine equa-
tion. It took her ten minutes to dictate the monstrous 
thing, and the poor suitors were quite ashen by the time 
she assigned them their respective tasks. The young man 
Kurt was assigned the ‘NOT solvable’ task, while Bill got 
‘solvable’. Bill was a bit of a computer whiz, and by the 
end of the day he had checked that there were no solutions 
with less than a billion digits. Meanwhile, Kurt grabbed a 
pencil and tried to look for a pattern … 

The Incompleteness of Arithmetic
Recall that axiomatic systems and the laws of logic can be 
summarized on a computer program, and hence they can 
also be summarized in Diophantine form. The fundamental 
proof theoretic fact is that we can take any set of axioms, 
or any countable axiom scheme with a finite definition, 
and devise a program that finds each logical consequence 
in turn. In particular, we can use such a system to find 
proofs that might be used by a suitor whose task is to 
demonstrate that a given equation doesn’t have any solu-
tions. Assuming that no extra axioms are carved onto the 
monolith, this is a perfectly mechanical procedure. 
Therefore Church’s thesis implies that we can summarize 
this procedure using a pack of Turing cards. 
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Furthermore, we can list all the Diophantine equations 
in alphabetical order, which is to say that we can associate 
each equation with a unique number. Some numbers will 
correspond to equations that can be mechanically proved 
to be unsolvable. For example, we might use the monolith 
to prove that x 2 +1= 0  has no integer solution, x 2 + 2 = 0  
has no integer solution, and so on. Each of these equations 
has a unique, identifying number, so our mechanical proce-
dure identifies a subset of the integers, namely those 
integers that correspond to an equation p where we can 
mechanically prove that p has no solution. Matiyasevich’s 
Theorem implies that this subset of the integers must have 
a Diophantine definition. With that in mind, we are ready 
to return to the story of Kurt and the King’s daughter.

Kurt soon realized that Helen’s equation was related to 
a universal Diophantine equation, and he spent many months 
studying it, considering things that the integers might encode. 
He was convinced that the King’s daughter (who was herself 
a formidable mathematician) must have picked those 
numbers for a reason. The more he looked, the more he 
found, and eventually he picked out substructures that 
encoded everything on the village monolith. The final break-
through came when he tried converting one of the constants 
into a variable. He immediately recognized the equation 
that this produced, because it captured the property of being 
‘self-reflectively unsolvable’.

An integer n is said to be self-reflectively unsolvable 
for U if and only if you can use the village monolith to 
prove that U(n, n, x)â•›=â•›0 has no integer solutions. For 
example, if U(1, 1, x)â•›=â•›x 2 +1, we would say that 1 is self-
reflectively unsolvable for U (assuming that our axiom 
system can prove that x 2 +1= 0  has no integer solution). 
Notice that there are two facts involved. The first fact is 
that when we set the two parameters of our universal 
equation equal to 1, the resulting equation has no integer 
solution. The second fact is that we can prove that this 
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equation has no integer solution just by using the axioms 
on the monolith. The crucial point is that the formal proce-
dure that demonstrates this second fact can be encoded 
into a pack of Turing cards, or into a Diophantine equation. 

Kurt could hardly contain his excitement as he calculated 
exactly which value for n Helen had used to produce her 
equation. As he examined this enormous number, a sense 
of déjà vu crept over him. A quick calculation confirmed 
his suspicions: the number Helen had used encoded a 
Diophantine equation which exactly mirrored the property 
he had just been studying! 

The point of this story is that Kurt is looking at an 
equation that necessarily exists. That is to say, for every 
system of axioms (which correctly adds and multiplies 
integers), there is some Diophantine equation U and some 
integer T with the following, remarkable property: 

For every integer n, 

1.	U(T, n, x)â•›=â•›0 has a solution if and only if   
2.	The monolith is powerful enough to prove that 

U(n, n, x)â•›=â•›0 has no solutions. 

To repeat, we can be certain that the two statements above 
are logically equivalent, and this is the heart of Gödel’s 
Incompleteness Theorems. We know that it is true because 
given the axiomatic system in play, there must be some 
integer T that corresponds to a program for finding proofs 
of the following kind of statement: ‘U(n, n, x)â•›=â•›0 has no 
solution.’ Note that n is some integer which we are given, 
while x is a finite string of integer-valued variables. Helen 
could have picked any integer n to plug into the equation 
U, but she decided to use T, the integer which corresponds 
to the procedure for finding proofs of statements of the 
form ‘U(n, n, x)â•›=â•›0 has no solution’.

Kurt took a deep breath, and considered what would 
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happen if statements 1 and 2 were true for the particular 
case when nâ•›=â•›T. Statement 1 would tell us that U(T, T, 
x)â•›=â•›0 has a solution, so we should be able to prove this 
‘fact’ using our axioms for addition and multiplication. 
The logically equivalent statement 2 tells us that we can 
prove that U(T, T, x)â•›=â•›0 does NOT have a solution. In 
other words, if Helen’s equation U(T, T, x)â•›=â•›0 has a solu-
tion, then the monolith must be inconsistent. 

Returning to statements 1 and 2, if we put nâ•›=â•›T there 
are two conceivable cases: U(T, T, x)â•›=â•›0 either has a 
solution, or it doesn’t. If we suppose that U(T, T, x)â•›=â•›0 
has a solution, then our PC logic machine will be able 
to use the monolith’s axioms to generate the following 
statements: 

1.	U(T, T, x)â•›=â•›0 has an integer solution 
and   

2.	The monolith is powerful enough to prove that 
U(T, T, x)â•›=â•›0 has no integer solution.

In this case we would have conclusive proof that the axioms 
on the monolith are inconsistent, as we would be able to 
prove that U(T, T, x)â•›=â•›0 has a solution AND U(T, T, x)â•›=â•›0 
does NOT have a solution. But what if U(T, T, x)â•›=â•›0 does 
not have a solution? In other words, what happens when 
statements 1 and 2 are false? In that case we manage to 
avoid paradox by observing the gap between truth and 
proof: 

NOT 1 U(T, T, x)â•›=â•›0 has no solution  
and   
NOT 2 The monolith is not powerful enough to 
prove that U(T, T, x)â•›=â•›0 has no solutions.

If the monolith is indeed consistent, then Kurt will have to 
have something added to it before he can complete his task. 
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He can be quite certain that in its current state, he cannot 
use it to prove that Helen’s equation has no solution. 
As things stand, Kurt is quite certain that he cannot 
complete his allotted task. Indeed, for every consistent 
set of axioms there are infinitely many true arithmetic 
statements that we cannot prove using nothing but the 
given axioms. That is what is meant by the Incompleteness 
of Arithmetic. 

Once he had completed this argument, Kurt headed 
straight to the palace. As he waited for an audience with 
the King, he wondered how to handle his peculiar predic-
ament. What axiom would he need to carve before he 
could complete his task? And how would he persuade the 
King to add it to the monolith? 

Kurt: Tell me, your majesty, do you think that your 
daughter should marry both her suitors? 

King: How dare you suggest such a scandalous thing! I 
should have you flogged for asking such an impertinent 
question. 

Kurt: I do apologize, I meant no offence. I agree that the 
monolith is entirely consistent, and such a thing is quite 
impossible. Unfortunately, I can’t find anything on the 
monolith that tells me that. 

King: What kind of madness is this? You don’t need the 
monolith to tell you that its axioms are consistent. If my 
ancestors so much as suspected that one of the axioms was 
not consistent with the others, they would never have 
allowed it to be carved onto the monolith. 

Kurt: Does that mean I am allowed to make that assump-
tion, in my proof of unsolvability? 
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King: I don’t see why not. Every proof implicitly assumes 
that the monolith is consistent – that assumption is the 
very basis for our belief in the truth of the things we prove. 
After all, if our axioms are inconsistent, then our theories 
are worth no more than any other sentence! It is decided 
then – I hereby decree, by royal command, that you may 
assume that one and only one person has the right to 
marry my daughter. 

Kurt: In that case you had better fetch her. If she has to 
marry one and only one person, then that person must 
be me. 

Truth, Proof and Consistency
People have always argued about the nature of truth, but 
in some ways everybody understands the meaning of the 
word. People say that a statement is ‘true’ if and only if 
our understanding of the statement accords with our under-
standing of the subject matter or situation that the statement 
is about. Of course, we sometimes think that a statement 
is true, and then realize it is not. We therefore understand 
that a statement is only true if it can withstand every kind 
of relevant scrutiny, and we generally don’t know all the 
different forms of scrutiny that could possibly show that 
our statement is false. That is why it is hard to know when 
a statement is really true, and why a ‘true’ statement is 
more than a just a well justified statement. I also think it 
is worth emphasizing that reality is present whether we 
can talk about it or not, but ‘truth’ is fundamentally a 
relationship between language and the world. Crucially, it 
seems reasonable to say that when we subject potentially 
true statements to every relevant form of scrutiny, we need 
only consider the kinds of scrutiny that might be brought 
to bear by people (real or idealized) who understand the 
language that we use when we make our statements. 

In the case of matheÂ�matics our choice of axioms largely 
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determines the meaning of our symbols. For example, if 
I make a provable statement using the language of axiomatic 
set theory, it doesn’t make sense to say that my statement 
is actually false simply because you refuse to accept one 
of my axioms. The axioms are part of what makes my 
symbols mean what they mean, and if you don’t accept 
my statement simply because you don’t accept one of my 
axioms, that does not show that my statement (as originally 
conceived) is actually false. It simply shows that you under-
stand my symbols differently from me, and at best your 
argument might persuade me that it is a good idea to adopt 
some new axioms. In that sense there really are matheÂ�
matical statements that are true by definition. Likewise, 
we are the ones who determine the rules of chess, and we 
really can know for certain that you cannot force check-
mate against a lone king with only a king and a pair of 
knights. This kind of truth by definition is what makes it 
possible to construct proofs in the first place, but that is 
not the only kind of matheÂ�matical truth! 

For example, I do not think that ‘1â•›+â•›1â•›=â•›2’ is merely 
true by definition. It is also true in the usual, less certain 
sense, as we can understand that this statement fits with 
the way that we understand the relevant subject matters, 
which are the concepts of number and addition. After all, 
if you have a single object in your collection and you add 
another object, you really do have two objects in your 
collection. Likewise, if you take one step forward and then 
take another step forward, you really have taken two steps 
forward. These deeply understandable experiences are part 
and parcel of the concepts of number and addition, and 
you don’t understand my language if you don’t understand 
that fact. We can see that the statement ‘1â•›+â•›1â•›=â•›2’ fits with 
our common understanding of the concepts of number 
and addition, and in that sense we can see that it is true. 
Similarly, the statement ‘nâ•›+â•›0â•›=â•›n’ is true in the sense that 
if I take n steps forward and then don’t take any more 
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steps, I have in fact taken n steps forward. It is also true 
by definition, as this statement is one of the axioms 
governing the proper use of the symbol ‘0’. 

Of course, most matheÂ�matical statements are far too 
complex for us to assess in such an intuitive manner. 
Nevertheless, it is this kind of truth, or fidelity to an 
underlying concept, that leads us to accept certain axioms 
in the first place, making proof and ‘truth by definition’ 
possible. Mathematicians need to employ rule-governed 
systems in order to do their work, but the question then 
arises as to why we should trust those systems once they 
start to outstrip our intuitions. In particular, how can we 
be sure that our rule-governed, symbolic systems really 
are consistent, and cannot lead us to contradict something 
that we ought to accept as true? It is these mysteries that 
Gödel helped to elucidate, and his insights came as a 
surprise. 

The first point to make is that some matheÂ�matical systems 
really can prove their own consistency. For example, the 
axioms of classical logic can be used to prove the consist-
ency of classical logic. That is to say, there is no way that 
we can start with a statement A, apply the laws of logic, 
and reach the conclusion NOT A. Some people argue that 
there are better systems of logic than the classical one, but 
there is no question that the language of AND, OR and 
NOT is logically consistent. 

On the other hand, arithmetic cannot prove its own 
consistency. We can prove that fact because we know 
that for every formal system capable of adding and multi-
plying integers, there is an equation that corresponds to 
U(T, T, x)â•›=â•›0. In other words, for every axiom system 
there is an equation that has a solution if and only if we 
can prove that the equation has no solution. This means 
that if our axiom system is consistent, the equation cannot 
have a solution. If our formal system could prove its own 
consistency, we could also prove that the equation U(T, 
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T, x)â•›=â•›0 has no solutions. But if we can prove that it does 
not have solution, we know that it must have a solution, 
which is a fact that we can prove! In other words, arith-
metic axioms that can prove their own consistency must 
be inconsistent.

In light of this fact, we must be exceptionally careful 
with formal assertions that are equivalent to the King’s 
decree. We can claim that our formal system is consistent, 
but we cannot make that claim an explicit feature of the 
formal system itself. However, there is at least one way in 
which we can consistently increase the power of the mono-
lith in light of the insight provided by Kurt’s formal 
argument. At the very least, we can carve the following 
statement onto the monolith: ‘U(T, T, x)â•›=â•›0 does NOT 
have a solution.’

Adding this statement enables us to prove at least one 
new thing (namely the statement itself). Furthermore, if 
our new expanded system is inconsistent, then so was our 
old system, because if you can prove that ‘U(T, T, x)â•›=â•›0 
has a solution’, you not only contradict our new axiom, 
you also demonstrate an inconsistency in the original axiom 
system. The crucial point is that we can extend our axiom 
system by adding the statement ‘U(T, T, x)â•›=â•›0 does NOT 
have a solution’, and we might have a good reason for 
wanting to do that. In contrast, we cannot consistently 
extend our axiom system by adding the statement ‘U(T, 
T, x)â•›=â•›0 has a solution’. If we accept that our original 
system was consistent, then as members of the logical 
community we must also accept that ‘U(T, T, x)â•›=â•›0 does 
NOT have a solution’, even though we cannot prove that 
statement without adding a new axiom. 

Once we have increased the monolith’s power in this 
fashion, the set of provably unsolvable Diophantine equa-
tions becomes slightly larger. The power of an axiom system 
can always be increased further in this manner, but this 
procedure is not itself computable. Each step requires a 
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further insight, as we must reconstruct Gödel’s argument 
in the context of a new set of axioms. Also note that we 
can have good reasons for adding such a statement to our 
axioms even though this statement is not a self-evident 
truth. The evidence or justification for this truth is found 
in our comprehension of the other axioms, together with 
Gödel’s argument (the context of our statement). 

Our statement is logically independent from its context 
(it is saying something new), but in some sense it is a 
natural extension of the prior system. We can see that 
‘U(T, T, x)â•›=â•›0 does NOT have a solution’ is true by 
following the previous arguments, and by understanding 
the axioms on the monolith. On the other hand, a mechan-
ical application of those same axioms cannot recognize 
this truth. That is to say, if Kurt had used a PC machine 
instead of his intellect, he could not have completed his 
task. This is what I meant when I said that matheÂ�matics 
is not a deterministic language game. However, it is not 
clear that this way of extending our axioms requires an 
inspiration that is beyond any finite description of a formal 
methodology. We can’t use a single program to complete 
our set of axioms, but we may be able to give strategic 
advice that covers the relevant cases. By way of analogy, 
a person may know no numbers but the integers, and using 
the language of integers we can ask such a person ‘if 2xâ•›=â•›1, 
what is x equal to?’ To answer this question we need an 
expanded language that incorporates fractions, but this 
question can show the sense in extending our language, 
and persuade our audience that fractions make sense. 

We could summarize Gödel’s achievement by saying 
that he had the brilliant idea of using a very formal, mechan-
ical proof to show the limits of formal, mechanical proofs. 
Make no mistake: he did not discover some mysterious 
truth that formal language can never articulate. Similarly, 
he did not prove that there are arguments that a human 
being can follow but which no computer could ever 
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construct. What he showed is that for any particular formal 
system (such as a computer might use) there is a Diophantine 
equation with no integer solution, though the given 
computer program cannot prove that this equation has no 
integer solution. Another computer might be perfectly 
capable of proving that the equation has no solution, but 
in that case, there must be a second unsolvable Diophantine 
equation, which falls through the web of proof for our 
second computer. No matter how many formal principles 
we cobble together, there will always be some Diophantine 
equation whose unsolvability we cannot prove. 

In an earlier section I described the incompleteness of 
arithmetic as an intellectual bombshell. The grand project 
that it really blew apart was known as ‘Hilbert’s program’: 
the dream that all of matheÂ�matics could be formalized 
within a finite, provably consistent axiomatic system. 
Perhaps the most extreme example of logically explicit 
matheÂ�matics was Russell and Whitehead’s Principia 
Mathematica (published in 1910, 1912 and 1913), which 
dotted every ‘i’ and crossed every ‘t’ for the bulk of ordi-
nary matheÂ�matics. Indeed, the authors were so careful to 
spell out every logical assumption that it took them 362 
pages to build up enough machinery to reach the conclu-
sion that ‘1â•›+â•›1â•›=â•›2’! 

The logical system employed by Russell and Whitehead 
was painstakingly spelled out, and in a sense their book 
was a precursor to modern programming languages. 
Everyone, including Gödel, was confident that all of their 
conclusions were correct. The problem was that Gödel 
proved that the logical system specified at the beginning 
of the book couldn’t possibly prove every theorem that 
the authors hoped it might prove. What is worse, he showed 
that no amount of tinkering with the axioms would help: 
there will never be a complete, definitive list of everything 
you need to know in order to prove every arithmetic state-
ment that we think is true.
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At this point, we need to reconsider the statement ‘Only 
provable truths are really true’. We believe in provable 
truths because we have good reason to trust our axioms 
and our systems of argument. In particular, if we recognize 
that a statement is true because of its proof, there is a 
foundational belief in the consistency of our axioms, as 
inconsistent axioms are profoundly useless. However, if 
we formally state our implicit belief in the consistency of 
our axioms, we produce an unprovable statement. In this 
sense, if it isn’t ‘really true’ that our axioms are consistent 
(because we can’t prove it), then our provable truths are 
not ‘really true’ either! 



Chapter 12: 
MODELLING THE WORLD 

‘Models in [the life sciences] are not meant to be 
descriptions, pathetic descriptions, of Nature; they 
are designed to be accurate descriptions of our pathetic 
thinking about Nature. … They are meant to expose 
assumptions, define expectations and help us devise 
new tests.’

James Black, 1924–2010

Science and the Uses of Models
Science is a complicated activity, involving the collection 
of data and the critical evaluation of descriptions of events. 
It involves a disparate patchwork of methodologies, not 
some single ‘scientific method’, but all scientific claims are 
made to be tested, and we are most interested in general 
explanations, not mere descriptions of specific cases. 
Scientific laws are an essential part of science (and they 
are particularly important in physics), but you can certainly 
work as a scientist without looking for new laws. Many 
people over the centuries have been astounded by the fact 
that scientific laws are matheÂ�matical in form, as what does 
‘pure thought’ have to do with messy, contingent reality? 
The extraordinary success of the scientific enterprise is 
indeed remarkable, but the fact that science tends to become 
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matheÂ�matical is not so surprising if we think that matheÂ�
matics is the language of patterns, while the job of a scientist 
is to try and identify regularities or patterns. 

We shall return to the question of why science tends to 
become matheÂ�matical, as that is central to understanding 
the development of matheÂ�matical thought. First I want to 
emphasize that we cannot understand the meaning or 
significance of a general law without some sense of what 
that law implies, and working out the implications of a 
physical law is far from straightforward! For example, it 
is one thing to know that gravity follows an inverse square 
law, but understanding the implications of that law is 
another thing altogether. Indeed, several contemporaries 
of Newton independently imagined that gravity might 
follow an inverse square law, but Newton is justly given 
the credit because only he could deduce how an object 
would move if it was subject to just such a system of 
forces. That is to say, we can use Newton’s matheÂ�matical 
and conceptual scheme to deduce that planets will follow 
an elliptic orbit, a projectile will follow a parabolic path, 
and so forth. 

Everyone knows that physical laws are important, but 
scientists and engineers don’t make predictions by simply 
looking up the relevant rules. The application of physical 
laws is not a neat, axiomatic process, but an art by which 
practitioners choose and adapt the techniques that are 
relevant to modelling a given situation. For example, it is 
not at all obvious what the Law of Gravity tells us about 
the motion of a paper dart, so we wouldn’t use the motion 
of such a dart to check if Newton’s theory is correct. 
Evaluating the contexts in which a given formalism is useful 
or relevant is an essential part of the art of the various 
sciences, and that discipline is not itself a strictly matheÂ�
matical one. 

Biologists, medical researchers, physicists, engineers, 
economists, social scientists and many other people make 
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progress in their chosen field by constructing matheÂ�matical 
models. A matheÂ�matical model is a logical machine for 
converting assumptions into conclusions, and it is a striking 
fact that seemingly esoteric forms of matheÂ�matics have 
enabled countless insights into important, empirical events. 
Since the objects of matheÂ�matics are governed by their own 
rules, we can scrutinize matheÂ�matical claims by their 
own, internal logic, and can be confident that our conclu-
sions really do follow from the given assumptions. 

When we judge a matheÂ�matical model we don’t just 
assess the validity of the matheÂ�matics. We also assess 
whether matheÂ�matical accounts of actual events are apt 
descriptions of the events in question, and we do this by 
subjecting our claims to empirical tests, and by opening 
our work to public scrutiny. Science is corrigible, and even 
if we are reasonably confident that we know how some-
thing works, we cannot be certain that we have not missed 
some critical fact. Nevertheless, there is no denying that 
scientists really can show each other something, despite 
the fact that our knowledge is always incomplete.

Many qualities can make a model useful or important, 
but the best models are like the best theories: they show 
that seemingly unrelated observations can all be explained 
by a single mechanism. MatheÂ�matical models are simpli-
fications, not the complete truth, but in many cases we 
can use them to obtain answers about what will happen 
in the physical world. This form of excellence in a model 
can be measured by a machine, as in the case where we 
predict how much a beam will bend, and can empirically 
demonstrate that the beam actually bends by the amount 
predicted by our model.

We may be awestruck by the power of science, but I 
do not think that we should be surprised that science is 
matheÂ�matical. In a sense we have nowhere else to look, as 
scientists require logical and matheÂ�matical terminology to 
make precise, quantitative deductions from the theories 
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that they state. If the matheÂ�matics has already been worked 
out, then finding the prediction of your theory will be a 
form of calculation. Otherwise, the scientist will need to 
work as a mathematician, developing matheÂ�matical or 
formal systems that are inspired by the object of study.

One of the most successful and influential models is 
where we assume that gravity is the only relevant force, 
and represent a projectile as a mass that occupies a single 
point in space. We can predict the motion of a cannon ball 
or a star and a planet, but matheÂ�matical models are always 
simplifications or idealizations, and it isn’t always clear 
when we have missed some pertinent fact. Nevertheless, 
simple, understandable models that get the basics right are 
an invaluable source of insight, while more complex models 
may be just as baffling as the real-world system that we 
wish to study. The eminent physiologist Denis Noble put 
it well in The Rise of Computational Biology: ‘Models are 
partial representations. Their aim is explanation: to show 
which features of a system are necessary and sufficient to 
understand it. So, although we could try to understand 
cardiac rhythm as the interaction of the few thousand 
protein types that are in any cell, we can in fact understand 
most of what we wish to know about pacemaker activity 
from the interaction of around a dozen protein types. The 
power of a model lies in identifying what is essential, 
whereas a complete representation would leave us just as 
wise, or as ignorant, as before.’

To make a prediction we need to construct a model. 
Moreover, models shape our understanding of the natural 
world. As the philosopher Nancy Cartwright convincingly 
argued in How the Laws of Physics Lie, models play a role 
in physics like that of fables in the moral domain: trans-
forming abstract principles into concrete examples. 
Essentially, they enable us to present a comprehensible 
and exemplary case of the relevant rule-governed behaviour. 
For example, we can use Newton’s laws to construct a 
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model of a projectile, and the fact that this model projec-
tile behaves like a real one is a principle reason for accepting 
Newton’s laws. What is more, through their successes, 
failures or limitations, models can help us to refine or 
revise our theoretical framework. The way that a model 
fails to capture a given phenomenon can show us our 
limitations, and suggest a change to the theory that we 
use. Models can also be used to help design experiments, 
shaping the kinds of observations or measurements that 
scientists think of making. In short, a good model does 
more than fit the data: it helps to clarify the way to think 
about the object we are modelling.

Order and Chaos
MatheÂ�matical systems are intrinsically ordered, and any 
pattern with a regular structure can be described in the 
language of math. Because of this fundamental association 
between matheÂ�matics and order, the existence of a branch 
of matheÂ�matics called ‘chaos theory’ may appear to be a 
contradiction in terms. However, when matheÂ�maticians 
study ‘chaos’, they are studying a system of explicitly stated 
rules, and not the absence of rules that the word chaos 
usually denotes. The distinctive and remarkable feature of 
matheÂ�matical chaos is that the rules in question generate 
behaviours that are inherently difficult to predict. To be 
more precise, a dynamical system is said to be chaotic if 
objects obeying the given set of rules always remain within 
a finite region of space, but you cannot predict exactly 
where the objects will be in the future, because making a 
small alteration to an object’s location results in a series 
of movements that are very different to what would have 
happened if you had not made that change. In other words, 
chaotic systems are governed by highly sensitive functions, 
which produce very different outputs on the basis of very 
similar inputs.

The process of kneading dough is an excellent example 
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of a chaotic system, as it shows how a very simple rule 
can be extremely sensitive to the initial condition of the 
system. As the following diagram illustrates, neighbouring 
points rapidly become separated by the kneading process, 
making it inherently difficult to predict where a given 
speck will end up. 

Every time we stretch the dough, the gap between nearby 
points doubles in length. Any tiny error in our description 
of a point’s original location will grow and grow at an 
exponential rate. The gap between our estimate and the 
actual location can double with every kneading motion, 
which means you need to be arbitrarily accurate to predict 
the future position of any given point. The fact that we 
cannot predict the future location of a speck in some 
kneaded dough demonstrates an important, general prin-
ciple. Chaos frequently emerges from extremely simple, 
deterministic programs: a spontaneous emergence of the 
unpredictable. This fact of life is something of a mixed 
blessing. On the one hand, it means that even when we 
know the laws that govern a physical system, we may not 
be able to predict what will happen. On the other hand, 
it shows that complex, unpredictable things can be governed 
by a deep simplicity. 
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The flow of fluids is a very familiar example of a phys-
ical system that can exhibit chaotic behaviour. We find 
steady and regular movement when fluid is moving slowly, 
but fast-flowing fluids are turbulent and chaotic. Many 
systems exhibit more than one kind of behaviour, giving 
stable or static behaviour for one range of parameter values, 
periodic or repetitive behaviour for a second set of param-
eter values, and unpredictable or chaotic behaviour for 
some third range of parameter values. A beautiful example 
of a transition from one qualitative type of behaviour to 
another can be found by blowing over a strip of paper. If 
we blow gently, the Bernoulli effect lifts the paper to a 
stable equilibrium, where the lift is balanced with gravity. 
If we blow a little harder there is a certain point where 
the paper will overshoot, and as long as we continue to 
blow at the same rate, it flutters with a regular periodic 
motion. The bounÂ�daries between different, qualitative types 
of behaviour are called bifurcation points. An example of 
a bifurcation point is the smallest rate of blowing that will 
make the paper flutter, as this marks the transition from 
one qualitative kind of behaviour to another. 

A second kind of bifurcation point is where we go from 
a regular periodic behaviour to a chaotic one, as in the 
case of a dripping tap. At a low rate of flow a tap will 
produce a regular drip-drip-drip. If you loosen the tap a 
little further, you can produce a two-step drip-drop-drip-
drop pattern. Further loosening can produce a four-step 
pattern, followed by an eight-step pattern, and so on. 
Very rapidly the sequence of drips becomes enormously 
complex, irregular and inherently difficult to predict, and 
at a certain point it ceases to be periodic. In practice this 
is hard to see, because after you reach the chaotic regime, 
it only takes a little more water for the drops to become 
a stream. In theory at least, a dripping tap with a low 
flow rate is ordered and predictable, but as we increase 
the flow of water the rhythm of the drops becomes chaotic. 
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That point of transition, from periodic to chaotic, is a 
second kind of bifurcation point.

Theoretical Biology
Everyone knows that theoretical physicists use a lot of 
math. The exceptionally gifted physicist Freeman Dyson 
put it well in his classic essay ‘Mathematics in the Physical 
Sciences’: ‘For a physicist matheÂ�matics is not just a tool 
by means of which phenomena can be calculated, it is the 
main source of concepts and principles by means of which 
new theories can be created.’ In contrast biology is far less 
matheÂ�matical, and the role of matheÂ�matics in biological 
science is much less widely known. Nevertheless, matheÂ�
matics and computing are increasingly essential to 
biologists. A great deal of money and effort is being fed 
into a process whereby matheÂ�matical models and experi-
mental data are used to develop ideas and hypotheses, 
which can then be tested experimentally, leading to the 
refinement and expansion of the original models. 

The first point to make about the relationship between 
math and biology is that careful and methodical observa-
tion is a central part of every science, and many poor 
matheÂ�maticians have made hugely important contributions 
to the life sciences. You don’t need to be a mathematician 
to observe the forms and behaviours of living things, but 
that does not change the fact that matheÂ�matics is absolutely 
fundamental to modern biology. For example, consider 
the most important idea in biology: Darwin’s theory of 
evolution.

A modern definition of evolution is ‘the change in the 
frequency of the different gene-types (alleles) in a popula-
tion over time.’ The basic idea is that given some 
population of individuals, the number of individuals may 
change over time, and the total number and kind of different 
genes that are present in the population’s genomes will 
also change over time. Some genes will become more or 
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less prevalent, some children will have a slightly different 
version of a gene compared with their parents (a change 
from one allele to another), and so on. The word ‘evolu-
tion’ refers to the fact that over time, there are changes in 
the proportion of the population that carries each of the 
different alleles.

By this definition, no one can deny that evolution is a 
real phenomenon. It is like the observation that a dropped 
object falls towards the ground, not some general theory 
of gravity that may turn out to be false. Religious funda-
mentalists may refuse to accept scientific versions of the 
history of life on earth, but even the most intransigent 
must surely agree that the frequency of different genes in 
today’s population is different from the frequency of genes 
in yesteryear’s population, if only because the human popu-
lation has increased from the original two! After all, in a 
population of two there are only three possible frequencies 
for any given gene: 0% (neither Adam nor Eve has the 
gene), 50% (one person has the gene), or 100% (both 
people have the gene). In contrast there are all manner of 
different gene frequencies in the population of humans 
who are alive today, which means that by definition evolu-
tion has occurred. More importantly, many of the observed 
changes in the relative frequency of different alleles can 
be explained by Darwin’s big idea: the process of natural 
selection. That is to say, if the population in question 
contains some genetic variation, changes in the frequency 
of different alleles will occur whenever some genetic types 
are more likely to survive and reproduce than others.

The concept of frequency or proportion is absolutely 
essential, as what changes over time is the proportion of 
individuals with some or other type of genetic inheritance. 
The point I am trying to make is that we literally could 
not phrase a theory of evolution without the ability to 
count. More generally, modern biomedical science involves 
all manner of sophistical matheÂ�matical techniques. There 



282	 MATHEMATICAL THOUGHT

is no question that scientists will continue to use computers 
and matheÂ�matical analysis as a route to understanding 
biological phenomena, from matheÂ�matical descriptions of 
the interactions between biological molecules, up to the 
scale of organ physiology, the study of development or 
the modelling of population dynamics. 

The story of how an egg becomes an organism is of 
particular interest, and to understand such a process we 
need to consider the genome, and much more besides. In 
short, organisms are physical entities, and the interactions 
that are essential to development occur in space and time, 
subject to the laws of physics. As a simple example, when 
a mammal produces milk we find spherical droplets of oil 
suspended in an aqueous fluid. We don’t need a gene that 
says ‘droplets in milk should be spherical’. We understand 
that droplets will be spheres because spheres have the smallest 
surface area for the given volume, and there are well under-
stood physical reasons why the surface area will minimize. 

A moral of this story is that to gain a deeper under-
standing of the specific details that a biologist might study, 
it is wise to turn to a more general, matheÂ�matical picture 
of what is going on. As the theoretical biologist Hans 
Meinhardt argued in Models of Biological Pattern Formation, 
we require theory to make sense from observations. 
Suppose, for example, that we possessed a perfect biochem-
ical scanner that could tell us the precise concentration of 
every kind of molecule in every portion of space and time. 
We might be able to measure the changing concentrations 
associated with every developmental event, but we would 
still lack insight as to what is essential to the process, and 
what was merely incidental. Cause and effect would be 
jumbled in the data, so although our perfect scanner could 
tell us a great deal, we would still lack a sense of how the 
system works. For example, we might not be able to predict 
what would happen if we managed to change some or 
other of the measured concentrations.



	 MODELLING THE WORLD � 283

In order to feel like we understand what is going on, 
we need to call into being a hypothetical mechanism, or 
model, which accounts for the data as well as we can 
manage. Biology is incredibly complicated, and we often 
make do with an informal word model: an unquantified 
description of the forces at play. As is the case with any 
verbal account, the implications and theoretical commit-
ments of such a description are often far from clear. Indeed, 
at this stage in the development of biomedical science, 
much of the progress we are making is of the form ‘gene 
X is associated with process Y’, or ‘brain region X is asso-
ciated with process Y’. At the risk of sounding unduly 
critical, observing a correlation between one thing and 
another barely qualifies as a description of the process in 
question, let alone an explanation of what is going on. 
That is not to deny that observing a correlation can be 
very useful: in some cases information of this kind can 
even lead to the development of new and effective medical 
treatments, and it is certainly worth knowing that a given 
treatment correlates with recovery! It is just that spotting 
correlations does not provide insight into how the system 
actually works, unless those observations are helpful in 
developing or critically evaluating some kind of model, or 
hypothesized mechanism. 

Given our current state of ignorance and the extreme 
difficulty of measuring all that we might want to measure, 
it is inevitable that any matheÂ�matical model of a biological 
system is bound to be somewhat arbitrary. Nevertheless, 
I would claim that precise, matheÂ�matical models that can 
support detailed deductions are superior to informal word 
models for several reasons:

1.	Constructing a matheÂ�matical model forces us to 
be clear about our working assumptions. 

2.	Proposed biological mechanisms should be consistent 
with the known principles of physics and chemistry, 
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and our understanding of those subjects is profoundly 
matheÂ�matical.

3.	Systems of interacting parts can behave in counter-
intuitive ways, and we need matheÂ�matics to be 
able to identify correctly the implications of 
our assumptions. In other words, unlike vague 
descriptions, matheÂ�matical models generate clear, 
unambiguous predictions of both a quantitative 
and qualitative nature. 

Biology is advancing at an awesome pace, but it seems 
implausible that matheÂ�matics will ever dominate biological 
theory to the extent that it dominates theoretical physics. 
Nevertheless, many of the recent advances in biology 
(including the reading of genomes) have required increas-
ingly sophisticated collaborations between experiÂ�mentalists 
and matheÂ�matically sophisticated theorists. This is a recent 
development, which partly reflects the fact that unlike their 
predecessors, modern biologists often deal with very large, 
computer-based data sets. For example, we cannot hope 
to make sense of the vast catalogue of genetic data without 
some sophisticated statistical techniques. However, in addi-
tion to providing computational tools and techniques for 
biomedical research, I hope to persuade the reader that 
simple mathematic arguments can also play an essential 
conceptual role, as we try to speak aloud the logic of life. 

Interactions and Dynamical Systems
Biologists have made huge progress by taking a reductionist 
approach. For example, we can identify a gene, we can 
identify the protein that cells produce when they transcribe 
and translate that gene, and we can look to see how the 
protein in question behaves. This kind of approach has 
produced some fantastic science, but there are many biolog-
ical phenomena that cannot be understood until we put 
Humpty Dumpty back together again. That is to say, if 
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we are going to understand how a cell or an organism 
functions, we need to know how the molecular components 
interact over time.

Mathematical  models of complex, dynamical systems 
are an increasingly central feature of the scientific enter-
prise. The basic idea is to consider the behaviour of a 
system of parts, each of which affects its neighbours in 
accordance with predefined rules. Any particular model 
of a complex system is likely to have many arbitrary 
features, but despite the fact that we could have made 
many other computer models of the same physical 
phenomena, perspicuously constructed models can explain 
a great deal. For example, models can explain why buses 
come in threes, or at least, why buses tend to cluster.

In order to see why buses tend to bunch together, we 
need to make three simple, empirical observations. The 
first observation is that it takes time for people to move 
from a bus stop onto a bus, and since they move onto 
the bus one at a time, the more people there are at a bus 
stop, the longer it takes for the bus to pick them all up. 
The second observation is that the number of people 
waiting at each bus stop increases over time, as more and 
more people arrive at the bus stop. Third, people leave 
the bus stop when a bus arrives. This combination of facts 
implies that the presence of a second bus some short 
distance in front of you speeds you up, because the bus 
in front of you removes people from the stops, so your 
bus passes the stops more quickly. Similarly, the absence 
of a bus in front of you slows you down, as the bus stops 
will contain more people, and it will take longer to pick 
them all up.

It therefore follows that regular processions of buses 
are inherently unstable. Small gaps will tend to get smaller 
as the bus at the back will tend to catch up with the bus 
in front of it, while conversely, large gaps will tend to get 
larger. Clusters will naturally emerge, as small disruptions 
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to the regularity of bus arrivals become magnified over 
time. Bus conductors minimize the clustering effect, as do 
pre-purchased tickets. 

As is the case with all of the models that I sketch out 
in this chapter, we could be much more specific and quan-
titative about the assumptions that give form to our model. 
For example, by being very specific we could use our 
model to quantify the scale of the clustering effect. 
However, we do not need to include every detail to under-
stand the principles involved, as questions about the real 
world can be addressed at different levels of abstraction. 
This example also demonstrates that not every truth about 
the world is a mere consequence of ‘fundamental’ physical 
laws, as there is more to physics than the rules that govern 
the behaviour of particles. To put it another way, we can 
understand why buses tend to cluster, and the fact that 
the objects in question are composed of atoms is no more 
relevant than the fact that they are painted red. 

Another remarkable model of pattern formation has its 
roots in one of Alan Turing’s best ideas. Back in 1952, 
Turing was trying to understand the development of an 
embryo. He knew that when an embryo consists of only 
two cells, separating those cells results in the growth of 
identical twins, while leaving them together produces a 
single individual. Turing was fascinated by the develop-
mental process, and asked himself some difficult questions: 
How do the two cells ‘know’ about each other, and how 
can a group of cells self-organize to create a pattern? 

Turing assumed that each cell must ‘know’ about the 
other because certain molecules move between them. 
He imagined an initially uniform chemical mixture, and 
tried to think how it might spontaneously develop into 
a pattern with different parts. Being a genius of the first 
order, he realized that concentration gradients could 
spontaneously emerge if two substances with different 
diffusion rates react with one another. This is somewhat 
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counter-Â�intuitive, as diffusion usually smoothes out any 
differences in Â�concentration. Nevertheless, Turing showed 
that if the diffusing chemicals are involved in reactions 
of a given kind, the reaction-diffusion process will create 
local regions with unusually high (or low) concentrations. 
Few biologists paid much attention at the time, but the 
mathematician Alfred Gierer and the theoretical biologist 
Hans Meinhardt have developed Turing’s idea, identifying 
a key principle in biological pattern formation.

The basic idea is that patterns can be generated by a 
combination of ‘local activation’ and ‘global inhibition’. 
There are many different variants of this theme, but as a 
simple example imagine a flat desert with a few rocks 
scattered in the sand. If there is no wind, our flat desert 
could persist over time, and we would not have a pattern 
of high points and low points. If there is wind, it will blow 
the sand around. The rocks create a small area that is 
sheltered from the wind, and sand will accumulate at those 
points, because it is easier for the sand to be blown into 
the shelter than it is to be blown out of the shelter. In 
other words, the presence of wind energy can turn a small 
rock into a large sand dune. This process of a large thing 
getting larger, or a high concentration becoming even 
higher, is what we call local activation. 

If local activation was the only effect, we wouldn’t get 
a spatial pattern: we would simply have a concentration 
(or quantity of sand) that starts small but gets larger and 
larger and larger. My point is that deserts have high points 
and low points, and this relates to the fact that there is a 
finite amount of sand blowing in the wind. If the sand is 
accumulating in the shelter of the dunes, which means it 
is not accumulating elsewhere. This long-range reduction 
in the ‘chemical’ of interest is what we call global inhibi-
tion. As another example of pattern formation by local 
activation and global inhibition, recall my account of the 
formation of leaves. Leaves begin to form in the regions 
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of the growing shoot that contain a high concentration of 
auxin, but in a given stem the concentration of auxin can 
initially be quite uniform. As cells tend to pump their 
auxin into the neighbouring cell with the highest auxin 
concentration, high concentration areas tend to become 
even higher (local activation), while the rest of the stem 
is effectively drained of auxin (global inhibition).

Holism and Emergent Phenomena
Organisms, economies and ecosystems all contain large 
numbers of different, interacting parts. If we want to under-
stand a complex system, having an accurate list of the parts 
and their properties is certainly important. Nevertheless, 
it is sometimes the case that knowing lots of details about 
the individual, isolated parts does not tell you what you 
want to know about the behaviour of the system. The 
heart of the matter is that in countless cases, we cannot 
understand the behaviour of the entire system unless we 
pay careful attention to how the behaviour of one part 
influences the behaviour of another.

There are many ways to represent one event being 
coupled with another, and it is possible to discern some 
important, general schemes. For example, we are all familiar 
with the term ‘vicious circle’ (or its benevolent twin, a 
‘virtuous circle’), and we have a good idea of when it is 
appropriate to use this phrase. The notion of a vicious or 
virtuous circle is closely related to that of ‘positive feed-
back’. Imagine a situation where an increase in the 
concentration of A triggers an event that produces even 
more of A, resulting in ever increasing concentrations. The 
converse to positive feedback is negative feedback, where 
an increase in A triggers an event that reduces the preva-
lence of A, while a decrease in A triggers an event that 
tends to increase the concentration of A. Because low values 
tend to rise and high values tend to drop, negative feedback 
can be used to maintain a stable concentration. 
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It is vital that our bodies’ internal environment remains 
stable, so it is unsurprising that there are many physio-
logical examples of negative feedback. As we all know, if 
our body temperature rises we cool ourselves down by 
sweating, and if our body temperature drops we warm 
ourselves up by shivering. Negative feedback can also be 
used to produce oscillations, particularly if there are time 
delays in the system. For example, if I can turn up or turn 
down the heat in my house, but I am slow to make any 
adjustments, my house might get very hot before I finally 
turn down the thermostat. Having turned down the ther-
mostat my house might then become very cold, before I 
finally get around to turning up the heat again. As a result 
of these dynamics the temperature in my house might 
oscillate between hot and cold, and a similar mechanism 
of negative feedback with time delays can be used to 
produce oscillations in the chemical concentrations in cells.

There are also important physiological examples of posi-
tive feedback. For example, the pituitary gland is located 
at the base of the brain, and in women it sometimes secretes 
a small amount of luteinizing hormone (LH). This stimu-
lates the ovaries to secrete oestrogens, and in certain 
conditions a rise in oestrogen levels in the blood stimulates 
the pituitary gland to produce more LH, which leads to 
higher oestrogen levels, which leads to higher LH levels, 
and so on. Because of this positive feedback a small initial 
quantity of LH soon results in the production of large 
concentrations of LH. This phenomenon is known as an 
LH surge, and it triggers ovulation. Women’s blood doesn’t 
always have a high concentration of LH because ovulation 
temporarily inhibits the ovaries’ ability to secrete oestro-
gens. The resulting drop in oestrogen levels removes the 
stimulus that produced the initial rise in LH levels, so 
ovulation allows LH levels to drop back down to the 
concentrations found before the LH surge. 

More and more matheÂ�maticians are working with 
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biologists and other scientists to analyze the behaviour of 
systems that are comprised of many interacting parts. One 
of the really fascinating things about studying complex 
systems is that when we build a model with many 
interacting parts, we frequently find that it exhibits 
‘emergent phenomena’: forms of behaviour that we cannot 
possibly predict by looking at any of the individual parts. 
For example, we cannot understand why buses tend to 
cluster if we only study an individual bus, and so we might 
say that the clustering of buses is an emergent phenomenon. 
By the standards of matheÂ�matical science the notion of 
emergence is somewhat vague, although a wide range of 
theorists have worked to refine the concept. The practical 
point is that in many kinds of enquiry, the property or 
behaviour that we are interested in cannot be made manifest 
in any single part: to see the thing in question, we need 
to consider an entire system, including rules for how the 
parts interact.

Such inherently holistic phenomena can be contrasted 
with concepts like volume, as it is reasonable to say that 
a shape’s volume precisely consists of the volume of its 
parts. Interestingly, this claim about the relationship 
between the whole and the parts of geometric forms cuts 
to the heart of what is new and different about geometries 
phrased in the language of sets. For millennia, people agreed 
with Aristotle when he claimed that the parts of a contin-
uous thing are themselves continuous, so the parts are the 
same kind of thing as the whole. For example, Aristotle 
would say that we can identify a point that is inside a 
sphere, but a sphere is not made of points. As far as he 
was concerned, you can chop a sphere into smaller and 
smaller parts, but anything that deserves to be called a part 
of a sphere must have a finite, non-zero volume.

In contrast, modern matheÂ�maticians typically begin by 
defining a sphere as the set of all points within a given 
distance from the centre of the sphere. Hence the sphere 



	 MODELLING THE WORLD � 291

is conceived as being an infinite set of points, which suggests 
that the parts of a sphere are points, not volumetric regions. 
Defining shapes and spaces in terms of sets and points, 
where each point is identified by a set of real number 
coordinates, is a very powerful move. It guarantees that 
we can use algebraic techniques to tackle problems in 
geometry, but it also leads to counter-intuitive results. In 
particular, there is a theorem called the Banach-Tarski 
paradox, which shows that if we chop a sphere into an 
infinitely fragmented or non-continuous collection of 
points, then those fragments can be rearranged to make a 
sphere with a different volume! In other words, all of the 
points in a small sphere can be rearranged to coincide with 
all of the points in a large sphere. This is possible because 
every sphere has the same, infinite number of points, and 
points themselves have no volume.

Of course, if we chop a sphere into any finite collection 
of continuous pieces, the total volume of those pieces 
cannot change: it must always equal the volume of the 
sphere. In other words, the volume of the whole is equal 
to the total volume of the parts, and the property of having 
a given volume is not something new that only emerges 
when we glue all the pieces together. In contrast, the topo-
logical properties of a given shape could be described as 
holistic properties, as it does not make sense to ask which 
part of a circle makes it a closed loop. Being closed is not 
a property of any one part of the shape; it is a property 
of the whole. Similarly, the Euler number of a shape is 
not something we can identify by looking at its separate, 
component parts: the way that the whole thing is glued 
together is absolutely fundamental. Indeed, if we do chop 
our shape into separate parts, the Euler number changes! 



Chapter 13: 
LIVED EXPERIENCE AND THE 

NATURE OF FACTS

‘Those who judge by employing a rule are in regard 
to others as those who have a watch are in regard 
to others. One says, “Two hours ago”; the other says, 
“It is only three-quarters of an hour.” I look at my 
watch, and say to the one, “You are weary,” and to 
the other, “Time gallops with you, for it has been 
an hour and a half.” I laugh at those who tell me 
that time goes slowly with me and that I judge by 
imagination. They do not know that I am judging 
by my watch.’

Blaise Pascal, 1623–1662

Rules and Reality
The word matheÂ�matics is derived from the Greek for ‘teach-
able knowledge’, and I think it is highly significant that 
when we are engaged with matheÂ�matical science, there is a 
distinctively close connection between what we know about 
a given subject matter, and what we can say about it. An 
insightful object of comparison can be found in Wittgenstein’s 
Philosophical Investigations, where we are invited to consider 
the difference between ‘knowing the height of Mount 
Everest’, and ‘knowing what a cello sounds like’. You cannot 
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be credited with knowing the height of Everest without 
being able to tell someone. On the other hand, even a 
master cellist may flounder when asked to show that they 
‘know’ what their instrument sounds like. 

There are lessons from our contact with reality that 
cannot simply be packaged up and passed around. Not all 
human understanding is factual in form! On the other 
hand, the pursuit of scientific understanding is an essen-
tially public enterprise, as a scientist’s work largely consists 
in articulating the knowledge that is gained from investi-
gating various objects. In the words of the physicist Niels 
Bohr, ‘It is wrong to think that the task of physics is to 
find out how Nature is. Physics concerns what we can say 
about Nature.’ In my view, it is the necessity of explicitly 
formulating and sharing our understanding that drives 
empirical science to the point where it becomes matheÂ�
matical. To put it another way, nature could be there 
without us, but until we have constructed a language, there 
can be no facts. After all, we cannot have facts without a 
language to express them! 

The language of matheÂ�matics is an integral part of the 
human adventure, and the history of math tells us some-
thing about the cultures in which it developed. On the 
other hand, compared to other cultural artefacts, the world 
of matheÂ�matics is strangely timeless: you don’t need to 
know how the Ancient Greeks lived to understand 
Euclidean geometry. The facts of matheÂ�matics can readily 
be transmitted from one culture to another, and as they 
have deep roots in our cognitive abilities, they seem to 
belong in every world. Indeed, in and of themselves, the 
facts of matheÂ�matics cannot tell us whether we are living 
in a world with one history or another. Whatever the past 
or present might be like, once we come alive to the possi-
bility of using a form of matheÂ�matical language, we cannot 
imagine a world in which it would be impossible to think 
in those terms! For example, I might be utterly deluded 
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about the world around me, but once I have learned how 
to count, I cannot imagine being part of a reality in which 
I cannot count.

As the quotation at the beginning of this chapter indi-
cates, it is important to appreciate that matheÂ�maticians, 
scientists and engineers pursue their aims by employing 
rules. As a principal example of a rule-governed activity, 
consider the practice of counting. If a child does not count 
like the other children, we are right to tell them they are 
wrong, simply because they do not count like us. No other 
justification is required: we do not need to refer to a fact 
beyond the practice of counting itself. You might want to 
protest that there is more to the integers than the proper 
way to recite the counting song. That is no doubt true, 
but we should be careful, for as Wittgenstein observed, 
‘People can’t distinguish the importance, the consequences, 
the application of a fact from the fact itself; they can’t 
distinguish the description of a thing from the description 
of its importance.’

In short, matheÂ�matics is not a natural phenomenon, but 
it is experienced as though it were. For example, if I learn 
to count and see that 2â•›+â•›2â•›=â•›4, I might want to insist that 
this isn’t just true for me, or the people who count like 
me, it is a truth of the universe itself. Such a claim is 
eminently reasonable. Two stones and two stones do indeed 
make four stones, and wishing that it were otherwise cannot 
make a difference. However, by making this observation, 
I am not denying that matheÂ�matics is something we create. 
After all, it is us that see the stones as a group of objects, 
and a statement of fact is not the same thing as a physical 
state of affairs. To put it another way, our versions of how 
the world works do not write themselves, even if our 
accounts are genuinely faithful to the reality in which we 
find ourselves. 

In my view, matheÂ�matical truth comes into being with 
the rule-governed use of symbols: without the explicit 
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rules or principles set down by ourselves or our predeces-
sors, there can be no matheÂ�matical facts. On the other 
hand, matheÂ�matics is more than merely shuffling symbols 
according to a given set of rules, because once we have a 
rule-governed system that we can gainfully employ, we 
can view the world though the logical lens provided by 
that language. And once a person uses a word or concept, 
it acquires real meaning. This image of people using 
symbolic systems might suggest a picture of matheÂ�matical 
factuality that is comprised of two parts: the actual, mean-
ingful, historical concepts and symbols used by physically 
embodied human beings, together with the ahistorical or 
timeless symbolic facts which could in principle be verified 
by any suitably programmed computer. 

This two-fold image of matheÂ�matical truth has a lot to 
recommend it, provided that we acknowledge the impos-
sibility of seeing a dividing line between the meaningful 
matheÂ�matics that we know and use, and the computable, 
symbolic systems that are consistent and legitimate, but 
yet to be discovered. After all, the moment a person talks 
about a possible computable system, it becomes a system 
that has actually been used! As Wittgenstein remarked, 
‘There is a feeling: “There can’t be actuality and possibility 
in matheÂ�matics. Everything is on one level. And in fact, 
is in a certain sense actual.” And that’s correct. For matheÂ�
matics is a calculus; and a calculus does not say of any sign 
that it is merely possible; rather, a calculus is concerned 
only with the signs with which it actually operates.’

Calculations and matheÂ�matical arguments can be used 
to understand the world, and that is what makes matheÂ�
matics profoundly meaningful. On the other hand, 
matheÂ�matical facts are not contingent on physical states 
of affairs, as the language of math deals in generalities,  
and is not supposed to be understood by reference to 
specific or historical events. In contrast, scientists make 
claims about the empirical world, and completely different  
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theories can all refer to the same empirical phenomena. 
Consequently, scientists have to accept that new evidence 
or a new approach might show that their theories were 
wrong. Mathematicians often have hunches that turn out 
to be wrong, but the results that they prove acquire a 
certainty that science will always lack, precisely because 
matheÂ�matical truth is always truth within a given system. 
We might say that our language enables us to look at the 
world through a particular matheÂ�matical lens, and however 
our surroundings may change, we are free to keep our 
logical glasses just the same. 

Perhaps the most important thing is that matheÂ�maticians 
articulate their concepts in a way that enables deduction. 
This fundamental discipline constrains and shapes the body 
of matheÂ�matical facts, but there is more to matheÂ�matics 
than a tower of deductions. In short, matheÂ�maticians inves-
tigate describable, conceptual schemes. The same might be 
said of other theorists, but the logical structures of matheÂ�
matics are distinctive because the point of interest is nothing 
beyond our own definitive statements and symbolic forms 
of practice (e.g. counting). Mathematicians are free to count 
actual objects, but unlike other forms of theory, the terms 
of matheÂ�matics don’t need to refer to any external objects. 
I therefore conclude that the objective reality of matheÂ�
matics is not activity in the brain, or some magic realm of 
matheÂ�matical forms. Like Pascal’s watch at the beginning 
of this chapter, what matters are the statements that a 
mathematician employs. 

Although few people focus their mind on the purely 
matheÂ�matical, I believe that our natural capacity to under-
stand such truth is a vital part of what it is to be human. 
This is true of everyone, not just the well-trained experts. 
For example, although children need to be initiated into 
using the vocabulary of straight lines, squares, triangles 
and other specific shapes, our capacity to recognize the 
sense of such a language is innate, and we cannot imagine 
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looking at the world without finding shapes within it. 
This is not to say that human nature is explained by a 
hidden matheÂ�matics, but we are deeply moved by the 
truly obvious, and our matheÂ�matical traditions begin with 
statements of the obvious. I would also say that when a 
person makes the effort to assimilate the corpus of math, 
they encounter the fact that as rational beings, we are 
capable of experiencing truth. This is a fundamental fact 
of human nature, and it is inseparable from our use of 
language. 

To account for the vitality or meaningfulness of the 
symbols that they use, many matheÂ�maticians and some 
philosophers are Platonists. Platonists believe that matheÂ�
maticians study abstract objects that exist independently 
from our means of studying them. I find this claim of 
independent existence unconvincing and ultimately hollow, 
because it seeks to legitimize the things that people actu-
ally know how to do (e.g. doing sums or writing certain 
kinds of proof) by appealing to something that is beyond 
our knowing (that is, an imagined domain of transcendent 
abstract objects). 

As we’ll see in the following section, the status of matheÂ�
matical objects is a delicate matter, but in practice it seems 
that it doesn’t really matter what matheÂ�matics is ‘about’. 
Whether we imagine some pieces of string on the muddy 
fields of Egypt or some perfect timeless shapes, the practice 
of deducing the areas of shapes ultimately hinges on the 
language we employ, not the pictures we have in our minds. 
We might imagine our subject matter in many different 
ways, but once we describe the object that we wish to 
measure, it is the stated lengths and angles that matter, and 
the possibility, or impossibility, of using such descriptions 
together. More generally, what matters in matheÂ�matics is 
how we can work from one statement to another, not the 
objects that we think we might be talking about.

Mathematicians are free to study anything that can be 
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identified and characterized by means of a consistent 
description. Chess, sudoku, and other rule-governed games 
are essentially matheÂ�matical, though a game like chess is 
much more arbitrary than the structures that matheÂ�
maticians choose to study. I say this because the concepts 
that matheÂ�maticians investigate are closely related to a large 
complex of other concepts, including ideas that are used 
in science, or everyday accounts of what the world is like. 
The interconnectedness of matheÂ�matics is truly profound, 
and the subtle relationships between ideas provide a way 
of valuing some matheÂ�matical insights over others. By way 
of analogy, if a historian studies a particular event, it is 
because they think that the event in question has bearing 
on events in general, and an equivalent comment holds 
true for matheÂ�maticians. 

If we are interested in solving a particular problem, or 
understanding how different matheÂ�matical ideas are related, 
it is certainly not the case that studying one set of consistent 
axioms is just as good as studying another. It is not like 
choosing between chess and checkers! Using given axioms 
to generate new theorems is indisputably important, but 
matheÂ�matical progress also involves the formation of new 
hypotheses and new conceptual frameworks, and novel 
forms of matheÂ�matics can be judged by the light it sheds 
on previously solved and unsolved problems. My point is 
that even if every formal approach is equally matheÂ�matical, 
some arguments are more memorable than others, and not 
all of matheÂ�matics is deemed to be worth remembering.

The Objectivity of Math
What is wrong with saying that matheÂ�maticians study 
abstract objects? After all, hundreds of generations of 
matheÂ�maticians have studied patterns in the integers. Surely 
it is safe to say that the integers are abstract objects? People 
imagine the objects of matheÂ�matics: is our imagination the 
realm of math? But don’t the integers possess their own 
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form, regardless of what we think? Would they be there 
without us? Is there a timeless, spaceless portion of reality 
where matheÂ�matical objects exist?

If we are not careful, these bewitching images can stop 
us from looking at the things that we actually know. We 
do not need access to timeless, perfect objects. Instead of 
casting meaning away from humanity to some ultimate, 
all-seeing judge, we can suppose that matheÂ�matical language 
brings about the reality it declares. Rather than thinking 
of matheÂ�matical objects as the underlying bedrock of math, 
I think we should concede that the irreducible fact of the 
matter is that people are capable of employing the language 
of matheÂ�matics. In particular, the brute fact about numeracy 
is that in the medley of a lifetime we have assimilated the 
basic concepts of the integers, and possess the ability to 
employ them. As a result, people really can count, and are 
capable of making true, arithmetic statements. So, you 
might ask, if we experience truth by ‘assimilating matheÂ�
matical language’, are the facts of matheÂ�matics invented 
or discovered? 

The advent of novel matheÂ�matics is a unique kind of 
event, but I am inclined to say that ‘invent’ is the better 
metaphor. Like engineers building a conceptual device, 
matheÂ�maticians need to be inventive, but we discover that 
our invention works, and is intelligible to our colleagues. 
By way of analogy, we invent the rules of chess, but the 
game has a certain autonomy, and given its rules we cannot 
change the fact that forcing checkmate with two knights 
is impossible. Indeed, we might well say that we discover 
this fact about our own invention. Likewise, matheÂ�matics 
is a human creation, but we cannot simply bend our crea-
tions to our will, as matheÂ�matical objects and the 
relationships between them are constrained by stated prin-
ciples. As in the case of chess, the partial autonomy of 
matheÂ�matics derives from the fact that our creation is 
governed by rules that we can state.
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In short, matheÂ�matics is a language, and languages are 
cultural artefacts. This is a subtle claim, as it does not 
mean that the objects of matheÂ�matics are arbitrary inventÂ�
ions, or only exist ‘in our head’. We can find meaning by 
making a language our own (a process that enables us to 
form certain kinds of thought), but language itself does 
not belong to any individual, or exist in any one brain. 
By its very nature language is sharable, with deep roots 
in observable patterns of behaviour, so although we need 
brains to think, we do not understand what sentences 
mean by looking at each other’s brains! We may feel as 
though our thoughts are private, and contained within 
our own minds, but matheÂ�matical structures and symbols 
are essentially public and sharable, even if our feelings 
about them are not. As Heraclitus of Ephesus remarked 
twenty-six centuries ago, ‘Although the forms of reason 
(logos) are shared, most men live as though their thinking 
were a private possession.’ 

We encounter the objects of matheÂ�matics through our 
use of language (particularly the terms used in measure-
ment), and it is the use of rule-governed language that can 
bring such objects to mind. Furthermore, our under-
standing of number is very deep rooted indeed, because 
we naturally appreciate that objects can be added to a 
group, or placed into containers. Indeed, when we are 
teaching arithmetic we quite reasonably take it for granted 
that children will be able to understand the process of 
adding or taking away objects from a collection, even if 
they don’t yet understand the symbols of arithmetic. By 
building on the highly intuitive, even pre-linguistic concept 
of a collection, we have been able to form highly robust 
abstract number concepts. Such abstract concepts require 
the use of rule-governed language, and as such they have 
an essentially cultural component.

For example, we are justified in saying that there ‘is’ 
one and only one number ‘3’ precisely because it is 
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actually possible to count to three, and a public can 
assess whether or not someone has done this correctly. 
The word is meaningful because we have an intuitive 
understand of collections of countable objects, but the 
facts about numbers cannot be separated from the 
conventions for their use. To put it another way, we 
should only accept a set of axioms if they are in accord 
with the ideas that we associate with our symbols, but 
it is the fixed axioms and other rules governed principles 
that make matheÂ�matics precise, stable and sharable. 
Furthermore, once we accept a set of rules and begin 
to employ them, we can discover the patterns that are 
drawn out by those rules.

Because matheÂ�matics is precise, stable, sharable and 
rooted in human cognitive abilities, the objects of matheÂ�
matics have many things in common with nameable, 
physical objects. However, numbers and other matheÂ�
matical objects are unlike physical objects in that the 
existence we can claim for the integers (say) is not an 
independent, isolatable one. In other words, number words 
resemble names, but it is misleading to take the object ‘3’ 
too literally. We do not need to imagine some transcendent 
object that has all the properties of three-ness, and none 
of the mess or irrelevance of a particular system of nota-
tion. All we need is a series of number words, so we can 
start to count. That is to say, the truly essential point is 
that each number stands in a structured relationship to the 
other numbers. Not only can we identify an item in a 
particular sequence as ‘being the third’, it is also the case 
that each integer can be characterized and identified by its 
place within a definitive list of the integers. In that sense 
number words are very much like names. However, the 
essence of a ‘place’ is nothing other than its relation to 
the other places. 

For example, there is no special quality to being first 
in line other than the definitive fact that being first means 
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being before the other places, without which there could 
be no ‘first’. As Stewart Shapiro wrote in Thinking about 
Mathematics, ‘Any small, movable object can play the role 
of (i.e. can be) black queen’s bishop. Similarly, anything 
at all can “be” 3 – anything can occupy that place in a 
system exemplifying the natural number structure.’ It 
would be absurd to try and make sense of the term ‘black 
queen’s bishop’ without referring to the chess board, and 
likewise, we cannot make sense of any particular number 
without reference to our number system. In short, the 
essence of an individual number is not something intrinsic 
to an individual abstract object (whatever that might be): 
the properties of numbers make sense only in the context 
of a number system. For example, we know that ‘3 is odd’, 
but that does not mean that oddness is a property intrinsic 
to some special object known as 3. Another way of saying 
‘3 is odd’ is to say that ‘there is SOME integer n such that 
3â•›=â•›2nâ•›+â•›1’, so the oddness of the number 3 precisely consists 
of a relationship between the number 3 and some other 
numbers.

In short, the specific rules, definitions, and notational 
systems that we adopt are central to matheÂ�matical practice, 
as it is these things that specify the game that we are 
playing. However, that does not mean that matheÂ�matics 
is ‘a game played with meaningless symbols’, as the formal-
ists suggest. Our choice of rules is motivated by underlying 
concepts, and although the things that computers can do 
are central parts of matheÂ�matics, there is much more to 
the subject than the valid application of formal languages 
like PC. When I say that the irreducible fact of the matter 
is that matheÂ�matical arguments exist, I am not only 
thinking of computer checkable proofs and calculations. 
I am also thinking about the informal arguments, images 
and metaphorical statements that dominate this book, and 
the broader play between various kinds of proof and 
demonstration. 
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Euclidean geometry is often described as a great 
inverted pyramid: a vast tower of deductions resting on 
a handful of explicitly stated principles. Despite the truth 
in that seductive image, the development of matheÂ�matics 
as a whole is much more than the orderly application of 
deductive principles, with one statement following from 
another. For starters, creative matheÂ�maticians not only 
work forwards from axioms to theorems. They also work 
backwards, starting with a problem and formulating 
hypotheses that might enable them to deduce solutions 
to the problem at hand. Indeed, as is the case with 
Euclidean geometry, we often realize that our foundations 
are good foundations precisely because a given conceptual 
scheme enables us to tackle effectively a given set of 
problems. 

My point is that creative matheÂ�maticians don’t just make 
obviously legitimate deductions: they try to spot patterns, 
they make conjectures, they break problems into smaller 
sub-problems, and they guess at general statements after 
examining a few specific instances. They also try to solve 
problems by employing analogies, as progress is often 
made when someone says, ‘Maybe we can understand this 
problem by thinking in the terms we use to solve that 
other problem.’ These features of analytic thinking are 
common to many fields of endeavour, and with experience 
a skilled mathematician learns to put their finger on the 
critical point. 

Mathematicians make progress by thinking about the 
challenges that face the matheÂ�matical community, and this 
involves intuitive leaps of understanding, as well as formal, 
deductive practice. It is certainly possible to develop matheÂ�
matical intuition (you just need to spend some time doing 
matheÂ�matics), but matheÂ�maticians wisely trust their rules 
and symbols, not their imaginations. Working matheÂ�
maticians may harness all manner of mental faculties, but 
the distinctive discipline of matheÂ�matics is to aim at making 
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the relevant deductions completely formal and explicit, so 
that others can follow the argument.

Meaning and Purpose
Nobody seriously believes that one piece of matheÂ�matics 
is as good as any other, even though a dull or arbitrary 
piece of math is every bit as correct as the most celebrated 
proof. Mathematicians are motivated to engage in the 
research that they do, and they have reasons for employing 
the rules that they decide to follow. Although our feelings 
towards matheÂ�matical statements cannot change the facts 
themselves, our motivation or sense of purpose in doing 
matheÂ�matics is absolutely essential. After all, people have 
reasons for doing what they do, and that is an essential 
part of the matheÂ�matical experience. 

People are motivated to engage with matheÂ�matics for 
all kinds of reasons. Important practical concerns require 
matheÂ�matics, people want to solve famous problems, we 
might wish to show connections between historically 
Â�separate theorems. Most importantly of all, matheÂ�matical 
patterns can simply capture our imagination, provoking 
us to thought. As the mathematician G. H. Hardy percep-
tively remarked:

There are many highly respectable motives which 
may lead men to prosecute research, but three which 
are much more important than the rest. The first 
(without which the rest must come to nothing) is 
intellectual curiosity, desire to know the truth. Then, 
professional pride, anxiety to be satisfied with one’s 
performance, the shame that overcomes any self-
respecting craftsman when his work is unworthy of 
his talent. Finally, ambition, desire for reputation, 
and the position, even the power of money, which 
it brings.
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Formal definitions and computer-checkable deductions are 
absolutely central to matheÂ�matical science, and it is obvious 
that computers do not need to have a sense of the motiva-
tions of matheÂ�maticians in order to do what they do. 
Nevertheless, motivations are an essential part of the matheÂ�
matical experience, because the satisfaction of a compelling 
argument does not simply consist of its publicly established 
validity. My point is that the vitality of computer-checkable, 
symbol-based methodologies is not inherent to the rules 
alone, but rather depends on the endlessly mysterious and 
unruly process whereby any kind of symbolic representa-
tion may come to engage with our imagination. To put it 
another way, we may have no choice but to define a word 
in its relation to other words, but our sense of meaning 
is essentially bound to the apprehension of human purpose. 

It is well known that matheÂ�maticians rely on clearly 
stated definitions. Consequently, we might be inclined to 
think that motivations are unimportant in math because 
our feelings about the facts cannot change the facts them-
selves. However, that kind of insensitivity to underlying 
motivations is far from being a unique or distinguishing 
feature of matheÂ�matical science! It is physically inevitable 
that people do not need to share the same sense of purpose 
in order to use the same language. Indeed, even our language 
for speaking about our own feelings or emotions cannot 
be any better than our language for speaking about other 
people’s feelings, despite the fundamental asymmetry 
between our knowledge of self and other.

In the particular case of matheÂ�matics, the facts themselves 
can be presented or represented by a formal scheme, and 
we don’t need to refer to people or their cultures. But 
there is more to the practice of matheÂ�matics than formal 
definitions! As well as the statements of matheÂ�matics, there 
are also matheÂ�maticians, who are cultured people that find 
a palpable weight in their use of symbols. As is the case 
with all kinds of language, we can sketch out definitions 
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in the abstract, but meaning can arise only in the context 
of life, when flesh and blood human beings engage the 
world with words. 

People use matheÂ�matical concepts, and in my view our 
very sense of reality is shaped by the fact that our words 
can satisfy (or fail to satisfy) the motives that we hold. It 
is manifestly the case that linguistic expressions can be 
effective in ways that we ourselves are in a position to 
confirm: we have enough in common for language to work. 
For example, we might want to be successful in a highly 
instinctive game called ‘name that object’, and more sophis-
ticated motives can likewise be fulfilled.

When it comes to assessing another person’s matheÂ�
matical work, we look to our definitions to answer the 
basic question: ‘Has the ritual been performed correctly?’ 
However, matheÂ�matics involves much more than simply 
using symbols in the same way as our peers, as we should 
also consider the radically matheÂ�matical question, ‘What 
is essential to the workings of my ritual, and what is simply 
arbitrary?’ Fixed rules unfold as they must, but math is 
more than a correctness of symbolic form, as such languages 
may be fit for human purpose. In particular, the invention 
of number words has given us a linguistic technology that 
is genuinely capable of elucidating plurality: a presumably 
ancient goal. 

Our sense of matheÂ�matical purpose can be truly deep 
and beautiful: grounded in the obvious, but endlessly other-
worldly. As I hope my book has shown, matheÂ�matical 
arguments can be deeply striking, and they play a crucial 
role in our best attempts at comprehending the world. 
Furthermore, as esoteric as it may seem, I am convinced 
that the philosophical contemplation of matheÂ�matical prac-
tice is profoundly worthwhile. A shift in our philosophy 
will not change the facts themselves, but our attitude 
towards the factual helps to shape our lives, and what 
could be more important than that? With that point in 
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mind, I cannot think of a saner final comment than these 
lines from Circles, by Ralph Waldo Emmerson: ‘Every 
ultimate fact is only the first of a new series. … No facts 
are to me sacred; none are profane; I simply experiment, 
an endless seeker with no past at my back.’
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